THE GROUP OF AUTOMORPHISMS OF THE FIRST WEYL ALGEBRA IN PRIME CHARACTERISTIC AND THE RESTRICTION MAP

V. V. BAVULA

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom e-mail: v.bavula@sheffield.ac.uk

(Received 19 May 2008; accepted 24 September 2008)

Abstract. Let *K* be a *perfect* field of characteristic p > 0; $A_1 := K\langle x, \partial | \partial x - x\partial = 1 \rangle$ be the first Weyl algebra; and $Z := K[X := x^p, Y := \partial^p]$ be its centre. It is proved that (i) the restriction map res : $\operatorname{Aut}_K(A_1) \to \operatorname{Aut}_K(Z)$, $\sigma \mapsto \sigma|_Z$ is a monomorphism with $\operatorname{im}(\operatorname{res}) = \Gamma := \{\tau \in \operatorname{Aut}_K(Z) | \mathcal{J}(\tau) = 1\}$, where $\mathcal{J}(\tau)$ is the Jacobian of τ , (Note that $\operatorname{Aut}_K(Z) = K^* \ltimes \Gamma$, and if *K* is *not* perfect then $\operatorname{im}(\operatorname{res}) \neq \Gamma$.); (ii) the bijection res : $\operatorname{Aut}_K(A_1) \to \Gamma$ is a monomorphism of infinite dimensional algebraic groups which is *not* an isomorphism (even if *K* is algebraically closed); (iii) an explicit formula for res⁻¹ is found via differential operators $\mathcal{D}(Z)$ on *Z* and negative powers of the Fronenius map *F*. Proofs are based on the following (non-obvious) equality proved in the paper:

$$\left(\frac{d}{dx}+f\right)^p = \left(\frac{d}{dx}\right)^p + \frac{d^{p-1}f}{dx^{p-1}} + f^p, \quad f \in K[x].$$

2000 Mathematics Subject Classification. 14J50, 16W20, 14L17, 14R10, 14R15, 14M20.

1. Introduction. Let p > 0 be a prime number and $\mathbb{F}_p := \mathbb{Z}/\mathbb{Z}p$. Let K be a commutative \mathbb{F}_p -algebra and $A_1 := K\langle x, \partial | \partial x - x\partial = 1 \rangle$ be the first Weyl algebra over K. In order to avoid awkward expressions we sometimes use y instead of ∂ ; i.e. $y = \partial$. The centre Z of the algebra A_1 is the polynomial algebra K[X, Y] in two variables $X := x^p$ and $Y := \partial^p$. Let $\operatorname{Aut}_K(A_1)$ and $\operatorname{Aut}_K(Z)$ be the groups of K-automorphisms of the algebras A_1 and Z respectively. They contain the subgroups of affine automorphisms $\operatorname{Aff}(A_1) \simeq \operatorname{SL}_2(K)^{op} \ltimes K^2$ and $\operatorname{Aff}(Z) \simeq \operatorname{GL}_2(K)^{op} \ltimes K^2$ respectively. If K is a field of arbitrary characteristic, then the group $\operatorname{Aut}_K(K[X, Y])$ of automorphisms of the polynomial algebra K[X, Y] generated by two of its subgroups, namely $\operatorname{Aff}(K[X, Y])$ and $U(K[X, Y]) := \{\phi_f : X \mapsto X, Y \mapsto Y + f \mid f \in K[X]\}$. This was proved by H. W. E. Jung [5] for characteristic zero and by W. Van der Kulk [7] in general.

If *K* is a field of characteristic zero J. Dixmier [4] proved that the group $\operatorname{Aut}_{K}(A_{1})$ is generated by its subgroups $\operatorname{Aff}(A_{1})$ and $U(A_{1}) := \{\phi_{f} : x \mapsto x, \partial \mapsto \partial + f | f \in K[x]\}$. If *K* is a field of characteristic p > 0 L. Makar-Limanov [8] proved that the groups $\operatorname{Aut}_{K}(A_{1})$ and $\Gamma := \{\tau \in \operatorname{Aut}_{K}(K[X, Y]) | \mathcal{J}(\tau) = 1\}$ are isomorphic as *abstract* groups in which $\mathcal{J}(\tau)$ is the *Jacobian* of τ . In his paper he used the restriction map

$$\operatorname{res}: \operatorname{Aut}_{K}(A_{1}) \to \operatorname{Aut}_{K}(Z), \ \sigma \mapsto \sigma|_{Z}.$$
 (1)

In this paper, we study this map in detail. Recently, the restriction map (for the *n*th Weyl algebra) appeared in the papers of Y. Tsuchimoto [12], A. Belov-Kanel and M. Kontsevich [2] and K. Adjamagbo and A. van den Essen [1]. Let us describe some of the results proved in the paper.

THEOREM 1.1. Let *K* be a perfect field of characteristic p > 0. Then the restriction map res is a group monomorphism with im(res) = Γ .

Note that $\operatorname{Aut}_K(Z) = K^* \ltimes \Gamma$, where $K^* \simeq \{\tau_\lambda : X \mapsto \lambda X, Y \mapsto Y \mid \lambda \in K^*\}$.

If *K* is not perfect, then Theorem 1.1 is *not* true, as one can easily show that the automorphism $\Gamma \ni s_{\mu} : X \mapsto X + \mu$, $Y \mapsto Y$ does not belong to the image of res provided, $\mu \in K \setminus F(K)$, where $F : a \mapsto a^p$ is the Frobenius map. So, in the case of a perfect field we have another proof of the result of L. Makar-Limanov [8]. (In both proofs the results of Jung–Van der Kulk are essential.)

The groups $\operatorname{Aut}_K(A_1)$, $\operatorname{Aut}_K(Z)$ and Γ are infinite dimensional algebraic groups over K in the sense of I. Shafarevich [10, 11] (see also [9]).

COROLLARY 1.2. Let K be a perfect field of characteristic p > 0. Then the bijection res : Aut_K(A₁) $\rightarrow \Gamma$, $\sigma \mapsto \sigma|_Z$, is a monomorphism of algebraic groups over K, which is not an isomorphism of algebraic groups.

The proofs of Theorem 1.1 and Corollary 1.2 are based on the (non-obvious) formula given next, which allows us to find the inverse map: $\operatorname{res}^{-1} : \Gamma \to \operatorname{Aut}_K(A_1)$ (using differential operators $\mathcal{D}(Z)$ on Z; see (14) and Proposition 2.2).

THEOREM 1.3. Let K be a reduced commutative \mathbb{F}_p -algebra and $A_1(K)$ be the first Weyl algebra over K. Then

$$(\partial + f)^p = \partial^p + \frac{d^{p-1}f}{dx^{p-1}} + f^p$$

for all $f \in K[x]$. In more detail, $(\partial + f)^p = \partial^p - \lambda_{p-1} + f^p$, where $f = \sum_{i=0}^{p-1} \lambda_i x^i \in K[x] = \bigoplus_{i=0}^{p-1} K[x^p] x^i$, $\lambda_i \in K[x^p]$.

REMARK. We used the fact that $d^{p-1}f/dx^{p-1} = (p-1)!\lambda_{p-1}$ and $(p-1)! \equiv -1 \mod p$. Theorem 1.3 generalizes the following equality obtained by A. Belov-Kanel and M. Kontsevich [3]: if K is a field of characteristic p > 0 and f = dg/dx for some polynomial $g \in K[x]$, then $(\partial + f)^p = \partial^p + f^p$.

The group Γ is generated by its two subgroups U(Z) and

$$\Gamma \cap \operatorname{Aff}(Z) = \left\{ \sigma_{A,a} : \begin{pmatrix} X \\ Y \end{pmatrix} \mapsto A \begin{pmatrix} X \\ Y \end{pmatrix} + a \mid A \in \operatorname{SL}_2(K), a \in K^2 \right\} \simeq \operatorname{SL}_2(K)^{op} \ltimes K^2.$$

Recall that the group $\operatorname{Aut}_K(A_1)$ is generated by its two subgroups $U(A_1)$ and

$$\operatorname{Aff}(A_1) = \left\{ \sigma_{A,a} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto A \begin{pmatrix} x \\ y \end{pmatrix} + a \middle| A \in \operatorname{SL}_2(K), a \in K^2 \right\} \simeq \operatorname{SL}_2(K)^{op} \ltimes K^2.$$

If *K* is a perfect field of characteristic p > 0, then Theorem 1.3 shows that

$$\operatorname{res}(\operatorname{Aff}(A_1)) = \Gamma \cap \operatorname{Aff}(Z) \text{ and } \operatorname{res}(U(A_1)) = U(Z).$$

In more detail,

$$\operatorname{res}: \operatorname{Aff}(A_1) \to \Gamma \cap \operatorname{Aff}(Z), \ \sigma_{\binom{a \ b}{c \ d}, \binom{c}{f}} \mapsto \begin{cases} \sigma_{\binom{a^p \ b^p}{c^p \ d^p}, \binom{f^p}{f^p}, & \text{if } p > 2, \\ \sigma_{\binom{a^2 \ b^2}{c^2 \ d^2}, \binom{c^2 + a^b}{f^2 + a^b}, & \text{if } p = 2, \end{cases}$$

(see Lemma 3.1 and (11)) and

res :
$$U(A_1) \to U(Z), \phi_f \mapsto \phi_{\theta(f)},$$

where the map $\theta := F + d^{p-1}/dx^{p-1}$: $K[x] \to K[x^p]$ is a bijection. An explicit formula for the inverse map θ^{-1} is found (Proposition 2.2) via differential operators $\mathcal{D}(Z)$ on Z and negative powers of the Frobenius map F. As a consequence, a formula for the inverse map res⁻¹: $\Gamma \to \operatorname{Aut}_K(A_1)$ is given (see (14)).

2. Proof of Theorem 1.3 and the inverse map θ^{-1} . In this section, a proof of Theorem 1.3 is given, and an inversion formula for a map θ is found, which is a key ingredient in the inversion formula for the restriction map.

Proof of Theorem 1.3. The Weyl algebra $A_1(K) \simeq K \otimes_{\mathbb{F}_p} A_1(\mathbb{F}_p)$ and the Frobenius $F: a \mapsto a^p$ and d^{p-1}/dx^{p-1} behave well under ring extensions, localizations and algebraic closure of the coefficient field. So, without loss of generality we may assume that K is an algebraically closed field of characteristic p > 0: the commutative \mathbb{F}_p -algebra K is reduced, $\bigcap_{\mathfrak{p}\in \operatorname{Spec}(K)}\mathfrak{p} = 0$, and $A_1(K)/A_1(K)\mathfrak{p} \simeq A_1(K/\mathfrak{p})$; therefore we may assume that K is a domain; then $A_1(K) \subseteq A_1(\operatorname{Frac}(K)) \subseteq A_1(\operatorname{Frac}(K))$, where $\operatorname{Frac}(K)$ is the field of fractions of K, and $\operatorname{Frac}(K)$ is its algebraic closure.

First, let us show that the map $L: K[x] \to K[x^p], f \mapsto L(f)$, defined by the rule

$$(\partial + f)^p = \partial^p + L(f) + f^p,$$

is well defined and additive, i.e. L(f + g) = L(f) + L(g). The map

$$K[x] \to \operatorname{Aut}_K(A_1), f \mapsto \sigma_f : x \mapsto x, \partial \mapsto \partial + f$$

is a group homomorphism, i.e. $\sigma_{f+g} = \sigma_f \sigma_g$. Since $\partial^p \in Z(A_1) = K[x^p, \partial^p]$ and $(\partial + f)^p = \sigma(\partial)^p = \sigma(\partial^p) \in Z(A_1)$, the map *L* is well defined, i.e. $L(f) \in K[x^p]$. Comparing both ends of the series of equalities proves the additivity of the map *L*:

$$\partial^{p} + L(f+g) + f^{p} + g^{p} = \sigma_{f+g}(\partial)^{p} = \sigma_{f+g}(\partial^{p}) = \sigma_{f}\sigma_{g}(\partial^{p}) = \sigma_{f}(\partial^{p} + L(g) + g^{p})$$
$$= \partial^{p} + L(f) + f^{p} + L(g) + g^{p}.$$

In a view of the decomposition $K[x] = \bigoplus_{i=0}^{p-1} K[x^p]x^i$ and the additivity of the map *L*, it suffices to prove the theorem for $f = \lambda x^m$, where $m = 0, 1, \ldots, p-1$ and $\lambda \in K[x^p]$. In addition, we may assume that $\lambda \in K$. This follows directly from the natural \mathbb{F}_p -algebra epimorphism

$$A_1(K[t]) \to A_1(K), t \mapsto \lambda, x \mapsto x, \partial \mapsto \partial$$

and the fact that the polynomial algebra K[t] is a domain (hence, reduced). Therefore, it suffices to prove the theorem for $f = \lambda x^m$, where m = 0, 1, ..., p - 1 and $\lambda \in K^*$.

The result is obvious for m = 0. So, we fix the natural number m such that $1 \le m \le p - 1$. Then

$$l_m(\lambda) := L(\lambda x^m) = \sum_{k=0}^{m-1} l_{mk}(\lambda) x^{kp}$$

is a sum of *additive* polynomials $l_{mk}(\lambda)$ in λ of degree $\leq p - 1$ (by the very definition of $L(\lambda x^m)$ and its additivity). Recall that a polynomial $l(t) \in K[t]$ is additive if $l(\lambda + \mu) = l(\lambda) + l(\mu)$ for all $\lambda, \mu \in K$. By Lemma 20.3.A [6], each additive polynomial l(t) is a *p*-polynomial, i.e. a linear combination of the monomials t^{p^r} and $r \geq 0$. Hence, $l_m(\lambda) = a_m \lambda$ for some polynomial $a_m = \sum_{k=0}^{m-1} a_{mk} x^{kp}$, where $a_{mk} \in K$, i.e.

$$(\partial + \lambda x^m)^p = \partial^p + \lambda \sum_{k=0}^{m-1} a_{mk} x^{kp} + (\lambda x^m)^p.$$

Applying the *K*-automorphism $\gamma : x \mapsto \mu x, \partial \mapsto \mu^{-1}\partial, \mu \in K^*$, of the Weyl algebra A_1 to the equality above, we have

LHS =
$$(\mu^{-1}\partial + \lambda\mu^{m}x^{m})^{p} = \mu^{-p}(\partial + \lambda\mu^{m+1}x^{m})^{p}$$

= $\mu^{-p}(\partial^{p} + \lambda\mu^{m+1}\sum_{k=0}^{m-1}a_{mk}x^{kp} + (\lambda\mu^{m+1}x^{m})^{p})$,
RHS = $\mu^{-p}\partial^{p} + \lambda\sum_{k=0}^{m-1}a_{mk}\mu^{kp}x^{kp} + (\lambda\mu^{m}x^{m})^{p}$.

Equating the coefficients of x^{kp} gives $\lambda a_{mk} \mu^{m+1-p} = \lambda a_{mk} \mu^{kp}$. If $a_{mk} \neq 0$ then $\mu^{m+1-p} = \mu^{kp}$ for all $\mu \in K^*$, i.e. m + 1 - p = kp. The maximum of m + 1 - p is 0 at m = p - 1, the minimum of kp is 0 at k = 0. Therefore, $a_{mk} = 0$ for all $(m, k) \neq (p - 1, 0)$.

For (m, k) = (p - 1, 0), let $a := a_{p-1,0}$. Then

$$(\partial + \lambda x^{p-1})^p = \partial^p + \lambda a + (\lambda x^{p-1})^p.$$

In order to find the coefficient $a \in K$, consider the left A_1 -module

$$V := A_1/(A_1x^p + A_1\partial) \simeq K[x]/K[x^p] = \bigoplus_{i=0}^{p-1} K\overline{x}^i$$

where $\overline{x}^i := x^i + A_1 x^p + A_1 \partial$. An easy induction on *i* gives the equalities

$$(\partial + \lambda x^{p-1})^i \overline{x}^{p-1} = (p-1)(p-2)\cdots(p-i)\overline{x}^{p-1-i}, \quad i = 1, 2, \dots, p-1.$$

Now,

$$(\partial + \lambda x^{p-1})^p \overline{x}^{p-1} = (\partial + \lambda x^{p-1})(\partial + \lambda x^{p-1})^{p-1} \overline{x}^{p-1} = (\partial + \lambda x^{p-1})(p-1)!\overline{1}$$
$$= (p-1)!\lambda \overline{x}^{p-1}.$$

On the other hand,

$$(\partial^p + \lambda a + (\lambda x^{p-1})^p)\overline{x}^{p-1} = \lambda a\overline{x}^{p-1},$$

and so $a = (p - 1)! \equiv -1 \mod p$. This finishes the proof of Theorem 1.3.

266

2.1. The map θ and its inverse. Let K be a commutative \mathbb{F}_p -algebra. The polynomial algebra $K[x] = \bigoplus_{i \ge 0} Kx^i$ is a positively graded algebra and a positively filtered algebra $K[x] = \bigcup_{i \ge 0} K[x]_{\le i}$, where $K[x]_{\le i} := \bigoplus_{j=0}^{i} Kx^j = \{f \in K[x] \mid \deg(f) \le i\}$. Similarly, the polynomial algebra $K[x^p]$ in the variable x^p is a positively graded algebra $K[x^p] = \bigoplus_{i \ge 0} Kx^{pi}$ and a positively filtered algebra $K[x^p] = \bigcup_{i \ge 0} Kx^{pi}$ and a positively filtered algebra $K[x^p] = \bigcup_{i \ge 0} Kx^{pi}$ and a positively filtered algebra $K[x^p] = \bigcup_{i \ge 0} Kx^{pi} \le f \in K[x^p] | \deg_{x^p}(f) \le i\}$. The associated graded algebras gr K[x] and gr $K[x^p]$ are canonically isomorphic to K[x] and $K[x^p]$ respectively. For a polynomial $f = \sum_{i=0}^{d} \lambda_i x^i \in K[x]$ (resp. $g = \sum_{i=0}^{d} \mu_i x^{pi} \in K[x^p]$) of degree d, $\lambda_d x^d$ (resp. $\mu_d x^{pd}$) is called the leading term of f (resp. g) denoted by l(f) (resp. l(g)). Consider the \mathbb{F}_p -linear map (see Theorem 1.3)

$$\theta: F + \frac{d^{p-1}}{dx^{p-1}}: K[x] \to K[x^p], \quad f \mapsto f^p + \frac{d^{p-1}f}{dx^{p-1}},$$
(2)

where $F : f \mapsto f^p$ is the Frobenius (\mathbb{F}_p -algebra monomorphism). In more detail,

$$\theta: K[x] = \bigoplus_{i=0}^{p-1} K[x^p] x^i \to K[x^p] = \bigoplus_{i=0}^{p-1} K[x^{p^2}] x^{pi}, \quad \sum_{i=0}^{p-1} a_i x^i \mapsto \sum_{i=0}^{p-1} a_i^p x^{pi} - a_{p-1},$$

where $a_i \in K[x^p]$. This means that the map θ respects the filtrations of the algebras K[x] and $K[x^p]$ and $\theta(K[x]_{\leq j}) \subseteq K[x^p]_{\leq j}$ for all $j \geq 0$, and so the associated graded map $gr(\theta) : K[x] \to K[x^p]$ coincides with the Frobenius F:

$$\operatorname{gr}(\theta) = F. \tag{3}$$

- LEMMA 2.1. Let *K* be a perfect field of characteristic p > 0. Then
- (1) $\operatorname{gr}(\theta) = F : K[x] \to K[x^p]$ is an isomorphism of \mathbb{F}_p -algebras;
- (2) $\theta: K[x] \to K[x^p]$ is an isomorphism of vector spaces over \mathbb{F}_p such that $\theta(K[x]_{\leq i}) = K[x^p]_{\leq i}$, $i \geq 0$; and
- (3) for each $f \in K[x]$, $l(\theta(f)) = l(f)^p$.

Proof. Statement 1 is obvious, since K is a perfect field of characteristic p > 0 (F(K) = K). Statements 2 and 3 follow from statement 1.

REMARK. The problem of finding the inverse map res⁻¹ of the group isomorphism res : Aut_K(A_1) $\rightarrow \Gamma$, $\sigma \mapsto \sigma|_Z$ is essentially equivalent to the problem of finding θ^{-1} (see (14)).

The inversion formula for θ^{-1} (Proposition 2.2) is given via certain differential operators. We recall some facts of differential operators that are needed in the proof of Proposition 2.2.

Let *K* be a field of characteristic p > 0 and $\mathcal{D}(K[x]) = \bigoplus_{i \ge 0} K[x]\partial^{[i]}$ be the ring of differential operators on the polynomial algebra K[x], where $\partial^{[i]} := \frac{\partial^i}{\partial^i}$. The algebra K[x] is a left $\mathcal{D}(K[x])$ -module (in the usual sense):

$$\partial^{[i]}(x^j) = {j \choose i} x^{j-i} \text{ for all } i, j \ge 0.$$

In particular,

$$\partial^{[pi]}(x^{pj}) = \binom{pj}{pi} x^{p(j-i)} = \binom{j}{i} x^{p(j-i)} \text{ for all } i, j \ge 0.$$

The subalgebra $K[x^p] = \bigoplus_{i=0}^{p-1} K[x^{p^2}] x^{p^i}$ of K[x] is $x^p \partial^{[p]}$ -invariant, and for each i =0, 1, ..., p - 1, $K[x^{p^2}]x^{pi}$ is the eigenspace of the element $x^p \partial^{[p]}$ that corresponds to the eigenvalue *i*. Let $J(i) := \{0, 1, ..., p - 1\} \setminus \{i\}$. Then

$$\pi_{i} := \partial^{[pi]} \frac{\prod_{j \in J(i)} (x^{p} \partial^{[p]} - j)}{\prod_{j \in J(i)} (i - j)} : K[x^{p}] \to K[x^{p^{2}}], \quad \sum_{i=0}^{p-1} a_{i} x^{pi} \mapsto a_{i}, \tag{4}$$

where all $a_i \in K[x^{p^2}]$ (since the map $\frac{\prod_{j \in J(j)} (x^p \partial^{[p]} - j)}{\prod_{i \in J(j)} (i - j)} : K[x^p] \to K[x^p]$ is the projection onto the summand $K[x^{p^2}]x^{pi}$ in the decomposition $K[x] = \bigoplus_{i=0}^{p-1} K[x^{p^2}]x^{pi}$ and $\partial^{[pi]}(a_i x^{pi}) = a_i).$

Let *K* be a perfect field of characteristic p > 0. Consider the \mathbb{F}_p -linear map

$$\partial^{[(p-1)p]} F^{-1} : K[x^{p^2}] \to K[x^{p^2}], \quad \sum_{i \ge 0} a_i x^{p^2 i} \mapsto \sum_{i \ge 0} a_{p-1+pi}^{\frac{1}{p}} x^{p^2 i}, \tag{5}$$

where $a_i \in K$. By induction on a natural number n, we have

$$\left(\partial^{[(p-1)p]}F^{-1}\right)^n \left(\sum_{i\geq 0} a_i x^{p^2 i}\right) = \sum_{i\geq 0} a_{(p-1)(1+p+\dots+p^{n-1})+p^n i}^{p^n} x^{p^2 i}, \quad n\geq 1.$$
(6)

This shows that the map $\partial^{[(p-1)p]}F^{-1}$ is a *locally nilpotent* map. This means that $K[x^{p^2}] =$ $\bigcup_{n>1} \ker(\partial^{[(p-1)p]} F^{-1})^n$; i.e. for each element $a \in K[x^{p^2}]$, $(\partial^{[(p-1)p]} F^{-1})^n(a) = 0$ for all $n \gg 0$. Hence, the map $1 - \partial^{[(p-1)p]} F^{-1}$ is invertible, and its inverse is given by the rule

$$\left(1 - \partial^{[(p-1)p]} F^{-1}\right)^{-1} = \sum_{j \ge 0} \left(\partial^{[(p-1)p]} F^{-1}\right)^{j}.$$
(7)

The proposition given next gives an explicit formula for θ^{-1} .

PROPOSITION 2.2. Let K be a perfect field of characteristic p > 0. Then the inverse map $\theta^{-1}: K[x^p] = \bigoplus_{i=0}^{p-1} K[x^{p^2}] x^{pi} \to K[x] = \bigoplus_{i=0}^{p-1} K[x^p] x^i, \sum_{i=0}^{p-1} \mu_i x^{pi} \mapsto$ $\sum_{i=0}^{p-1} \lambda_i x^i, \ \mu_i \in K[x^{p^2}], \ \lambda_i \in K[x^p], \ is given by the rule$

- (1) for i = 0, 1, ..., p 2, $\lambda_i = \mu_i^{\frac{1}{p}} + F^{-1}\pi_i F^{-1} \sum_{j\geq 0} (\partial^{[(p-1)p]} F^{-1})^j (\mu_{p-1})$ and (2) $\lambda_{p-1} = (\sum_{i=0}^{p-2} x^{pi}\pi_i F^{-1} \sum_{j\geq 0} (\partial^{[(p-1)p]} F^{-1})^j + x^{p(p-1)} \sum_{j\geq 1} (\partial^{[(p-1)p]} F^{-1})^j) (\mu_{p-1}),$ where π_i is defined in (4).

Proof. Let $g = \sum_{i=0}^{p-1} \mu_i x^{pi} \in K[x^p], \mu_i \in K[x^{p^2}]; f = \sum_{i=0}^{p-1} \lambda_i x^i \in K[x], \lambda_i \in K[x^p];$ and $\lambda_{p-1} = \sum_{i=0}^{p-1} a_i x^{pi}, a_i \in K[x^{p^2}]$. Then $\theta^{-1}(g) = f$ iff $g = \theta(f)$ iff $F^{-1}(g) = F^{-1}\theta(f)$ iff

$$\sum_{i=0}^{p-1} F^{-1}(\mu_i) x^i = F^{-1}(F(f) - \lambda_{p-1}) = f - F^{-1}(\lambda_{p-1}) = \sum_{i=0}^{p-1} (\lambda_i - F^{-1}(a_i)) x^i$$

iff

$$\lambda_i = F^{-1}(\mu_i + a_i), \quad i = 0, 1, \dots, p - 1.$$
 (8)

For i = p - 1, (8) can be rewritten as follows:

$$\sum_{i=0}^{p-2} a_i x^{pi} + a_{p-1} x^{p(p-1)} = F^{-1}(\mu_{p-1} + a_{p-1}).$$
(9)

For each i = 0, 1, ..., p - 2, applying the map π_i (see (4)) to (9) gives the equality $a_i = \pi_i F^{-1}(\mu_{p-1} + a_{p-1})$, and so the equalities (8) can be rewritten as follows:

$$\lambda_i = F^{-1}(\mu_i + \pi_i F^{-1}(\mu_{p-1} + a_{p-1})), \quad i = 0, 1, \dots, p-2.$$
(10)

Applying $\partial^{[(p-1)p]}$ to (9) yields $a_{p-1} = \partial^{[(p-1)p]} F^{-1}(\mu_{p-1} + a_{p-1})$, and so $(1 - \Delta)a_{p-1} = \Delta(\mu_{p-1})$, where $\Delta := \partial^{[(p-1)p]} F^{-1}$. By (7), $a_{p-1} = \sum_{j \ge 1} \Delta^j(\mu_{p-1})$. Putting this expression in (10) yields

$$\lambda_i = F^{-1}(\mu_i) + F^{-1}\pi_i F^{-1} \sum_{j\geq 0} \Delta^j(\mu_{p-1}), \quad i = 0, 1, \dots, p-2.$$

This proves statement 1. Finally,

$$\begin{split} \lambda_{p-1} &= \sum_{i=0}^{p-1} a_i x^{pi} = \sum_{i=0}^{p-2} a_i x^{pi} + a_{p-1} x^{p(p-1)} \\ &= \sum_{i=0}^{p-2} x^{pi} \pi_i F^{-1} (\mu_{p-1} + a_{p-1}) + x^{p(p-1)} \sum_{j \ge 1} \Delta^j (\mu_{p-1}) \\ &= \sum_{i=0}^{p-2} x^{pi} \pi_i F^{-1} \sum_{j \ge 0} \Delta^j (\mu_{p-1}) + x^{p(p-1)} \sum_{j \ge 1} \Delta^j (\mu_{p-1}) \\ &= \left(\sum_{i=0}^{p-2} x^{pi} \pi_i F^{-1} \sum_{j \ge 0} \left(\partial^{[(p-1)p]} F^{-1} \right)^j + x^{p(p-1)} \sum_{j \ge 1} \left(\partial^{[(p-1)p]} F^{-1} \right)^j \right) (\mu_{p-1}). \end{split}$$

3. The restriction map and its inverse. In this section, Theorems 1.1 and 3.4 and Corollary 1.2 are proved. An inversion formula for the restriction map res : $\operatorname{Aut}_K(A_1) \to \Gamma$ is found (see (14)).

3.1. The group of affine automorphisms. Let *K* be a perfect field of characteristic p > 0. Each element *a* of the Weyl algebra $A_1 = \bigoplus_{i,j \in \mathbb{N}} K x^i y^i$ is a unique sum $a = \sum \lambda_{ij} x^i y^j$, where all but finitely many scalars $\lambda_{ij} \in K$ are equal to zero. The number deg(*a*) := max{ $i + j \mid \lambda_{ij} \neq 0$ } is called the degree of *a*, deg(0) := $-\infty$. Note that deg(*ab*) = deg(*a*) + deg(*b*), deg(*a* + *b*) $\leq \max\{\deg(a), \deg(b)\}$ and deg(λa) = deg(*a*) for all $\lambda \in K^*$. For each $\sigma \in \operatorname{Aut}_K(A_1)$,

$$deg(\sigma) := \max\{deg(\sigma(x)), deg(\sigma(y))\}$$

is called the *degree* of σ . The set (which is obviously a subgroup of Aut_{*K*}(*A*₁)) Aff(*A*₁) = $\{\sigma \in Aut_K(A_1) | deg(\sigma) = 1\}$ is called the group of affine automorphisms of the Weyl

algebra A_1 . Clearly,

$$\operatorname{Aff}(A_1) = \left\{ \sigma_{A,a} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto A \begin{pmatrix} x \\ y \end{pmatrix} + a \mid A \in \operatorname{SL}_2(K), a \in K^2 \right\}, \quad \sigma_{A,a} \sigma_{B,b} = \sigma_{BA,Ba+b}.$$

For each group G, let G^{op} be its *opposite* group. ($G^{op} = G$ as set, but the product ab in G^{op} is equal to ba in G.) The map $G \to G^{op}$, $g \mapsto g^{-1}$, is a group automorphism. The group Aff(A_1) is the semi-direct product $SL_2(K)^{op} \ltimes K^2$ of its subgroups $SL_2(K)^{op} = \{\sigma_{A,0} \mid A \in SL_2(K)\}$ and $K^2 \simeq \{\sigma_{1,a} \mid a \in K^2\}$, where K^2 is the normal subgroup of Aff(A_1) since $\sigma_{A,0}\sigma_{1,a}\sigma_{A,0}^{-1} = \sigma_{1,A^{-1}a}$. It is obvious that the group Aff(A_1) is generated by the automorphisms

$$s: x \mapsto y, \ y \mapsto -x; \ t_{\mu}: x \mapsto \mu x, \ y \mapsto \mu^{-1}y; \ \phi_{\lambda x^{i}}: x \mapsto x, \ y \mapsto y + \lambda x^{i},$$

where $\lambda \in K$, $\mu \in K^*$ and i = 0, 1.

Recall that the centre Z of the Weyl algebra A_1 is the polynomial algebra K[X, Y]in $X := x^p$ and $Y := y^p$ variables. Let deg(z) be the total degree in X and Y of a polynomial $z \in Z$. For each automorphism $\sigma \in Aut_K(Z)$,

$$deg(\sigma) := \max\{deg(\sigma(X)), deg(\sigma(Y))\}$$

is called the *degree* of σ .

$$\operatorname{Aff}(Z) := \{ \sigma \in \operatorname{Aut}_{K}(Z) \mid \operatorname{deg}(\sigma) = 1 \}$$
$$= \left\{ \sigma_{A,a} : \binom{X}{Y} \mapsto A\binom{X}{Y} + a \mid A \in \operatorname{GL}_{2}(K), a \in K^{2} \right\}$$

is the group of affine automorphisms of Z, $\sigma_{A,a}\sigma_{B,b} = \sigma_{BA,Ba+b}$. The group Aff (A_1) is the semi-direct product $GL_2(K)^{op} \ltimes K^2$ of its subgroups $GL_2(K)^{op} = \{\sigma_{A,0} | A \in GL_2(K)\}$ and $K^2 \simeq \{\sigma_{1,a} | a \in K^2\}$, where K^2 is a normal subgroup of Aff(Z) since $\sigma_{A,0}\sigma_{1,a}\sigma_{A,0}^{-1} = \sigma_{1,A^{-1}a}$.

A group *G* is called an *exact* product of its subgroups G_1 and G_2 denoted by $G = G_1 \times_{ex} G_2$ if each element $g \in G$ is a unique product $g = g_1g_2$ for some elements $g_1 \in G_1$ and $g_2 \in G_2$. Then $\operatorname{GL}_2(K)^{op} = K^* \times_{ex} \operatorname{SL}_2(K)^{op}$, where $K^* \simeq \{\gamma_{\mu} : X \mapsto \mu X, Y \mapsto Y \mid \mu \in K^*\}$, $\gamma_{\mu}\gamma_{\nu} = \gamma_{\mu\nu}$. Clearly, Aff $(Z) = (K^* \times_{ex} \operatorname{SL}_2(K)^{op}) \ltimes K^2$, and so the group Aff(Z) is generated by the following automorphisms (where $\lambda \in K$, $\mu \in K^*$ and i = 0, 1):

$$s: X \mapsto Y, Y \mapsto -X; t_{\mu}: X \mapsto \mu X, Y \mapsto \mu^{-1}Y; \phi_{\lambda X^{i}}: X \mapsto X, Y \mapsto Y + \lambda X^{i}; \text{ and } \gamma_{\mu}.$$

The automorphisms t_{μ} and γ_{ν} commute.

LEMMA 3.1. Let K be a perfect field of characteristic p > 0. Then the restriction map res_{aff} : Aff $(A_1) \to$ Aff(Z), $\sigma \mapsto \sigma|_Z$, is a group monomorphism with $\operatorname{im}(\operatorname{res}_{aff}) =$ $\operatorname{SL}_2(K)^{op} \ltimes K^2$.

Proof. Since $\operatorname{res}_{aff}(s) = s$, $\operatorname{res}_{aff}(t_{\mu}) = t_{\mu^p}$; for i = 0, 1, $\operatorname{res}_{aff}(\phi_{\lambda x^i}) = \phi_{\lambda^p X^i}$ if p > 2and $\operatorname{res}_{aff}(\phi_{\lambda x^i}) = \phi_{\lambda^2 X^i + \delta_{i,1}\lambda}$ if p = 2, where $\delta_{i,1}$ is the Kronecker delta (Theorem 1.3); i.e.

$$\operatorname{res}_{dff}\left(\sigma_{\binom{a\,b}{c\,d}},\binom{e}{f}\right) = \begin{cases} \sigma_{\binom{a^p\,b^p}{d^p},\binom{e^p}{f^p}}, & \text{if } p > 2, \\ \sigma_{\binom{a^2\,b^2}{c^2\,d^2},\binom{e^2+ab}{f^2+cd}}, & \text{if } p = 2. \end{cases}$$
(11)

The result is obvious.

LEMMA 3.2. The automorphisms of the algebra Z: s, t_{μ} , $\phi_{\lambda X^{i}}$ and γ_{μ} satisfy the following relations:

(1) $st_{\mu} = t_{\mu^{-1}}s$ and $s\gamma_{\mu} = \gamma_{\mu}t_{\mu^{-1}}s$;

(2) $\phi_{\lambda X^i} t_{\mu} = t_{\mu} \phi_{\lambda \mu^{-i-1} X^i}$ and $\phi_{\lambda X^i} \gamma_{\mu} = \gamma_{\mu} \phi_{\lambda \mu^{-i} X^i}$; and (3) $s^2 = t_{-1}, s^{-1} = t_{-1} s : X \mapsto -Y, Y \mapsto X.$

Proof. Straightforward. The map

$$K[X] \to \operatorname{Aut}(Z), \ f \mapsto \phi_f : X \mapsto X, \ Y \mapsto Y + f,$$

is a group monomorphism $(\phi_{f+g} = \phi_f \phi_g)$. For $\sigma \in \operatorname{Aut}(Z)$, $\mathcal{J}(\sigma) := \det(\underbrace{\frac{\partial \sigma(X)}{\partial X}}_{\frac{\partial \sigma(Y)}{\partial X}}, \underbrace{\frac{\partial \sigma(X)}{\partial Y}}_{\frac{\partial \sigma(Y)}{\partial Y}})$ is the Jacobian of σ . It follows from the equality (which is a direct consequence of the chain rule) $\mathcal{J}(\sigma\tau) = \mathcal{J}(\sigma)\sigma(\mathcal{J}(\tau))$ that $\mathcal{J}(\sigma) \in K^*$ (since $1 = \mathcal{J}(\sigma\sigma^{-1}) =$ $\mathcal{J}(\sigma)\sigma(\mathcal{J}(\sigma^{-1}))$ in K[X, Y]), and so the kernel $\Gamma := \{\sigma \in \operatorname{Aut}_K(Z) \mid \mathcal{J}(\sigma) = 1\}$ of the group epimorphism $\mathcal{J} : \operatorname{Aut}(Z) \to K^*, \sigma \mapsto \mathcal{J}(\sigma)$, is a normal subgroup of $\operatorname{Aut}_K(Z)$. Hence,

$$\operatorname{Aut}_{K}(Z) = K^{*} \ltimes \Gamma \tag{12}$$

is the semi-direct product of its subgroups Γ and $K^* \simeq \{\gamma_{\mu} \mid \mu \in K^*\}$.

COROLLARY 3.3. Let K be a field of characteristic p > 0. Then

- (1) each automorphism $\sigma \in \operatorname{Aut}_K(Z)$ is a product $\sigma = \gamma_{\mu} t_{\nu} \phi_{f_1} s \phi_{f_2} s \dots \phi_{f_{n-1}} s \phi_{f_n}$ for some $\mu, \nu \in K^*$ and $f_i \in K[x]$, and
- (2) each automorphism $\sigma \in \Gamma$ is a product $\sigma = t_v \phi_{f_1} s \phi_{f_2} s \dots \phi_{f_{n-1}} s \phi_{f_n}$ for some $v \in K^*$ and $f_i \in K[x]$.

Proof. (1) Statement 1 follows at once from Lemma 3.2 and the fact that the group $\operatorname{Aut}_K(Z)$ is generated by $\operatorname{Aff}(Z)$ and $\phi_{\lambda X^i}$, $\lambda \in K$, $i \in \mathbb{N}$.

(2) Statement 2 follows from statement 1: $\sigma = \gamma_{\mu} t_{\nu} \phi_{f_1} s \phi_{f_2} s \dots \phi_{f_{n-1}} s \phi_{f_n} \in \Gamma$ iff

$$1 = \mathcal{J}(\sigma) = \mathcal{J}(\gamma_{\mu}t_{\nu}\phi_{f_{1}}s\phi_{f_{2}}s\dots\phi_{f_{n-1}}s\phi_{f_{n}}) = \mathcal{J}(\gamma_{\mu})\gamma_{\mu}(1) = \mu$$

 $\inf \sigma = t_{\nu} \phi_{f_1} s \phi_{f_2} s \dots \phi_{f_{n-1}} s \phi_{f_n}.$

Proof of Theorem 1.1. Step 1: res is a monomorphism. It is obvious that

$$\deg \operatorname{res}(\sigma) = \deg \sigma, \ \sigma \in \operatorname{Aut}_K(A_1).$$
(13)

The map res is a group homomorphism; so we have to show that $res(\sigma) = id_Z$ implies $\sigma = id_{A_1}$, where id_Z and id_{A_1} are the identity maps on Z and A_1 respectively. By (13), $res(\sigma) = id_Z$ implies $deg(\sigma) = 1$. Then, by (11), $\sigma = id_{A_1}$.

 \square

Step 2: $\Gamma \subseteq \text{im}(\text{res})$. By Corollary 3.3.(2), each automorphism $\sigma \in \Gamma$ is a product, $\sigma = t_{\nu}\phi_{f_1}s \dots \phi_{f_{n-1}}s\phi_{f_n}$. Since $\text{res}(t_{\nu^{\frac{1}{p}}}) = t_{\nu}$, $\text{res}(\phi_{\theta^{-1}(f_i)}) = \phi_{f_i}$ and res(s) = s, we have $\sigma = \text{res}(t_{\nu^{\frac{1}{p}}}\phi_{\theta^{-1}(f_1)}s \dots \phi_{\theta^{-1}(f_{n-1})}s\phi_{\theta^{-1}(f_n)})$, and so $\Gamma \subseteq \text{im}(\text{res})$.

Step 3: $\Gamma = im(res)$. Let $\sigma \in im(res)$. By Corollary 3.3.(1),

$$\operatorname{res}(\sigma) = \gamma_{\mu} t_{\nu} \phi_{f_1} s \dots \phi_{f_{n-1}} s \phi_{f_n} = \gamma_{\mu} \operatorname{res}(\tau)$$

for some $\tau \in \operatorname{Aut}_K(A_1)$, such that $\operatorname{res}(\tau) \in \Gamma$, by Step 2. Then $\operatorname{res}(\sigma\tau^{-1}) = \gamma_{\mu}$. By (13), $\operatorname{deg}(\sigma\tau^{-1}) = \operatorname{deg}\operatorname{res}(\sigma\tau^{-1}) = \operatorname{deg}\gamma_{\mu} = 1$, and so $\sigma\tau^{-1} \in \operatorname{Aff}(A_1)$. By Lemma 3.1, $\gamma_{\mu} = 1$, and so $\sigma = \tau$; hence $\operatorname{res}(\sigma) = \operatorname{res}(\tau) \in \Gamma$. This means that $\Gamma = \operatorname{im}(\operatorname{res})$.

If K is a *perfect* field of characteristic p > 0 we obtain the result of L. Makar-Limanov.

THEOREM 3.4. Let K be a perfect field of characteristic p > 0. Then the group $\operatorname{Aut}_{K}(A_{1})$ is generated by $\operatorname{Aff}(A_{1}) \simeq \operatorname{SL}_{2}(K)^{op} \ltimes K^{2}$ and the automorphisms $\phi_{\lambda x^{i}}, \lambda \in K^{*}$, $i = 2, 3, \ldots$

Proof. By Theorem 1.1, the map res : $\operatorname{Aut}_K(A_1) \to \Gamma$ is the isomorphism of groups. By Corollary 3.3.(2), each element $\gamma \in \Gamma$ is a product,

$$\gamma = t_{\nu}\phi_{f_1}s \dots \phi_{f_{n-1}}s\phi_{f_n} = \operatorname{res}(t_{\dots \frac{1}{n}}\phi_{\theta^{-1}(f_1)}s \dots \phi_{\theta^{-1}(f_{n-1})}s\phi_{\theta^{-1}(f_n)}).$$

Now, it is obvious that the group $\operatorname{Aut}_K(A_1)$ is generated by $\operatorname{Aff}(A_1)$ and the automorphisms $\phi_{\lambda x^i}$, $\lambda \in K^*$, $i = 2, 3, \ldots$

3.2. The inverse map $\operatorname{res}^{-1} : \Gamma \to \operatorname{Aut}_K(A_1)$. By Corollary 3.3.(2), each element $\gamma \in \Gamma$ is a product $\gamma = t_v \phi_{f_1} s \dots \phi_{f_{n-1}} s \phi_{f_n}$. By Proposition 2.2, the inverse map for res is given by the rule

$$\operatorname{res}^{-1}: \Gamma \to \operatorname{Aut}_{K}(A_{1}), \ \gamma = t_{\nu}\phi_{f_{1}}s \dots \phi_{f_{n-1}}s\phi_{f_{n}} \mapsto t_{\nu^{\frac{1}{p}}}\phi_{\theta^{-1}(f_{1})}s \dots \phi_{\theta^{-1}(f_{n-1})}s\phi_{\theta^{-1}(f_{n})}.$$
(14)

Proof of Corollary 1.2. The group $\operatorname{Aut}_K(A_1)$ (resp. $\operatorname{Aut}_K(Z)$) are infinitedimensional algebraic groups over K (and over \mathbb{F}_p), where the coefficients of the polynomials $\sigma(x)$ and $\sigma(y)$, where $\sigma \in \operatorname{Aut}_K(A_1)$ (resp. of $\tau(X)$ and $\tau(Y)$ in which $\tau \in \operatorname{Aut}_K(Z)$), are coordinate functions (see [10] and [11]). The group Γ is a closed subgroup of $\operatorname{Aut}_K(Z)$. By the very definition, the map res : $\operatorname{Aut}_K(A_1) \to \Gamma$ is a polynomial map (i.e. a morphism of algebraic varieties). By (14) and Proposition 2.2, res⁻¹ is not a polynomial map over K (and over \mathbb{F}_p either).

4. The image of the restriction map res_n. Let *K* be a field of characteristic p > 0 and $A_n = K\langle x_1, \ldots, x_{2n} \rangle$ be the *n*th Weyl algebra over *K*: for $i, j = 1, \ldots, n$,

$$[x_i, x_j] = 0, \ [x_{n+i}, x_{n+j}] = 0, \ [x_{n+i}, x_j] = \delta_{ij},$$

where δ_{ij} is the Kronecker delta. The centre Z_n of the algebra A_n is the polynomial algebra $K[X_1, \ldots, X_{2n}]$ in 2n variables, where $X_i := x_i^p$. The groups of K-automorphisms $\operatorname{Aut}_K(A_n)$ and $\operatorname{Aut}_K(Z_n)$ contain the affine subgroups

Aff $(A_n) = \operatorname{Sp}_{2n}(K)^{op} \ltimes K^n$ and Aff $(Z_n) = \operatorname{GL}_n(K)^{op} \ltimes K^n$ respectively. Clearly, Aff $(A_n) = \{\sigma \in \operatorname{Aut}_K(A_n) \mid \operatorname{deg}(\sigma) = 1\}$ and Aff $(Z_n) = \{\tau \in \operatorname{Aut}_K(Z_n) \mid \operatorname{deg}(\tau) = 1\}$, where deg (σ) (resp. deg (τ)) is the (total) degree of σ (resp. τ), defined in the obvious way. The kernel Γ_n of the group epimorphism $\mathcal{J} : \operatorname{Aut}_K(Z_n) \to K^*, \ \tau \mapsto \mathcal{J}(\tau) :=$ det $((\partial \tau(X_i))/(\partial X_j))$ is the normal subgroup $\Gamma_n := \{\tau \in \operatorname{Aut}_K(Z_n) \mid \mathcal{J}(\tau) = 1\}$, and Aut $_K(Z_n) = K^* \ltimes \Gamma_n$ is the semi-direct product of $K^* \simeq \{\gamma_\mu \mid \gamma_\mu(X_1) = \mu X_1, \gamma_\mu(X_j) = X_j, j = 2, \ldots, 2n; \mu \in K^*\}$ and Γ_n .

By considering leading terms of the polynomials $\sigma(X_i)$, it follows as in the case of n = 1 that the restriction map

$$\operatorname{res}_n : \operatorname{Aut}_K(A_n) \to \operatorname{Aut}_K(Z_n), \ \sigma \mapsto \sigma|_{Z_n},$$

is a group monomorphism. If K is a perfect field, then

$$\operatorname{res}_n(\operatorname{Aff}(A_n)) = \operatorname{Sp}_{2n}(K)^{op} \ltimes K^{2n} \subset \operatorname{Aff}(Z_n) = \operatorname{GL}_{2n}(K)^{op} \ltimes K^{2n}.$$

This follows from the fact that for any element of $Aff(A_n)$, $\sigma_{A,a} : x \mapsto Ax + a$, where $A = (a_{ij}) \in Sp_{2n}(K)$ and $a = (a_i) \in K^{2n}$,

$$\operatorname{res}_{n}(\sigma_{A,a}) = \begin{cases} \sigma_{(a_{ij}^{p}), (a_{i}^{p})} & \text{if } p > 2, \\ \sigma_{(a_{ij}^{2}), (a_{i}^{2} + \sum_{j=1}^{n} a_{ij}a_{i,n+j})} & \text{if } p = 2, \end{cases}$$
(15)

which can be proved in the same fashion as (11). Since $\text{Sp}_{2n}(K) \subseteq \text{SL}_{2n}(K)$,

$$\operatorname{res}_n(\operatorname{Aff}(A_n)) \subseteq \operatorname{SL}_{2n}(K)^{op} \ltimes K^{2n} \subset \Gamma_n.$$

(Any symplectic matrix $S \in \text{Sp}_{2n}(K)$ has the from $S = TJT^{-1}$ for some matrix $T \in \text{GL}_{2n}(K)$, where $J = \text{diag}(\binom{0\,1}{-1\,0}, \dots, \binom{0\,1}{-1\,0})$, *n* times; hence det(S) = 1.)

Question 1. For an algebraically closed field K *of characteristic* p > 0*, is* $im(res_n) \subseteq \Gamma_n$?

Question 2. For an algebraically closed field K of characteristic p > 0, is the injection

$$\operatorname{Aff}(Z_n)/\operatorname{res}_n(\operatorname{Aff}(A_n)) \simeq \operatorname{GL}_{2n}(K)^{op}/\operatorname{Sp}_{2n}(K)^{op} \to \operatorname{Aut}_K(Z_n)/\operatorname{im}(\operatorname{res}_n)$$

a bijection?

The next corollary follows from Theorem 1.3.

COROLLARY 4.1. Let K be a reduced commutative \mathbb{F}_p -algebra, $A_n(K)$ be the Weyl algebra and $\partial_i := x_{n+i}$. Then

$$(\partial_i + f)^p = \partial_i^p + \frac{\partial^{p-1}f}{\partial x_i^{p-1}} + f^p$$

for all polynomials $f \in K[x_1, \ldots, x_n]$.

Proof. Without loss of generality we may assume that i = 1. Since $K[x_2, ..., x_n]$ is a reduced commutative \mathbb{F}_p -algebra and $\partial_1 + f \in A_1(K[x_2, ..., x_n])$, the result follows from Theorem 1.3.

REFERENCES

1. K. Adjamagbo and A. van den Essen, On equivalence of the Jacobian, Dixmier and Poisson Conjectures in any characteristic, arXiv:math. AG/0608009.

2. A. Belov-Kanel and M. Kontsevich, The Jacobian conjecture is stably equivalent to the Dixmier Conjecture, *Mosc. Math. J.* **7**(2) (2007), 209–218, arXiv:math. RA/0512171.

3. A. Belov-Kanel and M. Kontsevich, Automorphisms of the Weyl algebra, *Lett. Math. Phys.* **74**(2) (2005), 181–199, arXiv:math. RA/0512169.

4. J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209-242.

5. H. W. E. Jung, Uber ganze birationale Transformationen der Eben, J. Reiner Angew. Math. 184 (1942), 161–174.

6. J. E. Humphreys, Linear Algebraic Groups, (Springer-Verlag, 1975).

7. W. Van der Kulk, On polynomial ring in two variables, Niew. Arch. Wisk. 1 (1953), 33-41.

8. L. Makar-Limanov, On automorphisms of Weyl algebra, Bull. Soc. Math. France 112 (1984), 359–363.

9. T. Kambayashi, Some results on pro-affine algebras and ind-affine schemes, *Osaka J. Math.* **40** (2003), 621–638.

10. I. R. Shafarevich, On some infinite-dimensional groups, *Rend. Mat. Appl.* 25 (1966), 208–212.

11. I. R. Shafarevich, On some infinite-dimensional groups-II, *Math. USSR-Izvestija* 18 (1982), 185–194.

12. Y. Tsuchimoto, Endomorphisms of Weyl algebra and *p*-curvatures. Osaka J. Math. 42(2) (2005), 435–452.