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Abstract. Let K be a perfect field of characteristic p > 0; A1 := K〈x, ∂ | ∂x −
x∂ = 1〉 be the first Weyl algebra; and Z := K [X := xp, Y := ∂p] be its centre. It
is proved that (i) the restriction map res : AutK (A1) → AutK (Z), σ �→ σ |Z is a
monomorphism with im(res) = � := {τ ∈ AutK (Z) |J (τ ) = 1}, where J (τ ) is the
Jacobian of τ , (Note that AutK (Z) = K∗

� �, and if K is not perfect then im(res) 	= �.);
(ii) the bijection res : AutK (A1) → � is a monomorphism of infinite dimensional
algebraic groups which is not an isomorphism (even if K is algebraically closed); (iii)
an explicit formula for res−1 is found via differential operators D(Z) on Z and negative
powers of the Fronenius map F . Proofs are based on the following (non-obvious)
equality proved in the paper:

(
d

dx
+ f

)p

=
(

d
dx

)p

+ dp−1f
dxp−1

+ f p, f ∈ K [x].

2000 Mathematics Subject Classification. 14J50, 16W20, 14L17, 14R10, 14R15,
14M20.

1. Introduction. Let p > 0 be a prime number and �p := �/�p. Let K be a
commutative �p-algebra and A1 := K〈x, ∂ | ∂x − x∂ = 1〉 be the first Weyl algebra over
K . In order to avoid awkward expressions we sometimes use y instead of ∂; i.e. y = ∂.
The centre Z of the algebra A1 is the polynomial algebra K [X, Y ] in two variables X :=
xp and Y := ∂p. Let AutK (A1) and AutK (Z) be the groups of K-automorphisms of the
algebras A1 and Z respectively. They contain the subgroups of affine automorphisms
Aff(A1) 
 SL2(K)op

� K2 and Aff(Z) 
 GL2(K)op
� K2 respectively. If K is a field

of arbitrary characteristic, then the group AutK (K [X, Y ]) of automorphisms of the
polynomial algebra K [X, Y ] generated by two of its subgroups, namely Aff(K [X, Y ])
and U(K [X, Y ]) := {φf : X �→ X , Y �→ Y + f | f ∈ K [X ]}. This was proved by H. W.
E. Jung [5] for characteristic zero and by W. Van der Kulk [7] in general.

If K is a field of characteristic zero J. Dixmier [4] proved that the group AutK (A1) is
generated by its subgroups Aff(A1) and U(A1) := {φf : x �→ x, ∂ �→ ∂ + f | f ∈ K [x]}.
If K is a field of characteristic p > 0 L. Makar-Limanov [8] proved that the groups
AutK (A1) and � := {τ ∈ AutK (K [X, Y ]) |J (τ ) = 1} are isomorphic as abstract groups
in which J (τ ) is the Jacobian of τ . In his paper he used the restriction map

res : AutK (A1) → AutK (Z), σ �→ σ |Z. (1)
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In this paper, we study this map in detail. Recently, the restriction map (for the nth
Weyl algebra) appeared in the papers of Y. Tsuchimoto [12], A. Belov-Kanel and M.
Kontsevich [2] and K. Adjamagbo and A. van den Essen [1]. Let us describe some of
the results proved in the paper.

THEOREM 1.1. Let K be a perfect field of characteristic p > 0. Then the restriction
map res is a group monomorphism with im(res) = �.

Note that AutK (Z) = K∗
� �, where K∗ 
 {τλ : X �→ λX, Y �→ Y | λ ∈ K∗}.

If K is not perfect, then Theorem 1.1 is not true, as one can easily show that
the automorphism � � sμ : X �→ X + μ, Y �→ Y does not belong to the image of res
provided, μ ∈ K\F(K), where F : a �→ ap is the Frobenius map. So, in the case of a
perfect field we have another proof of the result of L. Makar-Limanov [8]. (In both
proofs the results of Jung–Van der Kulk are essential.)

The groups AutK (A1), AutK (Z) and � are infinite dimensional algebraic groups
over K in the sense of I. Shafarevich [10, 11] (see also [9]).

COROLLARY 1.2. Let K be a perfect field of characteristic p > 0. Then the bijection
res : AutK (A1) → �, σ �→ σ |Z, is a monomorphism of algebraic groups over K, which is
not an isomorphism of algebraic groups.

The proofs of Theorem 1.1 and Corollary 1.2 are based on the (non-obvious)
formula given next, which allows us to find the inverse map: res−1 : � → AutK (A1)
(using differential operators D(Z) on Z; see (14) and Proposition 2.2).

THEOREM 1.3. Let K be a reduced commutative �p-algebra and A1(K) be the first
Weyl algebra over K. Then

(∂ + f )p = ∂p + dp−1f
dxp−1

+ f p

for all f ∈ K [x]. In more detail, (∂ + f )p = ∂p − λp−1 + f p, where f = ∑p−1
i=0 λixi ∈

K [x] = ⊕p−1
i=0 K [xp]xi, λi ∈ K [xp].

REMARK. We used the fact that dp−1f /dxp−1 = (p − 1)!λp−1 and (p − 1)! ≡
−1 mod p. Theorem 1.3 generalizes the following equality obtained by A. Belov-Kanel
and M. Kontsevich [3]: if K is a field of characteristic p > 0 and f = dg/dx for some
polynomial g ∈ K [x], then (∂ + f )p = ∂p + f p.

The group � is generated by its two subgroups U(Z) and

� ∩ Aff(Z) =
{
σA,a :

(
X
Y

)
�→ A

(
X
Y

)
+ a

∣∣∣∣ A ∈ SL2(K), a ∈ K2
}


 SL2(K)op
� K2.

Recall that the group AutK (A1) is generated by its two subgroups U(A1) and

Aff(A1) =
{
σA,a :

(
x
y

)
�→ A

(
x
y

)
+ a

∣∣∣∣ A ∈ SL2(K), a ∈ K2
}


 SL2(K)op
� K2.

If K is a perfect field of characteristic p > 0, then Theorem 1.3 shows that

res(Aff(A1)) = � ∩ Aff(Z) and res(U(A1)) = U(Z).
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In more detail,

res : Aff(A1) → � ∩ Aff(Z), σ(a b
c d),(e

f) �→
{

σ(ap bp
cp dp),(ep

f p), if p > 2,

σ(a2 b2

c2 d2),(e2+ab
f 2+cd)

, if p = 2,

(see Lemma 3.1 and (11)) and

res : U(A1) → U(Z), φf �→ φθ( f ),

where the map θ := F + dp−1/dxp−1 : K [x] → K [xp] is a bijection. An explicit formula
for the inverse map θ−1 is found (Proposition 2.2) via differential operators D(Z) on
Z and negative powers of the Frobenius map F . As a consequence, a formula for the
inverse map res−1 : � → AutK (A1) is given (see (14)).

2. Proof of Theorem 1.3 and the inverse map θ−1. In this section, a proof of
Theorem 1.3 is given, and an inversion formula for a map θ is found, which is a key
ingredient in the inversion formula for the restriction map.

Proof of Theorem 1.3. The Weyl algebra A1(K) 
 K ⊗�p A1(�p) and the Frobenius
F : a �→ ap and dp−1/dxp−1 behave well under ring extensions, localizations and
algebraic closure of the coefficient field. So, without loss of generality we may assume
that K is an algebraically closed field of characteristic p > 0: the commutative �p-
algebra K is reduced, ∩p∈Spec(K)p = 0, and A1(K)/A1(K)p 
 A1(K/p); therefore we
may assume that K is a domain; then A1(K) ⊆ A1(Frac(K)) ⊆ A1(Frac(K)), where
Frac(K) is the field of fractions of K , and Frac(K) is its algebraic closure.

First, let us show that the map L : K [x] → K [xp], f �→ L( f ), defined by the rule

(∂ + f )p = ∂p + L( f ) + f p,

is well defined and additive, i.e. L( f + g) = L( f ) + L(g). The map

K [x] → AutK (A1), f �→ σf : x �→ x, ∂ �→ ∂ + f

is a group homomorphism, i.e. σf +g = σf σg. Since ∂p ∈ Z(A1) = K [xp, ∂p] and (∂ +
f )p = σ (∂)p = σ (∂p) ∈ Z(A1), the map L is well defined, i.e. L( f ) ∈ K [xp]. Comparing
both ends of the series of equalities proves the additivity of the map L:

∂p + L( f + g) + f p + gp = σf +g(∂)p = σf +g(∂p) = σf σg(∂p) = σf (∂p + L(g) + gp)

= ∂p + L( f ) + f p + L(g) + gp.

In a view of the decomposition K [x] = ⊕p−1
i=0 K [xp]xi and the additivity of the

map L, it suffices to prove the theorem for f = λxm, where m = 0, 1, . . . , p − 1 and
λ ∈ K [xp]. In addition, we may assume that λ ∈ K . This follows directly from the
natural �p-algebra epimorphism

A1(K [t]) → A1(K), t �→ λ, x �→ x, ∂ �→ ∂

and the fact that the polynomial algebra K [t] is a domain (hence, reduced). Therefore,
it suffices to prove the theorem for f = λxm, where m = 0, 1, . . . , p − 1 and λ ∈ K∗.
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The result is obvious for m = 0. So, we fix the natural number m such that 1 ≤
m ≤ p − 1. Then

lm(λ) := L(λxm) =
m−1∑
k=0

lmk(λ)xkp

is a sum of additive polynomials lmk(λ) in λ of degree ≤ p − 1 (by the very definition of
L(λxm) and its additivity). Recall that a polynomial l(t) ∈ K [t] is additive if l(λ + μ) =
l(λ) + l(μ) for all λ,μ ∈ K . By Lemma 20.3.A [6], each additive polynomial l(t) is
a p-polynomial, i.e. a linear combination of the monomials tpr

and r ≥ 0. Hence,
lm(λ) = amλ for some polynomial am = ∑m−1

k=0 amkxkp, where amk ∈ K , i.e.

(∂ + λxm)p = ∂p + λ

m−1∑
k=0

amkxkp + (λxm)p.

Applying the K-automorphism γ : x �→ μx, ∂ �→ μ−1∂, μ ∈ K∗, of the Weyl algebra
A1 to the equality above, we have

LHS = (μ−1∂ + λμmxm)p = μ−p(∂ + λμm+1xm)p

= μ−p(∂p + λμm+1
m−1∑
k=0

amkxkp + (λμm+1xm)p),

RHS = μ−p∂p + λ

m−1∑
k=0

amkμ
kpxkp + (λμmxm)p.

Equating the coefficients of xkp gives λamkμ
m+1−p = λamkμ

kp. If amk 	= 0 then μm+1−p =
μkp for all μ ∈ K∗, i.e. m + 1 − p = kp. The maximum of m + 1 − p is 0 at m = p − 1,
the minimum of kp is 0 at k = 0. Therefore, amk = 0 for all (m, k) 	= (p − 1, 0).

For (m, k) = (p − 1, 0), let a := ap−1,0. Then

(∂ + λxp−1)p = ∂p + λa + (λxp−1)p.

In order to find the coefficient a ∈ K , consider the left A1-module

V := A1/(A1xp + A1∂) 
 K [x]/K [xp] = ⊕p−1
i=0 Kxi,

where xi := xi + A1xp + A1∂. An easy induction on i gives the equalities

(∂ + λxp−1)ixp−1 = (p − 1)(p − 2) · · · (p − i)xp−1−i, i = 1, 2, . . . , p − 1.

Now,

(∂ + λxp−1)pxp−1 = (∂ + λxp−1)(∂ + λxp−1)p−1xp−1 = (∂ + λxp−1)(p − 1)!1

= (p − 1)!λxp−1.

On the other hand,

(∂p + λa + (λxp−1)p)xp−1 = λaxp−1,

and so a = (p − 1)! ≡ −1 mod p. This finishes the proof of Theorem 1.3. �
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2.1. The map θ and its inverse. Let K be a commutative �p-algebra. The
polynomial algebra K [x] = ⊕i≥0Kxi is a positively graded algebra and a positively
filtered algebra K [x] = ∪i≥0K [x]≤i, where K [x]≤i := ⊕i

j=0Kxj = {f ∈ K [x] | deg( f ) ≤
i}. Similarly, the polynomial algebra K [xp] in the variable xp is a positively graded
algebra K [xp] = ⊕i≥0Kxpi and a positively filtered algebra K [xp] = ∪i≥0K [xp]≤i, where
K [xp]≤i := ⊕i

j=0Kxpj = {f ∈ K [xp] | degxp ( f ) ≤ i}. The associated graded algebras gr
K [x] and gr K [xp] are canonically isomorphic to K [x] and K [xp] respectively. For
a polynomial f = ∑d

i=0 λixi ∈ K [x] (resp. g = ∑d
i=0 μixpi ∈ K [xp]) of degree d, λdxd

(resp. μdxpd) is called the leading term of f (resp. g) denoted by l( f ) (resp. l(g)).
Consider the �p-linear map (see Theorem 1.3)

θ : F + dp−1

dxp−1
: K [x] → K [xp], f �→ f p + dp−1f

dxp−1
, (2)

where F : f �→ f p is the Frobenius (�p-algebra monomorphism). In more detail,

θ : K [x] = ⊕p−1
i=0 K [xp]xi → K [xp] = ⊕p−1

i=0 K [xp2
]xpi,

p−1∑
i=0

aixi �→
p−1∑
i=0

ap
i xpi − ap−1,

where ai ∈ K [xp]. This means that the map θ respects the filtrations of the algebras
K [x] and K [xp] and θ (K [x]≤j) ⊆ K [xp]≤j for all j ≥ 0, and so the associated graded map
gr(θ ) : K [x] → K [xp] coincides with the Frobenius F :

gr(θ ) = F. (3)

LEMMA 2.1. Let K be a perfect field of characteristic p > 0. Then
(1) gr(θ ) = F : K [x] → K [xp] is an isomorphism of �p-algebras;
(2) θ : K [x] → K [xp] is an isomorphism of vector spaces over �p such that θ (K [x]≤i) =

K [xp]≤i, i ≥ 0; and
(3) for each f ∈ K [x], l(θ ( f )) = l( f )p.

Proof. Statement 1 is obvious, since K is a perfect field of characteristic p > 0
(F(K) = K). Statements 2 and 3 follow from statement 1. �

REMARK. The problem of finding the inverse map res−1 of the group isomorphism
res : AutK (A1) → �, σ �→ σ |Z is essentially equivalent to the problem of finding θ−1

(see (14)).
The inversion formula for θ−1 (Proposition 2.2) is given via certain differential

operators. We recall some facts of differential operators that are needed in the proof
of Proposition 2.2.

Let K be a field of characteristic p > 0 and D(K [x]) = ⊕i≥0K [x]∂ [i] be the ring of
differential operators on the polynomial algebra K [x], where ∂ [i] := ∂ i

i! . The algebra
K [x] is a left D(K [x])-module (in the usual sense):

∂ [i](xj) =
(

j
i

)
xj−i for all i, j ≥ 0.

In particular,

∂ [pi](xpj) =
(

p j
pi

)
xp(j−i) =

(
j
i

)
xp(j−i) for all i, j ≥ 0.
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The subalgebra K [xp] = ⊕p−1
i=0 K [xp2

]xpi of K [x] is xp∂ [p]-invariant, and for each i =
0, 1, . . . , p − 1, K [xp2

]xpi is the eigenspace of the element xp∂ [p] that corresponds to the
eigenvalue i. Let J(i) := {0, 1, . . . , p − 1}\{i}. Then

πi := ∂ [pi]

∏
j∈J(i)(x

p∂ [p] − j)∏
j∈J(i)(i − j)

: K [xp] → K [xp2
],

p−1∑
i=0

aixpi �→ ai, (4)

where all ai ∈ K [xp2
] (since the map

∏
j∈J(i)(x

p∂ [p]−j)∏
j∈J(i)(i−j) : K [xp] → K [xp] is the projection

onto the summand K [xp2
]xpi in the decomposition K [x] = ⊕p−1

i=0 K [xp2
]xpi and

∂ [pi](aixpi) = ai).
Let K be a perfect field of characteristic p > 0. Consider the �p-linear map

∂ [(p−1)p]F−1 : K [xp2
] → K [xp2

],
∑
i≥0

aixp2i �→
∑
i≥0

a
1
p

p−1+pix
p2i, (5)

where ai ∈ K . By induction on a natural number n, we have

(
∂ [(p−1)p]F−1)n

⎛
⎝∑

i≥0

aixp2i

⎞
⎠ =

∑
i≥0

ap−n

(p−1)(1+p+···+pn−1)+pnix
p2i, n ≥ 1. (6)

This shows that the map ∂ [(p−1)p]F−1 is a locally nilpotent map. This means that K [xp2
] =

∪n≥1ker(∂ [(p−1)p]F−1)n; i.e. for each element a ∈ K [xp2
], (∂ [(p−1)p]F−1)n(a) = 0 for all

n � 0. Hence, the map 1 − ∂ [(p−1)p]F−1 is invertible, and its inverse is given by the rule

(
1 − ∂ [(p−1)p]F−1)−1 =

∑
j≥0

(
∂ [(p−1)p]F−1)j

. (7)

The proposition given next gives an explicit formula for θ−1.

PROPOSITION 2.2. Let K be a perfect field of characteristic p > 0. Then
the inverse map θ−1 : K [xp] = ⊕p−1

i=0 K [xp2
]xpi → K [x] = ⊕p−1

i=0 K [xp]xi,
∑p−1

i=0 μixpi �→∑p−1
i=0 λixi, μi ∈ K [xp2

], λi ∈ K [xp], is given by the rule

(1) for i = 0, 1, . . . , p − 2, λi = μ
1
p
i + F−1πiF−1 ∑

j≥0(∂ [(p−1)p]F−1)j(μp−1) and

(2) λp−1 = (
∑p−2

i=0 xpiπiF−1 ∑
j≥0(∂ [(p−1)p]F−1)j + xp(p−1) ∑

j≥1(∂ [(p−1)p]F−1)j)(μp−1),
where πi is defined in (4).

Proof. Let g = ∑p−1
i=0 μixpi ∈ K [xp], μi ∈ K [xp2

]; f = ∑p−1
i=0 λixi ∈ K [x], λi ∈ K [xp];

and λp−1 = ∑p−1
i=0 aixpi, ai ∈ K [xp2

]. Then θ−1(g) = f iff g = θ ( f ) iff F−1(g) = F−1θ ( f )
iff

p−1∑
i=0

F−1(μi)xi = F−1(F( f ) − λp−1) = f − F−1(λp−1) =
p−1∑
i=0

(λi − F−1(ai))xi

iff

λi = F−1(μi + ai), i = 0, 1, . . . , p − 1. (8)
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For i = p − 1, (8) can be rewritten as follows:

p−2∑
i=0

aixpi + ap−1xp(p−1) = F−1(μp−1 + ap−1). (9)

For each i = 0, 1, . . . , p − 2, applying the map πi (see (4)) to (9) gives the
equality ai = πiF−1(μp−1 + ap−1), and so the equalities (8) can be rewritten as
follows:

λi = F−1(μi + πiF−1(μp−1 + ap−1)), i = 0, 1, . . . , p − 2. (10)

Applying ∂ [(p−1)p] to (9) yields ap−1 = ∂ [(p−1)p]F−1(μp−1 + ap−1), and so (1 − �)ap−1 =
�(μp−1), where � := ∂ [(p−1)p]F−1. By (7), ap−1 = ∑

j≥1 �j(μp−1). Putting this expression
in (10) yields

λi = F−1(μi) + F−1πiF−1
∑
j≥0

�j(μp−1), i = 0, 1, . . . , p − 2.

This proves statement 1. Finally,

λp−1 =
p−1∑
i=0

aixpi =
p−2∑
i=0

aixpi + ap−1xp(p−1)

=
p−2∑
i=0

xpiπiF−1(μp−1 + ap−1) + xp(p−1)
∑
j≥1

�j(μp−1)

=
p−2∑
i=0

xpiπiF−1
∑
j≥0

�j(μp−1) + xp(p−1)
∑
j≥1

�j(μp−1)

=
⎛
⎝p−2∑

i=0

xpiπiF−1
∑
j≥0

(
∂ [(p−1)p]F−1)j + xp(p−1)

∑
j≥1

(
∂ [(p−1)p]F−1)j

⎞
⎠ (μp−1). �

3. The restriction map and its inverse. In this section, Theorems 1.1 and 3.4
and Corollary 1.2 are proved. An inversion formula for the restriction map res :
AutK (A1) → � is found (see (14)).

3.1. The group of affine automorphisms. Let K be a perfect field of characteristic
p > 0. Each element a of the Weyl algebra A1 = ⊕i,j∈�Kxiyi is a unique sum
a = ∑

λij xiyj, where all but finitely many scalars λij ∈ K are equal to zero. The number
deg(a) := max{i + j | λij 	= 0} is called the degree of a, deg(0) := −∞. Note that
deg(ab) = deg(a) + deg(b), deg(a + b) ≤ max{deg(a), deg(b)} and deg(λa) = deg(a) for
all λ ∈ K∗. For each σ ∈ AutK (A1),

deg(σ ) := max{deg(σ (x)), deg(σ (y))}

is called the degree of σ . The set (which is obviously a subgroup of AutK (A1)) Aff(A1) =
{σ ∈ AutK (A1) | deg(σ ) = 1} is called the group of affine automorphisms of the Weyl
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algebra A1. Clearly,

Aff(A1) =
{
σA,a :

(
x
y

)
�→ A

(
x
y

)
+ a

∣∣∣∣ A ∈ SL2(K), a ∈ K2
}

, σA,aσB,b = σBA,Ba+b.

For each group G, let Gop be its opposite group. (Gop = G as set, but the product ab in
Gop is equal to ba in G.) The map G → Gop, g �→ g−1, is a group automorphism. The
group Aff(A1) is the semi-direct product SL2(K)op

� K2 of its subgroups SL2(K)op =
{σA,0 | A ∈ SL2(K)} and K2 
 {σ1,a | a ∈ K2}, where K2 is the normal subgroup of
Aff(A1) since σA,0σ1,aσ

−1
A,0 = σ1,A−1a. It is obvious that the group Aff(A1) is generated

by the automorphisms

s : x �→ y, y �→ −x; tμ : x �→ μx, y �→ μ−1y; φλxi : x �→ x, y �→ y + λxi,

where λ ∈ K , μ ∈ K∗ and i = 0, 1.
Recall that the centre Z of the Weyl algebra A1 is the polynomial algebra K [X, Y ]

in X := xp and Y := yp variables. Let deg(z) be the total degree in X and Y of a
polynomial z ∈ Z. For each automorphism σ ∈ AutK (Z),

deg(σ ) := max{deg(σ (X)), deg(σ (Y ))}

is called the degree of σ .

Aff(Z) := {σ ∈ AutK (Z) | deg(σ ) = 1}
=

{
σA,a :

(
X
Y

)
�→ A

(
X
Y

)
+ a

∣∣∣∣ A ∈ GL2(K), a ∈ K2
}

is the group of affine automorphisms of Z, σA,aσB,b = σBA,Ba+b. The group Aff(A1)
is the semi-direct product GL2(K)op

� K2 of its subgroups GL2(K)op = {σA,0 | A ∈
GL2(K)} and K2 
 {σ1,a | a ∈ K2}, where K2 is a normal subgroup of Aff(Z) since
σA,0σ1,aσ

−1
A,0 = σ1,A−1a.

A group G is called an exact product of its subgroups G1 and G2 denoted by G =
G1 ×ex G2 if each element g ∈ G is a unique product g = g1g2 for some elements g1 ∈ G1

and g2 ∈ G2. Then GL2(K)op = K∗ ×ex SL2(K)op, where K∗ 
 {γμ : X �→ μX, Y �→
Y | μ ∈ K∗}, γμγν = γμν . Clearly, Aff(Z) = (K∗ ×ex SL2(K)op) � K2, and so the group
Aff(Z) is generated by the following automorphisms (where λ ∈ K , μ ∈ K∗ and i =
0, 1):

s : X �→ Y, Y �→ −X ; tμ : X �→ μX, Y �→ μ−1Y ; φλXi : X �→ X,

Y �→ Y + λXi; and γμ.

The automorphisms tμ and γν commute.

LEMMA 3.1. Let K be a perfect field of characteristic p > 0. Then the restriction
map resaff : Aff(A1) → Aff(Z), σ �→ σ |Z, is a group monomorphism with im(resaff ) =
SL2(K)op

� K2.

Proof. Since resaff (s) = s, resaff (tμ) = tμp ; for i = 0, 1, resaff (φλxi ) = φλpXi if p > 2
and resaff (φλxi ) = φλ2Xi+δi,1λ if p = 2, where δi,1 is the Kronecker delta (Theorem 1.3);
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i.e.

resaff
(
σ(a b

c d),(e
f)
) =

{
σ(ap bp

cp dp),(ep
f p), if p > 2,

σ(a2 b2

c2 d2),(e2+ab
f 2+cd)

, if p = 2.
(11)

The result is obvious. �

LEMMA 3.2. The automorphisms of the algebra Z: s, tμ, φλXi and γμ satisfy the
following relations:

(1) stμ = tμ−1 s and sγμ = γμtμ−1 s;
(2) φλXi tμ = tμφλμ−i−1Xi and φλXiγμ = γμφλμ−iX i ; and
(3) s2 = t−1, s−1 = t−1s : X �→ −Y, Y �→ X.

Proof. Straightforward. �
The map

K [X ] → Aut(Z), f �→ φf : X �→ X, Y �→ Y + f,

is a group monomorphism (φf +g = φf φg). For σ ∈ Aut(Z),J (σ ) := det
( ∂σ (X)

∂X
∂σ (X)
∂Y

∂σ (Y )
∂X

∂σ (Y )
∂Y

)
is the Jacobian of σ . It follows from the equality (which is a direct consequence
of the chain rule) J (στ ) = J (σ )σ (J (τ )) that J (σ ) ∈ K∗ (since 1 = J (σσ−1) =
J (σ )σ (J (σ−1)) in K [X, Y ]), and so the kernel � := {σ ∈ AutK (Z) |J (σ ) = 1} of the
group epimorphism J : Aut(Z) → K∗, σ �→ J (σ ), is a normal subgroup of AutK (Z).
Hence,

AutK (Z) = K∗
� � (12)

is the semi-direct product of its subgroups � and K∗ 
 {γμ | μ ∈ K∗}.
COROLLARY 3.3. Let K be a field of characteristic p > 0. Then

(1) each automorphism σ ∈ AutK (Z) is a product σ = γμtνφf1 sφf2 s . . . φfn−1 sφfn for
some μ, ν ∈ K∗ and fi ∈ K [x], and

(2) each automorphism σ ∈ � is a product σ = tνφf1 sφf2 s . . . φfn−1 sφfn for some ν ∈ K∗

and fi ∈ K [x].

Proof. (1) Statement 1 follows at once from Lemma 3.2 and the fact that the group
AutK (Z) is generated by Aff(Z) and φλXi , λ ∈ K , i ∈ �.

(2) Statement 2 follows from statement 1: σ = γμtνφf1 sφf2 s . . . φfn−1 sφfn ∈ � iff

1 = J (σ ) = J (γμtνφf1 sφf2 s . . . φfn−1 sφfn ) = J (γμ)γμ(1) = μ

iff σ = tνφf1 sφf2 s . . . φfn−1 sφfn . �

Proof of Theorem 1.1. Step 1: res is a monomorphism. It is obvious that

deg res(σ ) = deg σ, σ ∈ AutK (A1). (13)

The map res is a group homomorphism; so we have to show that res(σ ) = idZ implies
σ = idA1 , where idZ and idA1 are the identity maps on Z and A1 respectively. By (13),
res(σ ) = idZ implies deg(σ ) = 1. Then, by (11), σ = idA1 .
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Step 2: � ⊆ im(res). By Corollary 3.3.(2), each automorphism σ ∈ � is a product,
σ = tνφf1 s . . . φfn−1 sφfn . Since res(t

ν
1
p
) = tν , res(φθ−1( fi)) = φfi and res(s) = s, we have

σ = res(t
ν

1
p
φθ−1( f1)s . . . φθ−1( fn−1)sφθ−1( fn)), and so � ⊆ im(res).

Step 3: � = im(res). Let σ ∈ im(res). By Corollary 3.3.(1),

res(σ ) = γμtνφf1 s . . . φfn−1 sφfn = γμres(τ )

for some τ ∈ AutK (A1), such that res(τ ) ∈ �, by Step 2. Then res(στ−1) = γμ. By (13),
deg(στ−1) = deg res(στ−1) = deg γμ = 1, and so στ−1 ∈ Aff(A1). By Lemma 3.1,
γμ = 1, and so σ = τ ; hence res(σ ) = res(τ ) ∈ �. This means that � = im(res). �

If K is a perfect field of characteristic p > 0 we obtain the result of L. Makar-
Limanov.

THEOREM 3.4. Let K be a perfect field of characteristic p > 0. Then the group
AutK (A1) is generated by Aff(A1) 
 SL2(K)op

� K2 and the automorphisms φλxi , λ ∈ K∗,
i = 2, 3, . . . .

Proof. By Theorem 1.1, the map res : AutK (A1) → � is the isomorphism of groups.
By Corollary 3.3.(2), each element γ ∈ � is a product,

γ = tνφf1 s . . . φfn−1 sφfn = res
(
t
ν

1
p
φθ−1( f1)s . . . φθ−1( fn−1)sφθ−1( fn)

)
.

Now, it is obvious that the group AutK (A1) is generated by Aff(A1) and the
automorphisms φλxi , λ ∈ K∗, i = 2, 3, . . . . �

3.2. The inverse map res−1 : � → AutK (A1). By Corollary 3.3.(2), each element
γ ∈ � is a product γ = tνφf1 s . . . φfn−1 sφfn . By Proposition 2.2, the inverse map for res
is given by the rule

res−1 : � → AutK (A1), γ = tνφf1 s . . . φfn−1 sφfn �→ t
ν

1
p
φθ−1( f1)s . . . φθ−1( fn−1)sφθ−1( fn).

(14)

Proof of Corollary 1.2. The group AutK (A1) (resp. AutK (Z)) are infinite-
dimensional algebraic groups over K (and over �p), where the coefficients of the
polynomials σ (x) and σ (y), where σ ∈ AutK (A1) (resp. of τ (X) and τ (Y ) in which
τ ∈ AutK (Z)), are coordinate functions (see [10] and [11]). The group � is a closed
subgroup of AutK (Z). By the very definition, the map res : AutK (A1) → � is a
polynomial map (i.e. a morphism of algebraic varieties). By (14) and Proposition 2.2,
res−1 is not a polynomial map over K (and over �p either). �

4. The image of the restriction map resn. Let K be a field of characteristic p > 0
and An = K〈x1, . . . , x2n〉 be the nth Weyl algebra over K : for i, j = 1, . . . , n,

[xi, xj] = 0, [xn+i, xn+j] = 0, [xn+i, xj] = δij ,

where δij is the Kronecker delta. The centre Zn of the algebra An is the
polynomial algebra K [X1, . . . , X2n] in 2n variables, where Xi := xp

i . The groups
of K-automorphisms AutK (An) and AutK (Zn) contain the affine subgroups
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Aff(An) = Sp2n(K)op
� Kn and Aff(Zn) = GLn(K)op

� Kn respectively. Clearly,
Aff(An) = {σ ∈ AutK (An) | deg(σ ) = 1} and Aff(Zn) = {τ ∈ AutK (Zn) | deg(τ ) = 1},
where deg(σ ) (resp. deg(τ )) is the (total) degree of σ (resp. τ ), defined in the obvious
way. The kernel �n of the group epimorphism J : AutK (Zn) → K∗, τ �→ J (τ ) :=
det((∂τ (Xi))/(∂Xj)) is the normal subgroup �n := {τ ∈ AutK (Zn) |J (τ ) = 1}, and
AutK (Zn) = K∗

� �n is the semi-direct product of K∗ 
 {γμ | γμ(X1) = μX1, γμ(Xj) =
Xj, j = 2, . . . , 2n; μ ∈ K∗} and �n.

By considering leading terms of the polynomials σ (Xi), it follows as in the case of
n = 1 that the restriction map

resn : AutK (An) → AutK (Zn), σ �→ σ |Zn ,

is a group monomorphism. If K is a perfect field, then

resn(Aff(An)) = Sp2n(K)op
� K2n ⊂ Aff(Zn) = GL2n(K)op

� K2n.

This follows from the fact that for any element of Aff(An), σA,a : x �→ Ax + a, where
A = (aij) ∈ Sp2n(K) and a = (ai) ∈ K2n,

resn(σA,a) =
{

σ(ap
ij ),(a

p
i ) if p > 2,

σ(a2
ij ),(a2

i +
∑n

j=1 aijai,n+j) if p = 2,
(15)

which can be proved in the same fashion as (11). Since Sp2n(K) ⊆ SL2n(K),

resn(Aff(An)) ⊆ SL2n(K)op
� K2n ⊂ �n.

(Any symplectic matrix S ∈ Sp2n(K) has the from S = TJT−1 for some matrix
T ∈ GL2n(K), where J = diag(

( 0 1
−1 0

)
, . . . ,

( 0 1
−1 0

)
), n times; hence det(S) = 1.)

Question 1. For an algebraically closed field K of characteristic p > 0, is im(resn) ⊆
�n?

Question 2. For an algebraically closed field K of characteristic p > 0, is the injection

Aff(Zn)/resn(Aff(An)) 
 GL2n(K)op/Sp2n(K)op → AutK (Zn)/im(resn)

a bijection?
The next corollary follows from Theorem 1.3.

COROLLARY 4.1. Let K be a reduced commutative �p-algebra, An(K) be the Weyl
algebra and ∂i := xn+i. Then

(∂i + f )p = ∂p
i + ∂p−1f

∂xp−1
i

+ f p

for all polynomials f ∈ K [x1, . . . , xn].

Proof. Without loss of generality we may assume that i = 1. Since K [x2, . . . , xn]
is a reduced commutative �p-algebra and ∂1 + f ∈ A1(K [x2, . . . , xn]), the result follows
from Theorem 1.3. �
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