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Abstract

Homoclinic snaking is a term used to describe the back and forth oscillation of

a branch of time-independent spatially localized states in a bistable, spatially re-

versible system as the localized structure grows in length by repeatedly adding rolls

on either side. On the real line this process continues forever. In finite domains

snaking terminates once the domain is filled but the details of how this occurs depend

critically on the choice of boundary conditions. With periodic boundary conditions

the snaking branches terminate on a branch of spatially periodic states. However,

with non-Neumann boundary conditions they turn continuously into a large am-

plitude filling state that replaces the periodic state. This behavior, shown here

in detail for the Swift-Hohenberg equation, explains the phenomenon of “snaking

without bistability”, recently observed in simulations of binary fluid convection by

Mercader, Batiste, Alonso and Knobloch (preprint).

1 Introduction

Recent years have seen rapid developments in the theory of spatially localized structures

in reversible systems in both one [7, 26, 11] and two [8, 28, 27] spatial dimensions. These

structures occur in a great variety of physical systems, including nonlinear optics where

they are usually referred to as dissipative solitons, reaction-diffusion systems where they

take the form of spots or ensembles of spots, and convection where they are called con-

vectons. We refer to a recent special issue of Chaos [31] for an overview of the subject,

including applications, and to [22] for a discussion of open problems in this area.

The theory is simplest in one spatial dimension and relies on the presence of bistability

between a trivial state and a spatially periodic state: on the real line spatially localized

states first appear via a bifurcation from the trivial state and do so simultaneously with

the primary branch of spatially periodic states. Typically there are two branches of

spatially localized states that are produced, both symmetric under reflection x → −x,

with either maxima or minima at x = 0. In the following we refer to these states in terms

of their spatial phase φ = 0, π as L0,π, respectively. These states are distinct, and are not
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related by symmetry. Both L0,π bifurcate in the same direction as the periodic states, i.e.,

subcritically, and are initially unstable. With decreasing parameter the localized states

grow in amplitude but shrink in extent; when the extent of the localized state approaches

one wavelength and the amplitude reaches that of the competing periodic state the branch

enters the so-called snaking or pinning region, and begins to ‘snake’ back and forth. As

this happens the localized state gradually adds rolls, symmetrically on either side, thereby

increasing its length. As a result the localized states high up the snaking branches resemble

the finite amplitude spatially periodic state over longer and longer lengths. Typically

each snaking branch repeatedly gains and loses stability via saddle-node bifurcations,

producing an infinite multiplicity of coexisting stable states within the pinning region.

Secondary bifurcations to pairs of (unstable) branches of asymmetric states are found in

the vicinity of each saddle-node; these branches resemble ‘rungs’ that connect the two

snaking branches and are responsible for the ‘snakes-and-ladders’ structure of the pinning

region [7, 8]. The origin and properties of this behavior are now quite well understood,

at least in variational systems [3, 20, 26, 11]. However, in addition to these states there

are spatially localized states that resemble ‘holes’ in a background of otherwise spatially

periodic finite amplitude wave trains [12]. These bifurcate from the vicinity of the saddle-

node bifurcation on the branch of spatially periodic states, and are also organized into a

pair of branches with its own snakes-and-ladders structure, produced as the hole deepens

and fills with longer and longer sections of the trivial state.

On an unbounded domain these two pairs of snaking branches remain distinct. This is

not so, however, once the domain becomes finite [4]. In this case neither set of branches can

snake forever, and the snaking process must terminate when the width of the localized

periodic state approaches the domain size, and likewise for the width of the localized

hole. Thus both pairs of branches must turn over and exit the snaking region. Typically

the two pairs of branches connect pairwise (Fig. 1), so that the small amplitude φ = 0

branch now connects to the corresponding branch of hole-like states, and likewise for the

φ = π branch. This figure, computed for the quadratic-cubic Swift-Hohenberg equation

on a periodic domain of period Γ = 62, shows that the classic localized states enter the

pinning region from small amplitude on the right and exit this region at large amplitude

toward the left; however, the same figure can also be viewed as showing that the hole-like

states enter the snaking region at the top from the left and exit it near the bottom toward

the right. One finds, in addition, that in domains of finite size, the branches of small

amplitude localized states no longer bifurcate directly from the trivial state, but now do

so in a secondary (pitchfork) bifurcation on the primary branch of periodic states. The

finite domain size likewise affects the bifurcation to the hole-like states on the branch

of periodic states: the two branches of hole-like states need not bifurcate together, and

need not bifurcate from the primary periodic branch [4]. Thus, depending on the spatial

period, the branches of spatially localized states may or may not terminate together on

a branch of periodic states, and this branch may or may not be the branch from which

these states bifurcate at small amplitude. However, despite these finite size effects the

behavior within the snaking region remains essentially identical to that present on the real

line, with the effects of the finite size confined to the vicinity of the bifurcations creating
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Figure 1: (a) Bifurcation diagram showing the equivalent of homoclinic snaking in the

Swift-Hohenberg equation with b2 = 1.8 on a periodic domain with period Γ = 62. The

snaking branches L0 and Lπ emerge from P10 in a secondary bifurcation (◦) at small

amplitude, and terminate on the same branch in a secondary bifurcation (◦) near the

saddle-node. Other spatially periodic branches are also present, but for clarity are not

shown. (b,c) Sample profiles from the φ′ = 0 and φ′ = π branches near the upper end of

the snaking branches. (d,e) Sample profiles from the φ = 0 and φ = π branches on the

lower part of the snaking branches. In this case the L0 branch connects the φ = 0 and

φ′ = 0 solutions, and the Lπ branch connects the φ = π and φ′ = π solutions. After [4].

the localized and hole-like states in the first place [4]. Similar observations are made in

Ref. [15] as well. Thus the physical interpretation of the structure of the snaking region

in terms of front pinning [30] remains largely unchanged.

The above picture, attractive as it is, relies on the use of spatially periodic boundary

conditions (PBC) to approximate the real line. A recent study of binary fluid convection

in a two-dimensional box with no-slip boundary conditions on all boundaries [29] reveals

behavior that differs qualitatively from the above picture: the snaking branches do not

terminate on a branch of periodic states that coexist with the conduction state, and

instead evolve continuously into large amplitude nonperiodic states that fill the box and

play the role of the periodic state present with PBC. These states typically include a

defect-like structure in order to accommodate the natural wavelength of the rolls, with

additional defect-like structures present at either lateral boundary required by the no-slip
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boundary conditions. The authors of Ref. [29] refer to this situation as ”snaking without

bistability” since there is no large amplitude state that exists independently of the snaking

branches.

We use these results to motivate our study in this paper of the Swift-Hohenberg equa-

tions with non-Neumann lateral boundary conditions. Neumann boundary conditions

(NBC) are special since problems with NBC on domains of length 2L can be embed-

ded in problems with PBC and period 4L [13]. Thus the behavior described above for

problems with PBC applies equally to problems with NBC. Consequently, we focus here

on the effects of a generalization of Neumann boundary conditions referred to as Robin

boundary conditions (RBC). It should be emphasized that the change from Neumann to

non-Neumann boundary conditions has a profound effect already on the linear stability

problem. In the former case the null eigenfunctions (critical modes) are sinusoidal, with

well-defined mode number n. The branches that bifurcate into the nonlinear regime pre-

serve this mode number, and in the following we refer to them as Pn. Moreover, as L

increases the neutral curves corresponding to n and n + 1, say, must cross; the corre-

sponding codimension-two points are key to understanding mode-jumping in problems of

this type, i.e., the transitions from one preferred wave number to another, in the non-

linear regime [21, 23]. With non-Neumann boundary conditions, however, the situation

is quite different. The neutral modes are either odd or even but have no well-defined

wave number. It follows that when neutral curves corresponding to modes of like parity

(odd-odd, or even-even) cross, they generically reconnect [19], producing a quite different

neutral curve topology. Only odd-even crossings remain structurally stable. Moreover,

since the bifurcating solutions have no fixed wave number their structure in the nonlinear

regime may gradually evolve from resembling a solution with n maxima to one with n+1

maxima, say; no bifurcation is involved and no periodic solutions are present. It follows

that the snaking branches cannot terminate on a branch of periodic states and another

termination mechanism must be present. The present paper describes in some detail what

happens in this case. The results are quite general and provide an immediate explanation

of the behavior identified in Ref. [29]. In addition, the results should apply to any physical

system with realistic lateral boundary conditions, and as such should be observable not

only in numerical studies of snaking systems with realistic lateral boundary conditions as

well as in experiments.

This paper is organized as follows. In the next section we summarize briefly the snaking

behavior for the Swift-Hohenberg equation on periodic domains. In §3 we introduce

a homotopy parameter that allows us to continuously change the boundary conditions

away from Neumann boundary conditions, and explore the accompanying changes in the

snaking structure. In §4 we give partial results on other types of boundary conditions.

In §5 we relate our findings to earlier work on convection in binary fluid mixtures with

no-slip lateral boundary conditions where snaking without bistability was first identified

[29].
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2 Swift-Hohenberg Equation

The Swift-Hohenberg equation describes the formation of spatially periodic patterns with

a finite wave number k0 at onset. In one spatial dimension the equation takes the form

ut = ru −
(

∂2

x + k2

0

)2

u + f(u) . (1)

This equation is variational and hence on finite domains all solutions approach steady

states. In the following we shall be interested in characterizing such states. The key to

the properties of these states is provided by the invariance of Eq. (1) under x → −x,

u → u, hereafter referred to as reversibility. On the real line this property is responsible

for the presence of a reversible Hopf bifurcation with 1:1 resonance in the linear stability

problem for the trivial solution u = 0 in space. Specifically, at r = 0 the (four) spatial

eigenvalues are given by λ = ±ik0, each with double multiplicity. Moreover, for r < 0

these eigenvalues move off the imaginary axis and form a complex quartet (λ = ±(ik0 ±
(
√
−r/2k0) + O(r))) while for r > 0 they also split but remain on the imaginary axis

(λ = ±(ik0 ± i(
√

r/2k0) +O(r))). The presence of this bifurcation can in turn be used to

show that spatially periodic and spatially localized states bifurcate simultaneously from

u = 0 as the bifurcation parameter r is increased through r = 0 only in the so-called

subcritical regime [7, 20]. The latter undergo the homoclinic snaking that is of interest in

the present paper.

In this paper we consider the case f(u) ≡ b2u
2−u3, which is the simplest nonlinearity

that produces the bistability crucial for homoclinic snaking. In the following we scale

Eq. (1) such that k0 = 1, so that the equation is fully parameterized by r and b2, and

explore the case b2 = 2, focusing on steady state solutions in finite domains. Throughout

we impose boundary conditions at x = ±L and do so in such a way that the invariance

of the system (1) under reflections x → −x is preserved. In this case general theory

[14] guarantees the presence of nonlinear even parity solutions. Figure 2 shows several

branches of such even parity states with Neumann boundary conditions at x = ±20 or,

equivalently, in a periodic domain with period 4L = 80. The figure shows the amplitude

A = ||u||L2 ≡ (1/2L)−1
∫ L

−L
u2(x) dx for two branches, labeled P6 (six peaks within the

domain) and P5 (five peaks), both of which bifurcate from the trivial state u = 0; a branch

P7 bifurcates from u = 0 between these two primary branches but is not shown. Both

P6 and P5 bifurcate subcritically and turn around to larger values of r with increasing

amplitude. Sample large amplitude solutions on these branches are shown in Fig. 3. The

figure also shows a pair of snaking branches both of which bifurcate from P6 at small

amplitude and terminate back on P6 just below the saddle-node. These correspond to

localized structures with maxima (φ = 0) and minima (φ = π) at x = 0, respectively. An

isola of two-pulse homoclinic orbits is also shown, with sample profiles shown in Fig. 4.

These results accord with the results in [4, 24, 9].
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Figure 2: Bifurcation diagram showing the equivalent of homoclinic snaking with Neu-

mann boundary conditions on a domain of length 2L = 40. Only even parity states are

shown. Pitchfork bifurcations are denoted by ◦. Solution profiles u(x) at the saddle-nodes

(a)–(d) are shown in Fig. 4.
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Figure 3: Sample large amplitude periodic states u(x) on (a) P6 and (b) P5 with Neumann

boundary conditions on a domain of length 2L = 40, both at r = 0.
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Figure 4: Sample two-pulse profiles u(x) at the saddle-nodes along the figure-eight isola

in Fig. 2.

3 Robin boundary conditions

In this section we explore the effect of changing the boundary conditions at x = ±L to

ux = ±βu, uxxx = 0, (2)

where the parameter β plays the role of a Biot number: the case β = 0 corresponds to

the NBC case, while β 6= 0 corresponds to RBC.

3.1 Numerical method

We solve for steady solutions of (1), subject to boundary conditions (2), with the Newton-

Raphson-Kantorovich algorithm (NRK) [10]. This algorithm is highly efficient for finding

the solution to linear and nonlinear problems. Also, it is straightforward to incorporate

the non-standard boundary conditions as required for this investigation. We initialize the

algorithm with an approximate solution and then apply NRK to converge to an exact

solution of the linear, or nonlinear, problem. A parameter in the system is then slightly

altered and NRK used once more to converge to an exact solution. Repetition of this

procedure allows the solution branches to be traced out. Other numerical algorithms, for

example AUTO [16], could also be used. AUTO allows non-standard boundary conditions

to be specified in the BCND subroutine so that boundary value problems of this type can

be solved.

3.2 Linear theory

When β = 0 the neutral stability curves for the trivial state u = 0 are given by

reven
c =

[

1 −
(nπ

L

)2]2

, rodd
c =

[

1 −
((2n + 1)π

2L

)2]2

. (3)

There are two sets of curves corresponding to even (cosnπx/L) and odd (sin(2n+1)πx/2L)

eigenfunctions with well-defined wave numbers specified by integers n = 0, . . . as shown
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in Fig. 5(a). As soon as β 6= 0 this picture changes dramatically, as described in [19]

and references therein: the crossings between the even neutral curves breakup, as do the

crossings between odd neutral curves. Only crossings between opposite parity neutral

curves are structurally stable. The resulting neutral curves are shown in Fig. 5(b) for

a relatively large value of β, β = 0.5. The figure shows five distinct families of neutral

curves, each of which consists of a pair of braided curves, one of which corresponds to

even parity eigenfunctions (red) while the other corresponds to odd parity eigenfunctions

(blue). As a result of the reconnection between neutral curves corresponding to different

values of n the neutral curves with RBC are no longer characterized by a unique mode

number, and the mode number varies continuously along each neutral curve.

The bifurcations to even modes produce branches of even parity nonlinear solutions.

We construct these solutions by imposing the boundary conditions

ux = 0, uxxx = 0, (4)

at x = 0, and solving for steady solutions on 0 ≤ x ≤ L with the boundary conditions

(2,4), followed by a reflection in x = 0: u(−x) = u(x). This procedure generates a

differentiable solution on the full domain −L ≤ x ≤ L. However, because of the quadratic

term in the Swift-Hohenberg equation odd parity states do not persist into the nonlinear

region; these bifurcations produce primary branches of nonsymmetric states, and these

have to be computed on the full domain −L ≤ x ≤ L. When β 6= 0 none of these

solutions is characterized by a well-defined mode number n, and as a result the dominant

mode number will in general be a function of amplitude or equivalently of the value of

the parameter r.

3.3 Even parity states

The bifurcation diagram for the primary even parity states is shown in Fig. 6 for β = 0.5

and L = 20. We refer to this branch as S6,0 since it starts out looking like a P6 state with

maxima at x = 0; like P6 it bifurcates subcritically and starts to snake, but then turns

around unexpectedly towards larger values of r.

To understand this dramatic change in the bifurcation diagram (compare Figs. 2 and

6) we need to go back to the primary bifurcation. As already mentioned, with PBC

on a domain with period 4L the primary bifurcation is a pitchfork of revolution. The

imposition of NBC at x = ±L selects from these solutions a pair of solutions. These are

related by a translation present within the PBC formulation; this translation manifests

itself as a “hidden” symmetry within the NBC case [13] and explains why the solutions

in the NBC case remain sinusoidal with well-defined wave numbers, instead of just being

odd or even under reflection in x = 0. These observations also explain why the primary

bifurcation is a pitchfork even when the solution is even under reflection in x = 0. When

β becomes nonzero this hidden symmetry is broken and the bifurcation becomes generic:

bifurcations to odd solutions (in x = 0) remain pitchforks while the even ones (such as

S6 and S5) become transcritical, hereafter indicated by solid dots. Figure 7(a) confirms

this expectation, while Fig. 7(b) shows that the loss of the hidden symmetry also affects
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odd (blue) eigenfunctions.
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Figure 6: Bifurcation diagram showing the equivalent of homoclinic snaking with Robin
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branch S6,0 is shown. Solution profiles u(x), at the labeled points, are shown in Fig. 8.
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Figure 7: (a) With Robin boundary conditions (2) the bifurcation at S6 becomes trans-

critical (solid dot): the φ = π branch S6,π now bifurcates supercritically but undergoes

a saddle-node bifurcation close to threshold before turning towards negative values of r,

while S6,0 bifurcates subcritically. Thus the breaking of the hidden reflection symmetry

results in an apparent splitting of the P6 branch. (b) The same but on a larger scale, show-

ing S6,0 (green) and S6,π (red) together with the two branches that become disconnected

from them as a result of the broken hidden symmetry. Parameters: β = 0.5, 2L = 40.

the pitchfork bifurcations at finite amplitude that are responsible for the appearance of

the pair of branches of localized states in the NBC case: the structure shown evolves

continuously from the pitchfork bifurcations on P6,0 and P6,π when β = 0 as β increases

from zero.

As the amplitude of both S6,0 and S6,π increases the solutions begin to resemble more

and more the localized states familiar with Neumann boundary conditions, and both

solution branches begin to snake. Figure 8 shows the states at successive saddle-nodes

along the φ = 0 branch. Except for the behavior near x = ±L we observe classic

homoclinic snaking, with structures added symmetrically on either side with increasing

amplitude, gradually filling the domain. However, instead of turning over towards smaller

values of r and terminating on a branch of periodic states as in Fig. 2 the branch turns

instead towards larger r and takes the place of the large amplitude periodic states. The

final panel in Fig. 8 shows the resulting large amplitude φ = 0 state. This state resembles

the defect states identified in [4] that bifurcate from the periodic states in Eckhaus or

sideband bifurcations: here the defect takes the form of a hole in an otherwise almost

periodic pattern, located at x = ±L.

The φ = π branch S6,π is shown in Fig. 9. As already mentioned this branch bifurcates

from S6 initially supercritically, but turns around at small amplitude and then undergoes

many back and forth gyrations before returning to small amplitude and terminating at

the primary bifurcation point S7. Thus once β 6= 0 the S6 solutions with minima at x = 0

transform continuously into solutions with seven peaks and maxima at x = 0 resembling

P7. The details of this transformation are shown in Fig. 10. We see that the S6,π branch

enters the snaking region at saddle-node (a) (Fig. 10(a)) with two peaks, acquires two

additional peaks at saddle-node (c) (Fig. 10(c)) and then fills the domain at saddle-node

11



-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-20 -15 -10 -5  0  5  10  15  20

(a)

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-20 -15 -10 -5  0  5  10  15  20

(b)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-20 -15 -10 -5  0  5  10  15  20

(c)

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-20 -15 -10 -5  0  5  10  15  20

(d)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-20 -15 -10 -5  0  5  10  15  20

(e)

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

-20 -15 -10 -5  0  5  10  15  20

(f)

Figure 8: Solution profiles u(x) at successive saddle-nodes along the φ = 0 branch S6,0

from small to large amplitude, as indicated in Fig. 6. The final panel shows the φ = 0

state at r = 0.12997. Parameters: β = 0.5, 2L = 40.

(e) (Fig. 10(e)), where the solution resembles the finite amplitude periodic P6 state. In

between saddle-nodes (e) and (f) the branch develops holes near x = ±L before filling

them in by saddle-node (i) where it resembles P6 again (Fig. 10(i)). Between saddle-

nodes (i) and (j) the solution again develops a hole, but this time centered on x = 0,

before undergoing a large excursion towards small amplitudes that takes it back to P6 at

saddle-node (m) (Fig. 10(m)). Beyond this point the solution develops deep holes near

both x = 0 and x = ±L, and with decreasing amplitude the central minimum becomes a

maximum and the solution evolves into a S7,0 state with seven peaks and a maximum at

x = 0 by the time it reconnects with the u = 0 state at S7.

To complete the picture we show in Fig. 11 the two-pulse isola computed for β = 0.5.

The corresponding profiles are shown in Fig. 12.

To understand how it is possible for a small amplitude localized φ = 0 state to turn

via snaking into a large amplitude defect state without undergoing any bifurcations at all,

we need to examine the fate of the secondary bifurcations creating the φ = 0, π snaking

branches when β = 0. Both bifurcations are pitchforks. This is a consequence of weak

spatial resonance [4] and not reflection symmetry, and is the case for the bifurcations

from both φ = 0 and φ = π periodic states. Thus while Fig. 2 shows only one pitchfork

bifurcation with two emerging branches there are in fact two pitchforks and four emerging

branches and likewise at the termination points. When β 6= 0 we expect these pitchforks

to become imperfect bifurcations; for given β 6= 0 this effect should be larger for the

small amplitude pitchforks and smaller for the larger amplitude pitchforks. Moreover, the

universal unfolding of the pitchfork bifurcation [18] reveals the presence of an additional

disconnected branch as well. The predicted splitting of the termination pitchfork on the
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Figure 9: The S6,π branch for β = 0.5 on a domain of length 2L = 40. The branch

connects to S7 via a complicated sequence of saddle-node bifurcations.
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Figure 10: Solution profiles u(x) at successive saddle-nodes along the S6,π branch in Fig. 9

from small to large amplitude and then back towards small amplitude along the S7 branch.

Parameters: β = 0.5, 2L = 40.
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Figure 11: The isola of two-pulse φ = π states computed for β = 0.5, 2L = 40. A similar

isola of φ = 0 states is omitted.
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Figure 12: Solution profiles u(x) at successive saddle-nodes along the two-pulse isola in

Fig. 11 when β = 0.5, 2L = 40.
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Figure 13: A blow-up of the region on the S7,0 branch (Fig. 9) showing a pair of saddle-

node bifurcations created from an imperfect bifurcation. Solution profiles (p) and (q) are

shown in Fig. 10.

φ = π branch is clearly seen in Fig. 9 and manifests itself in the two distinct hole states

created between saddle-nodes (e) and (f), and between (m) and (n) (Fig. 10). On the

other hand for β = 0.5 the break up of the small amplitude pitchfork is much more

substantial, although the saddle-node (l) (Figs. 7(b) and 9) and the small oscillation in

the S7,0 branch (enlarged in Fig. 13) are clearly related to the unfolding of a pitchfork

(which for these large values of β involves S7,0 instead of S6,π). The disconnected φ = 0

branch in Fig. 7(b) lies on an isola (not shown) that is quite similar to that in Fig. 11

and the corresponding profiles are similar to those in Fig. 12 except that they resemble

the φ = 0 seven peak state, instead of the φ = π six peak state (not shown).

Figure 9 shows that the φ = π branch originating at S6 does not extend to large am-

plitude and instead connects to S7. The reconnection between the S6,π and S7,0 branches

indicates that there is a disconnected φ = π branch that is missing from Fig. 9, a con-

clusion confirmed in Fig. 14. Figures 15 and 16 provide details of the transition from

large to small amplitude behavior along this branch. We see that this branch likewise

undergoes numerous saddle-node bifurcations within the original snaking region before

terminating on u = 0 at a subsequent primary bifurcation. During this transition the

solution changes continuously from essentially P6 at large amplitude (Fig. 16(a)) to es-

sentially P5 (Fig. 16(M)); in between we observe the development of very clear hole-like

states (Figs. 16(f) and (v)) and the gradual filling in of the hole as one proceeds down
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Figure 14: Bifurcation diagram for β = 0.5 and L = 20 showing the large amplitude φ = π

branch. This branch becomes disconnected from the smaller amplitude φ = π branch S6,π

shown in Fig. 9 near (b), but connects to a subsequent primary bifurcation at S5.

the branch (eg., Fig. 16(x)). Such states are expected as a result of the splitting of the

branches of hole-like states near the saddle-node on P6 and their reconnection with the

original P6 branch when β 6= 0.

3.4 Nonsymmetric states

The linear stability problem shows that the trivial state u = 0 loses stability to both even

and odd modes. Thus far we have discussed the nonlinear states associated with even

eigenfunctions. In this section we turn to the states associated with odd eigenfunctions.

Since Eq. (1) does not admit odd parity solutions such eigenfunctions must produce

nonsymmetric states in the nonlinear regime.

Figure 17 shows the first branch of nonsymmetric states when β = 0, L = 20. This

branch, hereafter A6, consists of spatially extended states that are almost antisymmetric

with respect to a nonzero mean (Fig. 18) and precedes the first primary bifurcation to

an even parity state (Fig. 5(a)). Spatially localized states (Fig. 19) are also present but

are confined to a stack of figure-eight isolas of which only the lowest is shown in Fig. 17.

Since the figure is computed with NBC (β = 0) the associated localized profiles can be

reflected in the boundary at x = −L or x = L without generating a nondifferentiable

state. Such states therefore solve the PBC problem, and evidently correspond to two-
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Figure 15: Detail of Fig. 14.

pulse states on a periodic domain of period 4L. On the real line the resulting replicated

state consists of a train of pulses with alternating separations d1 and d2, with d1 6= d2.

For the Swift-Hohenberg equation with PBC states of this type are well known and it is

known that such states lie on figure-eight isolas whenever d1 6= d2 [9].

When β = 0.5, L = 20 the bifurcation to the nonsymmetric states A6 in Fig. 20 also

precedes the first bifurcation to even parity states (Fig. 5(b)). The figure shows that

A6 bifurcates subcritically, enters the snaking region and starts to snake towards larger

amplitude but turns around immediately to form a figure-eight structure characteristic of

two-pulse states (Fig. 17). It then continues upwards along the snaking structure taking

in all the rung states (after all, this is a branch of nonsymmetric states) before turning

around at the top and descending again. The net effect is that the same branch follows all

parts of the snake-and-ladders structure of the pinning region. Once it reaches the bottom

it describes a new and distinct figure-eight structure and then heads once again up the

snaking structure. Apparently this process repeats a number of times, and the distinct

braids created in this manner correspond to slightly different locations of the dominant

peaks in the solution profile. The inset shows, as expected, that there are no secondary

bifurcations responsible for the creation of localized states, although there are in fact

five saddle-nodes in this region, two of which arise from the unfolding of the pitchfork

bifurcations that are present in this region with NBC. Three of the curves shown in the

inset come from the reconnection of the primary branch with distinct two-pulse isolas in

the NBC case such as the one shown in Fig. 17. Figure 21 shows the solution profiles
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Figure 16: Solution profiles u(x) at successive saddle-nodes in Fig. 14 (and Fig. 15),

starting from the large amplitude P6 state (a) and finishing at the last saddle-node (T)

before the primary bifurcation at S5.
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Figure 17: Bifurcation diagram for the case β = 0, L = 20. The pattern mode A6 (green)

is shown together with the lowest of a stack of figure-eight isolas (red). Sample solution

profiles are shown in Figs. 18 and 19.
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Figure 18: Solution profiles u(x) on the branch A6 in Fig. 17 at (i) small amplitude, (ii) the

saddle-node and (iii) large amplitude. The mean of the solution increases monotonically

with amplitude.
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Figure 19: Solution profiles u(x) at each of the saddle-nodes on the figure-eight isola

shown in Fig. 17.

at the saddle-nodes in this region; if reflected in x = L the first three of these generate

distinct two-pulse states on an approximately periodic domain of length 4L, ie., two-pulse

states with different separations between the two dominant peaks.

In Fig. 22 we show the branch A5 that bifurcates from u = 0 at a larger value of r. We

see that this branch also bifurcates subcritically, enters the snaking region, and follows

some of the rung states to large amplitude. However, this time the branch terminates at

finite amplitude on an even parity branch, the branch S5,0. Figure 23 shows the evolution

of the solution profiles, starting at small amplitude (top left panel) where the solution is

almost exactly antisymmetric and ending on the even parity branch S5,0. The figure shows

that as the amplitude increases the degree of asymmetry gradually decreases, allowing the

initially odd parity state to terminate in an even parity state. The process whereby this

happens is related to the orientation-turning states that are generated in other problems

of this type through the breaking of a reflection symmetry. In [1] such states are produced

by perturbing the symmetry O(2) of a circular domain to the symmetry Z2 × Z2 of an

elliptical domain. In the present problem the PBC problem also has O(2) symmetry, and

this symmetry is broken by the use of RBC leaving a Z2 symmetric problem.

4 Other boundary conditions

The Robin boundary conditions (2) at x = L with (4) at x = 0 were selected since they

coincide with Neumann boundary conditions when β = 0. Such solutions can therefore

be related to the solutions of the corresponding PBC problem with spatial period 4L

by examining in detail the effect of breaking the hidden symmetry that is present when

β = 0 and that is responsible for the nongeneric behavior of even states in this type of

problem. In this section we examine what happens with other boundary conditions, and

in particular with boundary conditions that are “far” from the NBC case. To this end we

choose the boundary conditions

ux = uxxx = 0 at x = 0, ux − βu = uxx = 0 at x = L, (5)
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Figure 20: Bifurcation diagram for β = 0.5 and L = 20 showing the branch A6 of

nonsymmetric states. The branch is continuous and follows all parts of the snake-and-

ladders structure of the pinning region, and does so several times. The filled circle at

large amplitude denotes the point at which continuation of the branch was stopped.

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-20 -15 -10 -5  0  5  10  15  20

(a)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-20 -15 -10 -5  0  5  10  15  20

(b)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-20 -15 -10 -5  0  5  10  15  20

(c)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-20 -15 -10 -5  0  5  10  15  20

(d)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-20 -15 -10 -5  0  5  10  15  20

(e)

Figure 21: Solution profiles u(x) at the five saddle-nodes visible (right to left) in the inset

in Fig. 20. The first three are related to distinct two-pulse states present with NBC.
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Figure 22: Bifurcation diagram for β = 0.5 and L = 20 showing the branch A5 of

nonsymmetric states until the branch terminates on the S5,0 branch at (◦). This point is

also marked on Fig. 14 for comparison. Solution profiles at each saddle-node are shown

in Fig. 23.
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Figure 23: Solution profiles u(x) at successive saddle-nodes in Fig. 22 starting near the

first bifurcation and ending at the termination of A5 on the even parity branch S5,0.
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Figure 24: Bifurcation diagrams with the boundary conditions (5) for (a) β = 0, L = 35,

(b) β = 1, L = 35 and (c) β = 1, L = 40. Solid (dashed) lines indicate φ = 0, π states,

respectively. Only even parity states are shown.

and focus on even solutions only. Figure 24 shows the bifurcation diagram when (a) β = 0,

L = 35, (b) β = 1, L = 35, and (c) β = 1, L = 40.

This type of structure persists for larger β values as well. Figure 25(a) shows the

bifurcation diagram for β = 10. Only the φ = 0 branch is shown; the φ = π branch is

shown in Fig. 25(b). Observe that, as in earlier cases, the φ = 0 branch snakes towards

large amplitude before snaking back down, and almost reaching zero amplitude, before

returning to large amplitudes and exiting the snaking region towards large r. Once again,

many of the features of this bifurcation diagram can be understood as the result of the

unfolding of the pitchfork bifurcations at the beginning and end of the snaking branches,

as well as those responsible for the rungs in the snakes-and-ladders structure of the pinning

region. Note, however, that the solutions corresponding to the rungs are now symmetric

with respect to x = 0. In contrast, the φ = π branch forms an isola: the branch is

disconnected from both the u = 0 state, and no longer extends to large amplitude. Note

that the pair of saddle-nodes where the branch might be expected to connect to a periodic

state (top left in Fig. 25(b)) is of the type expected from the breakup of a pitchfork

bifurcation [18]. Sample φ = 0 solution profiles are shown in Fig. 26; the two-pulse

profiles correspond to either end of the first rung state (in the direction of increasing

amplitude) and form when the snaking branch reconnects with a two-pulse isola. There
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Figure 25: Bifurcation diagrams with the boundary conditions (5) for β = 10 and L = 35.

(a) φ = 0, (b) φ = π (isola only).

is another φ = π branch as well. This branch bifurcates from the trivial state at the same

location as the φ = 0 branch, and does extend to large amplitude at large r (not shown).

It appears that much of the structure of the bifurcation diagrams visible at large

amplitude is due to the choice of the domain length 2L and its commensurability with

the basic wavelength λ = 2π selected by the linear operator. For example, when L = 40

this structure is absent (Fig. 24(c)).

5 Discussion and conclusions

In this paper we have examined the phenomenon of homoclinic snaking in the presence

of realistic boundary conditions. Existing studies of homoclinic snaking employ periodic

boundary conditions with a large spatial period to model problems on the real line. Pro-

vided the localized structures that are of interest do not fill the domain (i.e., provided they

do not approach to within half a wavelength of the imposed boundaries on either side)

the presence of boundaries has a small effect on the behavior of the solutions. In a recent

paper Bergeon et al [4] have examined the consequences of breaching this requirement.

This occurs close to the primary bifurcation to localized states since the corresponding

eigenfunction takes the form of a periodic wavetrain modulated on a long scale, and again

at large amplitude when the domain is filled with the structured state. In either case

snaking must terminate and Bergeon et al explore in detail the process by which this hap-

pens (see also [15]). Within the Swift-Hohenberg equation the snaking branches always

terminate on one of the branches of spatially periodic states, and do so near a saddle-node

bifurcation.

In this paper we have shown that this scenario changes fundamentally when periodic

or Neumann boundary conditions are changed to Robin boundary conditions. These

boundary conditions eliminate the large amplitude spatially periodic states, whose role

is taken by states that necessarily include defect-like structures near either boundary. In

fact there are two branches of such states, distinguished by their spatial phase φ, since
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Figure 26: Solution profiles u(x) for the boundary conditions (5) with β = 10 and L = 35

at the saddle-nodes indicated in Fig. 25(a).

the boundary conditions split the branch of periodic states satisfying Neumann boundary

conditions. In addition, the φ = 0, π snaking branches at small amplitude no longer

terminate at secondary bifurcations. Instead, one of these, typically the first one, develops

smoothly and continuously into a large amplitude branch with the corresponding spatial

phase, while the second snaking branch instead turns over towards smaller amplitude,

and reconnects with the trivial state u = 0 in a subsequent primary bifurcation, also split

by the boundary conditions. There is in addition a second large amplitude defect branch,

which may reconnect with subsequent large amplitude branches, remaining disconnected

from the trivial state. The entire scenario may be viewed as the result of a perturbation of

the secondary pitchfork bifurcations (here a consequence of hidden symmetry associated

with Neumann boundary conditions [13]) terminating the snaking branches in the NBC

case into imperfect bifurcations when the boundary conditions are perturbed to Robin

boundary conditions, together with the associated splitting of branches of periodic states.

Of course, with increasing departure from Neumann boundary conditions the details of

the required branch reconnections become more and more difficult to discern, as found in

other problems of this type [5, 1].

We have demonstrated these results here by explicit computations on the so-called

23 Swift-Hohenberg equation and showed that despite the complexity of the resulting

bifurcation diagrams much of the phenomenology of these diagrams can be understood

as the result of the splitting of various secondary bifurcations (those originating and

terminating the snaking branches as well as the pitchfork bifurcations on the snaking

branches responsible for the asymmetric states that form the rungs of the snakes-and-

ladders structure of the snaking region). In general such splitting is a consequence of

imperfect bifurcations, but if organized by the underlying snaking structure it can result

29



in a stack of isolas (as is the case for two-pulse states, where the imperfection is the

result of unequally spaced pulses), or a braided structure generated by a broken hidden

symmetry as in Fig. 20. Both possibilities are discussed in [9]; see also [25].

We mention here that snaking branches may turn into large amplitude defect states

even in the presence of periodic boundary conditions. This occurs, for example, in natural

doubly diffusive convection (Fig. 27 of [4]), where, in certain special parameter ranges, the

snaking branch does not terminate on a branch of periodic states, but instead exits the

snaking region towards larger values of the bifurcation parameter, apparently continuing

to larger and larger amplitudes. The solutions on this branch take the form of a periodic

structure with a defect that is apparently required in order to fit the periodic structure

into the imposed spatial period. In this case it is apparently “cheaper” to include a defect

in the structure than to change the wavelength of the structure throughout the domain.

In this case, however, the defect state coexists with a branch of large amplitude periodic

states.

Although we have not computed the stability properties of all the solutions reported

here we have checked that at successive saddle-nodes a single eigenvalue passes repeatedly

through zero. As a result we expect that positively sloping branches will be stable, as

established in detail in [7], and have checked this stability prediction in specific cases by

explicit eigenvalue computation and direct integration in time.

It should be emphasized that the effect of RBC is not confined to the elimination of

the periodic states and their replacement at large amplitude by the defect states which

connect continuously to the snaking branches. We have already noted the splitting of the

primary branches and the associated connections between distinct primary bifurcations.

But the RBC are also responsible for reconnections within the original snaking region that

produce branches which follow the original snaking structure up and down several times

before exiting the snaking region. This far-reaching effect of even distant boundaries

is unexpected, and indicates that substantial care is required to model correctly given

physical systems.

It is interesting to examine the behavior identified here in connection with more real-

istic systems which exhibit behavior that appears to be related. As an example we take

natural doubly diffusive convection in a two-dimensional vertical rectangular cavity with

no-slip boundary conditions on all boundaries and imposed horizontal temperature and

concentration gradients [17]. In this paper Ghorayeb and Mojtabi find a number of states

resembling those identified here for the Swift-Hohenberg equation with Robin boundary

conditions. These include localized cells in the center of the container, but also localized

cells near one boundary or at both boundaries. We believe that these states can be un-

derstood as the result of broken hidden symmetry that is present with NBC and hence

as a “perturbation” of the snaking structure that is known to be present in this system

in the presence of PBC in the vertical direction [6]. Similar structures have also been

identified in a related system with an imposed horizontal concentration gradient driven

by an imposed vertical temperature gradient [33, 32].

Binary fluid convection with negative separation ratio promises to provide another po-

tential application. This system develops a competing concentration gradient in response
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to an applied vertical destabilizing temperature gradient, and also exhibits homoclinic

snaking [2]. However, in contrast to the Swift-Hohenberg equation this system admits a

second reflection symmetry, in addition to spatial reversibility in the horizontal direction.

As a result the snaking region consists of four branches, two of which involve even parity

states and two of which involve odd parity states. Despite this important difference, when

the problem is posed on a finite domain with non-Neumann boundary conditions (no-slip

lateral boundaries) computations reveal a continuous transition from a small amplitude

state, via snaking, to a large amplitude defect state [29], much as found here for the

Swift-Hohenberg equation (Fig. 6). This is the case for both even and odd states, and we

surmise that the origin of this behavior is similar.
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