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Extremely Low Excess Noise in InAs Electron
Avalanche Photodiodes

Andrew R. J. Marshall, Chee Hing Tan, Mathew J. Steer, and John P. R. David

Abstract—Measurements of the avalanche multiplication noise
in InAs p-i-n and n-i-p diodes at room temperature demonstrate
unambiguously that the avalanche multiplication process is domi-
nated by impact ionization of electrons. This results in the excess
noise factor for electron initiated multiplication asymptotically ap-
proaching a maximum value just less than two and becoming vir-
tually gain-independent for higher gains. Measurements for pre-
dominantly hole initiated multiplication show corresponding high
excess noise factors suggesting the electron to hole ionization co-
efficient ratios are comparable to those reported for Hg

�
Cd Te

electron avalanche photodiodes.

Index Terms—Avalanche photodiodes (APDs), impact ioniza-
tion.

I. INTRODUCTION

P
REVIOUS characterization of III–V semiconductors has

shown that in general these materials are not ideally suited

to high performance avalanche photodiode (APD) applications.

An APD’s avalanche gain is accompanied by an increase in

noise, characterized by the gain-dependent excess noise factor

. Under the local model of impact ionization [1] to minimize

the ionization coefficients for electrons and holes should

be as disparate as possible. Ideally either or should be equal

to zero, such that the ionization coefficient ratio or

also becomes zero, resulting in at high gains.

Unfortunately, most III–V materials exhibit an ionization coef-

ficient ratio in the range for the field range in which

practical APDs have been demonstrated [2], [3].

Extremely low excess noise, close to the lower limit predicted

by the local model when only one carrier type undergoes im-

pact ionization, has been observed in Hg Cd Te diodes made

from both short-wave infrared and mid-wave infrared sensitive

compositions [4]. It would be useful if similar low noise be-

havior could also be found in the more widely used III–V mate-

rial system. The first indication that this might be possible came

from recent photomultiplication measurements which showed

that avalanche gain in the III–V material InAs is dominated by

electron impact ionization, with holes playing almost no part

in the avalanche process [5]. The band structure of InAs has

some similarities to that of Hg Cd Te at the compositions

for which low noise has been reported, with the first conduc-

tion band intervalley separations being two or more times the

Manuscript received January 09, 2009. First published April 10, 2009; current
version published June 10, 2009. This work was supported by the EMRS DTC.

The authors are with the Department of Electronic and Electrical En-
gineering, The University of Sheffield, Sheffield S1 3JD, U.K. (e-mail:
andy.marshall@sheffield.ac.uk; c.h.tan@sheffield.ac.uk; m.j.steer@elec.
gla.ac.uk; j.p.david@sheffield.ac.uk).

Digital Object Identifier 10.1109/LPT.2009.2019625

Fig. 1. Multiplication ���, reverse leakage current � �, and photocurrent � �
measured on a 50-�m diameter P2 diode, under top illumination during noise
measurement. Reported � ��� [5].

bandgap energy. This letter reports on a systematic study of ex-

cess noise undertaken on InAs diodes.

II. EXPERIMENTAL DETAIL AND RESULTS

InAs p-i-n and n-i-p diode structures were grown by molec-

ular beam epitaxy and processed into mesa diodes as described

in earlier work [5], [6]. Measurement results are reported for

two p-i-n diodes with intrinsic region widths of 2.0 m (P1) and

3.5 m (P2) and a n-i-p diode with a 2.0- m intrinsic region

width (N1). The reverse leakage characteristics were strongly

influenced by the fabrication process and in some cases revealed

the presence of a significant surface component; however, the

total leakage remained sufficiently low for the noise to be mea-

sured on P1, P2, and N1 diodes of 50- and 100- m diameters

and P2 diodes of 200- m diameter. An example of the leakage

current and photocurrent measured on a 50- m diameter P2

diode is shown in Fig. 1. The noise power was measured using

the custom built setup described by Lau et al. [7] capable of

employing phase sensitive detection (PSD) to differentiate both

the photocurrent from the leakage current and the photocurrent

noise from the leakage current noise. The use of PSD enabled

the measurement of multiplied photocurrent noise at room tem-

perature, removing the complication of cooling to reduce the

leakage current. This setup has been used successfully in the

measurement of excess noise in other III–V materials in the

presence of high leakage currents [8].

A primary aim of this work was to measure the excess noise in

InAs under the two extreme conditions of pure electron initiated

multiplication and pure hole initiated multiplication, and

, respectively. For large area diodes, these conditions can be

achieved using focused p-side illumination of p-i-n diodes and

n-side illumination of n-i-p diodes, respectively, as described

earlier [5]. In this work, laser wavelengths of 633 and 1150 nm
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were used to ensure absorption was, confined to the top p- and

n-type cladding layers with the shorter wavelength being re-

quired where the cladding layer was thinner. However, to main-

tain the expected transimpedance amplifier gain response from

the measurement circuit a lower limit was imposed on the ac-

ceptable dynamic resistance of the device under test, restricting

the maximum size of diode which could be measured. This in

turn made it difficult to constrain the laser spot on the mesa top,

resulting in some illumination of the mesa sidewall and base.

The minority electron diffusion length in the p-type cladding

layer of the p-i-n diodes characterized is expected to be greater

than the cladding thickness [9]. Hence, when the p-i-n diodes

were illuminated by a wavelength of light almost entirely ab-

sorbed in the p-type cladding layer, a substantial fraction of

the photogenerated electrons would have diffused to the de-

pletion region, giving the desired pure electron injection pri-

mary photocurrent. Indeed this was confirmed by the measure-

ment of unity gain external quantum efficiencies (QEs) 15%

under such conditions on large area P1 and P2 diodes, with

the spot well focused on the mesa top. During the noise mea-

surements on small area p-i-n diodes, some contamination of

the intended electron injection will have occurred from carriers

generated by light falling on the mesa sidewall and around the

base. However, in relation to the substantial electron injection

from the p-type cladding layer, the level of contamination was

not thought to be significant. This expectation is supported by

the similarity between the multiplication measured during noise

measurements on small area p-i-n diodes and the multiplica-

tion due to pure electron injection measured previously

on large area diodes [5], as shown in Fig. 1.

In contrast to these results on p-i-n diodes, when large area

n-i-p diodes were illuminated by a wavelength of light almost

entirely absorbed in the n-type cladding layer the measured

unity gain external QE was only 1%. This is thought to be due

to the photogenerated minority holes having a short diffusion

length in relation to the cladding thickness, so that only a small

fraction reached the depletion region. In relation to this low

level pure hole injection the contamination resulting from light

falling on the mesa sidewall would have been more significant

than for p-i-n diodes. Furthermore, minority electrons gener-

ated by light falling around the mesa base would have been

collected through diffusion from a much larger volume than the

corresponding holes were in p-i-n diodes. Hence a relatively

higher degree of electron contamination, of the desired hole in-

jection, was expected during the measurements on n-i-p diodes.

This is confirmed by comparing the multiplication measured

during noise measurements on small area n-i-p diodes with

the multiplication due to pure hole injection measured

previously on large area diodes [5], as shown in Fig. 2. The

higher multiplication factors measured at any given bias on

the smaller diodes are regarded as evidence of contaminated

injection, since with there must have been significant

levels of electron injection to initiate this multiplication.

The excess noise measured on InAs p-i-n diodes is shown in

Fig. 3. The results are near, or a little below, the level predicted

by the local model for . This confirms that avalanche

multiplication in InAs is dominated by electron impact ion-

ization, in the electric field range exercised, as was predicted

Fig. 2. Multiplication measured on 100-�m � � and 50-�m ��� diameter N1
diodes and photocurrent � � measured on a 100-�m diameter N1 diode, under
top illumination during noise measurement. Reported � ��� [5].

Fig. 3. Excess noise measured on P1 (inset) and P2 diodes with 50-�m ���,
100-�m � �, and 200-�m � � diameters under top illumination. � measured
on an Al In As �� �� � ��� with a 0.29-�m intrinsic width ��� and
� reported by Beck [4] for a Hg Cd Te APD � �. Reference lines from the
local model [1] with � 	 
� 
�
�� 
�
�� 
�
� 
���
��� and �.

from photomultiplication measurements [5]. Such an optimal

excess noise characteristic has previously only been reported

for Hg Cd Te APDs and Fig. 3 includes one such result [4],

also measured at room temperature. In contrast, the charac-

teristic for an Al In As APD, also shown in Fig. 3 and

broadly representative of state of the art telecommunications

APDs, continues to rise with increasing gain in common with

other reported III–V APDs.

Due to the significant electron contamination to the hole in-

jection obtained in small diameter N1 diodes, the excess noise

shown in Fig. 4 is not that due to pure hole injection, but rather

that due to device diameter-dependent levels of mixed electron

and hole injection. This is evident from the excess noise being

significantly lower for the 50- m diameter diodes than for the

100- m diameter diodes. Were the purity of the hole injection to

be improved, it would be expected that the excess noise would

increase towards the local model prediction for in com-

plement to the characteristic for electron initiated mul-

tiplication. However, with pure hole injection unachievable, the

characteristics measured on the p-i-n diodes are most

clearly corroborated by measurements on N1 diodes when the

laser spot was positioned on the mesa sidewall and at its base,
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Fig. 4. Excess noise measured on N1 diodes with 50-�m ��� and 100-�m � �
diameters under top illumination and on 50-�m diameter diodes for illumination
on the mesa sidewall � � and on the substrate next to it � �. Reference lines from
the local model [1] with � � �� ���� �� �� �� ��� and ��.

the excess noise results for which are also shown in Fig. 4. Under

these conditions the photocurrent injected into the depletion re-

gion contained a high proportion of electrons and the excess

noise was again very low.

III. DISCUSSION

It is evident that the excess noise results for InAs p-i-n diodes

depend to a degree on the diameter of the measured diode with

smaller diodes showing higher noise. This suggests that truly

pure electron injection was not achieved on all diodes. Since the

noise power is proportional to the square of the gain, the effects

of low level contamination to the injected photocurrent are more

pronounced in the excess noise than the photomultiplication. It

follows that the excess noise , to be expected with truly pure

electron injection, is equal to or less than that measured on the

largest diodes. In this case, it is necessary to offer an explanation

as to how for InAs APDs can fall below the lower boundary

condition for excess noise in the local model, usually considered

to be approximately accurate for APDs like P2 with thick mul-

tiplication regions. It has been shown [10] that where and

have similar magnitudes, the local model is reasonable because

the deadspace , not taken into account by the local model and

equal to the distance traveled by a carrier while it obtains the

threshold energy required before it can potentially undergo im-

pact ionization, is relatively small compared with the mean ion-

ization path length . Since there is less than one ionization

event on average per carrier transit of the multiplication region

in such cases below breakdown, the deadspace introduces little

determinism into the ionization probability distribution within

the multiplication width and hence has little effect on the ex-

cess noise. However, as approaches zero, the injected carriers

of the ionizing type must, for gains greater than two, traverse

a deadspace and undergo impact ionization multiple times in a

single transit of the multiplication region. In this case, must

reduce to a fraction of the total multiplication region width and

it is proposed that can become sufficiently significant with re-

spect to it in order to account for the sublocal model noise mea-

sured. An indication of the to ratio required to reduce the

excess noise when can be found in the work of Saleh et

al. [11], who showed that asymptotically approaches 1.7 if

.
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