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Abstract. Model-Driven Software Product Lines (MD-SPL) are config-
ured by using configuration models and Problem Space metamodels that
capture product line scope. Products are derived by means of successive
model transformations, starting from problem space models and based
on the configuration models. Fine-variations of MD-SPLs correspond to
characteristics that affect particular elements of models involved in the
model transformations. In this paper, we present an approach to cre-
ate MD-SPL including fine-variations. We configure products creating
fine-feature configurations. Then, based on such configurations, we cre-
ate MD-SPLs using principles of Aspects Oriented Development. Thus,
our approach allows to derive products including fine-grained details of
configuration.

Key words: Model Driven Development, Software Product Lines, Vari-
ability Management, Product Derivation, Fine-Grained Variability.

1 Introduction

Aspect-oriented programing (AOP) [1–3] improves software development by pro-
viding constructs for the encapsulation of crosscutting concerns. Aspects encap-
sulate crosscutting concerns and are subsequently composed with other soft-
ware artifacts using composition mechanisms. A join point model captures the
set of possible composition points for a specific aspect. Aspects are automati-
cally composed with the rest of the system by an aspect weaver. Asymmetric
AOP approaches such as AspectJ [1] provide constructs for the encapsulation of
crosscutting concerns that are woven to some (non-AOP) base system. A recent
work [4, 5] has shown that AOP is a valuable complement for Model Driven De-
velopment (MDD) [6] regarding the automatic generation of software products.
First, model transformation programs can be modularly adapted [5, 7], based on
approaches as the one introduced by AspectJ. Second, Aspect Oriented Model-
ing (AOM) techniques [8–11] provide support to implement variability at model
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level. This means that different models can be adapted applying a weaving that
crosscuts their concerns.

MDD has proved benefits regarding the derivation of Software Prod-
uct Lines (SPLs). In Model Driven Software Product Line approaches (MD-
SPL) [12–14], product families are derived by means of chains of model trans-
formations, starting from an initial domain model and based on configuration
models, until to get a final solution model. Current Aspect Oriented (AO-)MD-
SPL approaches, as those introduced by Voelter et al. [7], deal with the problem
of creating products including variations that affect the whole product. We call
these, coarse-grained variations. For example, a coarse-grained variation is a
property as internationalization (English or German), or in a SPL of Smart
Home systems, a coarse-grained variation expresses that a house has automatic
lights. This implies that for a particular Smart Home system, “all” the instances
of a light component have functionality of automatic lights.

In our work, it is important to distinguish coarse-grained variations from fine-
grained variations. Fine-grained variations are characteristics that affect partic-
ular elements of models involved in model transformations. For example, for a
particular Smart Home system, it is possible to select the instances of a light
component that have functionality of automatic lights. In addition, it is possible
that such instances manage different attributes to configure the intensity of the
lights when they are turned on. Thus, it is possible to have an automatic light
in the living room that is turned on at 19h00, and another automatic light in
the main room that is turned on in the presence of an inhabitant. The expres-
sion of fine-grained variations and the use of it to subsequently derive products
are important activities in the SPLs creation process. This is because customer
requirements can be very specific, especially in the domain of software intensive
systems where, (i) each component instance can manage variable functionality,
and (ii) variability related to each component instance can imply expenses for
customers.

In this paper, we improve the AO-MD-SPL approach presented by Voelter et
al. [7], facilitating the creation of products including fine-grained variations. We
express fine-grained variations and define its scope by using constraint models;
and, we configure products including fine-grained variations by using fine-feature
configurations. We also include a solution for the problem of deriving products
based on fine-grained details of configuration. For this, we adapt the execution
of model transformations applying aspects that include transformation logic to
generate low-level configuration details. The aspects we create use a particular
type of transformation rules that we have called fine-transformation rules. For
instance, we adapt the execution of a model transformation that transforms
elements conforming to a metaconcept Room, when some of such elements is
affected by a fine-grained variation. The fine-grained variation can be that a
Room element has to be transformed including an environmental control system
as air conditioning.

We have implemented our approach using and extending the openArchitec-
tureWare (oAW) [15] toolkit. We have chosen oAW, because this is a complete
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MDD framework integrated into Eclipse that makes possible the reading and in-
stantiating of models, checking them for constraint violations, and transforming
them into other models or source code. Furthermore, oAW also provides sup-
port for AOM and AOSD in the context of MDD. Finally, the framework has
been used successfully to create SPLs [5], and there is an active community of
developers using and improving it [15].

The remainder of this paper is organized as follows. Section 2 introduces
a practical example we use to illustrate our approach. Section 3 presents our
proposal for expressing fine-grained variations and configure products including
it. Section 4 explains our solution to create MD-SPLs including fine-grained
variations. Section 5 presents conclusions.

2 Practical Example

In the remaining of this paper, we will use as example the case of a Smart
Home Product Line which is part of the AMPLE Project [16]. The description
of a house includes structural elements as floors, rooms, doors, windows and
stairs. Houses also include electrical and electronic devices such as automatic
lights, security devices as alarms, among others. These devices, and therefore
their behavior, are optional features that product designers have to select and
bind to other elements that already exist in the house. For instance, to derive a
particular Smart Home system, the automatic lights can be bound to all rooms
in the house (coarse-grained variation) and the security alarm system can be
bound only to the main door entrance (fine-grained variation). Figure 1 presents
part of a domain model of a specific Smart Home system used as example.

Fig. 1. Domain Model of a Smart Home.

The model is represented by a tree structure
created using EMF [17]. This structure il-
lustrates UML-type composition, for exam-
ple, between the house and its floors. In
the figure there are two floors, firstFloor
and secondFloor. The firstFloor has
a livingRoom and a livingRoomWindow;
the secondFloor has a mainRoom and a
mainRoomWindow. This model conforms to
a domain metamodel that includes con-
cepts of smart homes like <<Building>>,

<<Floor>>, <<Room>> and <<Window>>.

3 Fine-Grained Variability

We distinguish between coarse-grained variations and fine-grained variations.
The sentence all the doors have fingerprint authentication system, is an exam-
ple of coarse-grained variation, and one of fine-grained variation is, only the
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main door has a fingerprint authentication system. To express and manage fine-
variations, we introduce constraint models. To configure products including fine-
variations, we introduce fine-feature configurations. We based the creation of
constraint models and fine-feature configurations on feature modeling. In addi-
tion, we use feature modeling to express coarse-grained variations.

3.1 Feature Modeling

The basic mechanism we use to classify and describe configurable common and
variable characteristics in the scope of a product line is feature models [18].
Specifically, we use the Czarnecki et al. [13] feature metamodel. In this feature
metamodel, a GroupFeature expresses a choice over the set of GroupedFeatures
in the group and its cardinality defines the restriction on the number of
choices. For example, the cardinality [1..2][4..5] for a GroupFeature means
that between one and two, and between four and five of its GroupedFeature can
be chosen. A GroupedFeature does not have cardinality. A SolitaryFeature
is a feature that is not grouped in a FeatureGroup. The cardinality of
SolitaryFeature specifies the maximum number of times this feature can ap-
pear in the final feature configuration. Figure 2 presents a feature model includ-
ing features of the SPL of Smart Home systems.

Fig. 2. Smart Home Feature Model.

Two SolitaryFeatures,
tempManager and security, are at
the root level. The tempManager

feature has the GroupFeature

environmentalControl, which
has the GroupedFeature

airConditioning and
automaticWindow. The security

feature has the SolitaryFeature

lightSimulation.

3.2 Constraint Models

We call a binding, the materialization of a specific (fine-grained variation) choice
for a product, expressed between elements of models and features. For example
to express that, the firstFloor has a central airConditioning that has to be
turned on when the average temperature of the floor reaches 22◦C, and turned
off when the temperature reaches 18◦C.

Constraint models allow product line architects to restrict the bindings among
elements and features that a product designer can establish. For example, to ex-
press that, maximum three elements that conform to the metaconcept Window
can be bound to the feature automaticWindow.
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A constraint o = [M,F, P ] is a tuple composed by a metaconcept M ,
a feature F , and a property P . A constraint o expresses the fact that model
elements conforming to the metaconcept M can be bound to the feature F .
We use the property P to define additional constraints that a model ele-
ment has to satisfy to be bound to a feature. For example, the constraint
ConstraintAutoWindow=(Window, automaticWindow, cardinality-Temperature)
describes that, during the configuration of a specific Smart Home system,
a product designer can bind elements conform to Window, for example the
mainRoomWindow, to the automaticWindow feature. The property cardinality-
Temperature specifies that, the number of elements that can be bound is mini-
mum zero (0) and maximum three (3); and, bindings have to define the minimum
temperature (minTemp>0◦C) and maximum temperature (minTemp<30◦C),
to close and open respectively the automatic window.

3.3 Fine-Feature Configurations

Fine-feature configurations allow product designers to establish bindings among
elements and features. Thus, while a constraint is expressed between meta-
concepts and features, a binding is expressed between model elements and fea-
tures. A binding i = (m, F, R) is a tuple composed by a model element m, a
feature F , and a logical expression R used to add semantic to the binding.

Figure 3 presents a fine-feature configuration with two bindings, Binding1=
(firstFloor, airConditioning, {}), and Binding2= (mainRoomWindow,
automaticWindow, R), where R = {maxTemp = 25 and minTemp = 15}.

Fig. 3. Fine-Feature Configuration.

The Binding2 expresses that
the mainRoomWindow has an
automaticWindow that has to
be opened when the temper-
ature of the room (mainRoom)
reaches the maximum of 25◦C,
and closed when the temper-
ature reaches the minimum
of 15◦C. To create constraint
models and fine-feature config-
urations we have extended the
Czarnecki et al. feature meta-
model.

3.4 Bindings Vs. Constraints

We say that a binding i = [m, F, R] fits a constraint o = [M,F, P ] when m con-

forms to M . We note this relationship i
f→ o. Therefore, since mainRoomWindow



6 Arboleda, H., Casallas, R., Royer, J-C.

conforms to Window, then Binding2
f→ConstraintAutoWindow. We automati-

cally validate fine-feature configurations against constraint models. This ensures
that each binding i fits a constraint o, and satisfy the respective property P .
Thus, fine-feature configurations are valid configurations inside the scope of the
product line, representing products that include fine-grained variations.

4 Deriving Products

We configure products using feature models and fine-feature configurations. This
allows us to express coarse- and fine-grained variations respectively. During the
activity of product derivation, we execute successive model transformations,
starting from domain models, until we derive particular products. We call a
workflow the successive model transformations we execute. We call model trans-
formations, programs that transform source models into target models by using
sequences of transformation rules.

In our approach, we identify two types of transformation rules. We call
common-transformation rules, the rules we use to generate the common charac-
teristics of products; and, we call fine-transformation rules, the rules we use to
generate the fine-grained variations of products. Thus, to generate a base product
without including fine-grained variations, we execute a workflow including model
transformations that use sequences of common-transformation rules. To generate
a product including fine-grained variations, we adapt common-transformation
rules in model transformations. Adaptations allow us to derive products includ-
ing fine-grained variations. For instance, we can conditionally avoid the execution
of a common-transformation rule, or to execute a fine-transformation rule after
or before a common-transformation rule is executed.

A recent work [5, 7] has shown that model transformation programs can be
modularly adapted based on AOP principles as introduced by AspectJ [1]. Using
the same principles, we adapt model transformations by applying aspects to
model transformations. An aspect specifies the common-transformation rules to
intercept (pointcuts), and the fine-transformation rules to execute (advices).

We use transformation interceptors to intercept model transformations and
apply aspects to common-transformation rules. We make conditional the execu-
tion of transformation interceptors by using flow conditioners. A flow conditioner
determines when a transformation interceptor has to be executed, according to
the current configuration (fine-feature configuration) of a product.

Figure 4 presents a workflow example (SmartHomeWF) that makes possible
the derivation of Smart Home Systems based on a fine-feature configuration
(Fine-FeatureModel).

The flow conditioner (Conditioner) checks if exist bindings in the
Fine-FeatureModel that fit a specific constraint. If any, the transformation in-
terceptor (Interceptor) is executed. Interceptor intercepts the model trans-
formation WindowsModelTransf, which transforms Window elements, and exe-
cute the aspect AutoWindowAspect. The aspect specifies the pointcut, in this
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case the common-transformation rule Gen-TransRule-2, and the advice, in this
case the fine-transformation rule F-AutoWindow.

Fig. 4. Workflow Example.

4.1 openArchitectureWare

To implement our approach, we have used and extended the openArchitecture-
Ware toolkit (oAW). oAW is a MDD framework integrated into Eclipse. oAW
integrates facilities not only to transform models-to-models, but also to trans-
form models-to-text (source code). At the core of oAW, there is a workflow engine
allowing the definition of transformation workflows by sequencing diverse work-
flow components. oAW has some pre-built workflow components that facilitate
the reading and instantiation of models, checking them for constraint violations,
and transforming them into other models or source code. Transformation and
generation workflows are built by using XML files that describe the steps needed
to be executed in a generator run. Each of these steps is specified as a workflow
component.

In oAW, model-to-model transformations are implemented using a language
called Xtend. It is a textual functional language for querying and navigating
existing models as well as building new models.

oAW provides support for AOSD. There is a workflow component that facil-
itates the definition of transformation interceptors. This is called the transfor-
mationAspect component. Furthermore, Xtend includes support for describing
aspects that use around advices on transformation rules.

Listing 1 shows a workflow example. First, an EMF model (domainModel.xmi)
is read. A workflow slot source is used to send the domainModel to the trans-
formation component. Next, the model is transformed by invoking a model
transformation (line 9) that starts with the execution of the transformation rule
createSimpleWindows. The transformed model is available for further process-
ing in the target slot.
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1<workflow>
<component id=‘xmiParser ’

3 c l a s s =‘org . openarch i tec tureware . emf . XmiReader ’>
<modelFi le va lue=‘domainModel . xmi ’/>

5 <outputS lot value=‘ source ’ />
</component>

7

<trans form id=‘XtendComponent . model2model ’>
9 <invoke value=‘createSimpleWindows (\${ source }) ’ />

<outputS lot value=‘ t a r g e t ’/>
11 </transform>

</workflow>

Listing 1. oAW Workflow Example

4.2 Loading Fine-Feature Configurations

To create a SPL including fine-grained variations, we create a general constraint
model. We configure particular products including fine-grained variations cre-
ating fine-feature configurations. Using oAW, we create a workflow with sched-
uled workflow components that execute model transformations; and, we create
common-transformation rules using Xtend.

Since we apply advices to common-transformation rules only in the case we
find bindings that fit specific constraints, we need to query the fine-feature
configuration at any moment of the oAW workflow execution. To perform this,
we have created an oAW component that makes possible to load a constraint
model and a fine-feature configuration into the execution context of an oAW
workflow. Thus, a constraint model and a fine-feature model have to be available
to be queried during the execution of the workflow. We call this component, the
fine-configuration loader component.

4.3 Intercepting Workflows Execution

During the definition of oAW workflows, we use the oAW transformationAspect
component to define transformation interceptors. As we introduced above, we
make conditional the execution of transformation interceptors using flow condi-
tioners. A flow conditioner indicates when a transformation interceptor has to
be executed, according to the current fine-feature configuration loaded in the
context of the oAW workflow execution.

We have created an oAW component to define flow conditioners. We call this,
the fine-feature component. This component allows us to query a loaded fine-
feature configuration to know if there are bindings that imply the adaptation of
particular model transformations. For example, assume that we have a binding
i such as, i

f→ConstraintAutoWindow. In this case, a model transformation
transforming elements that conform to Window must be intercepted. After the
interception is done, the model transformation can be adapted to transform
the elements involved in such bindings (elements that conform to Window) into
automaticWindows.
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Listing 2 shows a workflow example using the fine-feature component. The
component queries a loaded fine-feature configuration searching bindings i =
(m, F, A) such that, m conforms to the Window metaconcept (line 4) and F is the
feature automaticWindow (line 5). If any, the (oAW component) transformation
interceptor transformationAspect (line 6) is executed. This indicates that the
model transformation XtendComponent.model2model has to be intercepted (line
7), and the aspect extensionAdvice (line 8) has to be executed.
<workflow>

2 <component id=‘ f i n eFea tu r e ’
c l a s s =‘org .oAW. f i n eVa r i a t i on . FineFeature ’>

4 <isBoundAny value=‘Window ’/>
<toFeature value=‘automaticWindow ’ />

6 <t rans format ionAspect adviceTarget=
‘XtendComponent . model2model ’>

8 <extens ionAdvice value=‘ extens ionAdvice ’ />
</ trans format ionAspect>

10 </component>

12 <trans form id=‘XtendComponent . model2model ’>
. . .

14 </transform>
</workflow>

Listing 2. Fine-Feature Component Example.

4.4 Using Fine-Transformation Rules

To create products including fine-variations, we adapt the execution of common-
transformation rules by using aspects. We create aspects taking advantage of the
facilities included in the (oAW) Xtend language. In particular, the pointcuts we
define match execution points of common-transformation rules, and the advices
we apply are fine-transformation rules.

Since Xtend facilitates the definition of around advices, once a common-
transformation rule is intercepted, we can decide either to avoid its execution,
or to execute it before or after our fine-transformation rule.

A fine-transformation rule transforms models to include fine-grained vari-
ations. This rules query fine-feature configurations to know the specific ele-
ments of a model, involved in bindings, that have to be transformed to in-
clude fine-grained variations. For example, assume the case where a Binding2 =
(mainWindow, automaticWindow,{}) fits the ConstraintAutoWindow (see Fig-
ure 3). A fine-transformation rule queries the fine-feature configuration and iden-
tifies the mainWindow element. Then, the rule transforms the mainWindow into
an automaticWindow.

Listing 3 presents an example of an Xtend aspect and a fine-transformation
rule. In the aspect, the common-transformation rule createSimpleWindows() is
intercepted (line 1) and the fine-transformation rule fineRule() is executed (line
2). Note that in this example, the common-transformation is avoided. Then,
fineRule() executes a function fit(String), which returns the model elements
involved in bindings that fit the ConstraintAutoWindow (line 5). Finally, each
of such elements is transformed into elements of the target model representing
automaticWindows (line 6).
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1 around createSimpleWindows ( ) :
f i n eRu l e ( f , r e s ) ;

3

private f i n eRu l e ( ) :
5 l e t windows = f i t ( ‘ ConstraintAutoWindow ’ ) ) :

windows . createAutomaticWindow ;

Listing 3. Example of Xtend Aspect and Fine-Transformation Rule.

5 Conclusions

In this paper, we introduced an approach to define fine-grained variations of SPLs
while ensuring consistency between variation points using an aspect- model-
driven approach. Our proposal is based on feature modeling, meta-modeling
and AOP principles. We have used Domain Specific Modeling to address the
problem of expressing SPL variability. Thus, we allow the easy configuration of
products done by product designers who are experts in specific domains.

We have expressed fine-variations by using fine-feature configurations, and we
have constrained such variations creating constraint models. Thus, we achieved
to express fine-grained details of product configurations, included in a well de-
fined scope of a SPL.

In SPL engineering, problem space focuses on defining what problem the
family of applications, or an individual application in the family, will address.
The solution space focuses on producing the software components to solve that
problem. Our approach narrows the gap between the problem and the solu-
tion space deriving products by means of automatic model transformations.
We derived products that include fine-grained variation crosscutting common-
transformation rules with fine-transformation rules. For this, we have used AOP
applied in the context of model transformations to derive products where vari-
ability has been bound to specific model elements.
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