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Angel Núñez and Jacques Noyé
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Abstract. Context-aware applications adapt their behavior depending
on changes in their environment context. Programming such applications
in a modular way requires to modularize the global context into more
specific contexts and attach specific behavior to these contexts. This is
reminiscent of aspects and has led to the notion of context-aware aspects.
This paper revisits this notion of context-aware aspects in the light of
previous work on concurrent event-based aspect-oriented programming
(CEAOP). It shows how CEAOP can be extended in a seamless way in
order to define a model for the coordination of concurrent adaptation
rules with explicit contexts. This makes it possible to reason about the
compositions of such rules. The model is concretized into a prototypical
modeling language.

1 Introduction

A context-aware application is an application that is able to adapt its behavior
in order to best meet its users’ need. It does so by taking into account context
information, i.e., any piece of information relevant to the interaction between a
user and an application [1]. This typically includes information on the physical
environment (e.g., noise level, time of day, location, computer resources) as well
as the social environment of the user (e.g., nearby people, previous interactions,
objectives, mood). The versatility of this notion of context has lead to a focus on
context modelling and structuring [2, 3] against the dynamic aspects of context
change.

Some (reactive) context-aware applications [4–8] adapt their behavior us-
ing Event-Condition-Action (ECA) rules (first used in the field of reactive
databases [9]), also referred to as adaptation rules. An ECA rule defines an
action to be performed as a reaction to some event under a certain condition.
In context-aware applications, the event part refers to context changes, the con-
dition part to the current context and the action part to an adaptive behavior.
In spite of the fact that the necessity of coordinating adaptation rules was early
proposed (coordinated adaptation [5]), not much work has been done in this
regard. As this paper shows, uncoordinated adaptation rules may lead to an
inconsistent application state.
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Let us illustrate this point with an example (inspired by an example used in
the presentation of Fact Spaces [10]). Suppose Bob has a laptop that is able to
control the house devices in terms of his location in the house. In the living room
there is a video projector and speakers. Both devices support wireless connection
to the laptop. Bob has programmed his laptop such that, when he is in the living
room, the laptop connects to the video projector and the speakers, and opens a
video player to play his favorite music clips in the living room.

Bob has however noted an undesirable behavior. Sometimes he can watch
the clips in the video projector but the corresponding sound is not played in the
speakers. Instead, he hears the music of his roommate Alice, who has a similar
laptop. This is because Alice has programmed her laptop to listen to music in
the living room, which only requires an audio connection. So, when Bob arrives
after her, she has already a connection to the speakers. To solve this, Bob has
reprogrammed his laptop. The context in which the clips have to be played is
when he is in the living room and he has access to both the projector and the
speakers. Now, when Alice and Bob are in the living room one can listen to music
if Alice has arrived first, otherwise one can watch and listen to music clips.

Last week Alice has changed her preferences. Now she has reprogrammed
her laptop to also play music clips in the living room (in the same way as Bob).
Since then, a problem sometimes arises when Alice and Bob arrive at the same
time in the room: nobody can see their clips. The reason is that sometimes
Alice’s laptop gains access to the speakers, whereas Bob’s laptop gains access
to the video projector. Since each laptop requires access to both resources in
order to play the clips, no clip is played. We can see this situation as a kind of
(context-aware) deadlock.

The behaviors programmed by Bob and Alice can be seen as adaptation rules
that adapt the video player and the resources to the context of a presence of Bob
and Alice in the living room. This is an example of uncoordinated adaptation
leading to an inconsistent state in the application. We propose a model for the
coordination of concurrent adaptation rules. The model is based on a model
of concurrent aspects, CEAOP [11], and is provided in the form of a language
for modeling the adaptation of applications to context changes. The language
extends Finite State Processes (FSP) [12] proposed by Kramer et al., which
is a simple algebraic notation to describe process models. In our language, an
application written in plain FSP syntax is enhanced with explicit contexts and
adaptation rules. The enhanced application is translated into pure FSP and
checked against the LTSA tool [12] to detect concurrency problems.

This paper is structured as follows. Section 2 briefly describes FSP and shows
how our running example is modeled in FSP. Section 3 presents our language and
at the same time describes how the running example can be enhanced with ex-
plicit contexts and adaptation rules. Section 4 describes the model of concurrent
adaptation rules. Section 5 discusses related work. Finally, Sect. 6 concludes.
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2 Overview of FSP

2.1 Syntax and Informal Semantics

A Labeled Transition System (LTS) is a form of state machine description, such
that its transitions are labeled with action names. The left of Fig. 1 models, for
instance, the behavior of a person that enters and leaves a room. The action
enter causes a transition from state(0) to state(1), and the action leave causes
a transition from state(1) to state(0).

Person = ( enter -> Inside ),

Inside = ( leave -> Person ).

Person2 = ( enter -> leave -> Person2 ).

Fig. 1. Light switch state machine.

Finite State Processes (FSP) is a simple algebraic notation to describe pro-
cess models. Each FSP description has a corresponding state machine (LTS)
description. Figure 2 shows a simplified version of the FSP syntax (the full syn-
tax can be found in [12]). This syntax definition, as well as the other definitions
shown in this paper, are based on the syntax definition formalism SDF [13]
(close to EBNF) and its implementation with scannerless generalized-LR pars-
ing (SGLR) [14, 15]. An SDF production s1...sn -> s0 defines that an instance
of non-terminal s0 can be produced by concatenating elements from symbols
s1...sn, in that order. SDF provides notation for optional (?) and iterated (*,+)
non-terminals. The notation {s lit}+ represents a list of s separated by lit.

ProcId = ProcBody . -> ProcDef
Proc -> ProcBody
Proc , { LocalProcDef , }+ -> ProcBody
ProcId = LocalProc -> LocalProcDef
( { Branch | }+ ) -> Proc
{ ActLabel -> }+ -> ProcId -> Branch
Label -> ActLabel

Fig. 2. FSP syntax definition.

The definition of a finite state process (ProcDef) associates an identifier (Pro-
cId) to a body (ProcBody). The body consists of a process expression (Proc) and
an optional list of local process definitions (LocalProcDef). A process expression
is a choice between one or more branches separated by the choice operator |. A
branch (Branch) is a sequence of action labels separated by the sequence opera-
tor ->, and terminated by a process identifier. Processes defined in the body are
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referenced by their identifiers, whose scope is the definition of the finite state
process. The non-terminal ActLabel is intentionally introduced for further use.

An FSP starts behaving as its process expression. It performs a sequence of
actions until a reference to another process (or the same process) is found. Then,
the FSP continues behaving as the referenced process. As an example, the code
on the right of Fig. 1 illustrates two equivalent FSPs for the person’s behavior.
Person performs the action enter and continues behaving as the process Inside.
Then, it performs the action leave and comes back to the initial state. Person2
is a more compact notation for the same behavior.

Parallel processes can be built by composing sequential or parallel processes
using the operator ||. Parallel composition corresponds to the synchronized
product of the corresponding automata. Shared actions constrain parallel com-
position so that an action shared by a set of processes is performed at the same
time by all the processes of the set. Relabeling and hiding operations can be
used to define which actions are actually shared at composition time. FSP is
used to model applications as a set of processes together with their interactions
through shared actions.

2.2 Modeling the Motivation Example using FSP

Let us illustrate FSP by modeling the behavior of our running example,
without adaptation rules. Bob and Alice enter and leave the living room
and both an audio and a video resources are ready to accept connections.
Figure 3 shows this model. The basic behavior of a user is modeled by
the process Person of the previous section. The activity of Alice is mod-
eled by the process alice:Person, an “instance” of the process Person,
whose actions are prefixed by alice. Analogously, the activity of Bob is
modeled by the process bob:Person. The process Resource models a re-
source, which can be acquired by a user and afterward released. The video
resource is modeled by the process {alice.video,bob.video}::Resource,
an instance of the process Resource, whose transitions are duplicated and
each duplicate is prefixed by alice.video and bob.video, respectively.
This means that there are two distinct actions (alice.video.acquire and
bob.video.acquire) to obtain the video resource and similarly two actions
to free it (alice.video.release and bob.video.release). Analogously the
process {alice.audio,bob.audio}::Resource models the audio resource. The
access to each resource is mutually exclusive. Finally, the process Application
models the application by composing all the processes using the composition
operator ||.

3 The Language

This section presents our language for modeling the adaptation of applications
to context changes. The language extends FSP with adaptation rules, contexts,
and context rules. An adaptation rule is used to adapt a base application by
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Resource = ( acquire -> release -> Resource ).

||Application = ( alice:Person || bob:Person

|| {alice.video, bob.video}::Resource

|| {alice.audio, bob.audio}::Resource ).

Fig. 3. Model of the application in FSP.

triggering reactions to the occurrence of particular base actions. In our example,
an adaptation rule can trigger playing clips as a reaction to the entrance of a
user in the living room and can stop playing clips as a reaction to the user’s
exit. A context is used to abstract a situation, e.g. the presence of a user in the
living room. A context rule improves adaptation rules by attaching behavior to
abstract contexts rather than to concrete actions. Once defined, context rules
can be instantiated with respect to concrete contexts. In our example, a context
rule can attach the behavior of playing clips to an abstract context denoting a
situation when clips should be played. By instantiating the context rule, it is
possible to associate this situation to the presence of a user in the living room.
Decomposing adaptation rules into contexts and context rules makes it easier
to capture context-awareness by making the notion of context explicit. It also
improves modularity and reuse.

The overall language is built as a combination of languages, namely FSP,
adaptation rules, contexts, and context rules. Thanks to the use of SDF, we can
easily combine the FSP syntax definition presented in Sect. 2 with the other
languages. We use grammar mixins, i.e. syntax definitions parameterized with
the context in which they are used. We explain this notion in the remainder of
this section as we present the different parts of the language.

3.1 Adaptation Rules

An adaptation rule is used to adapt an application. The application that is the
subject of this adaptation is denoted as the base application. Furthermore, we
use the term “base” as an adjective to denote an entity that belongs to the base
application, e.g. base action.

Let us call events the base actions. An adaptation rule in our language can
be seen as a process that observes events and can optionally react by introducing
actions, called reactions, where observing an event means synchronizing on it.
The definition of an adaptation rule only talks about the events of interest in
each state. A complete process model of the rule, which defines what happens
for each event in each state, is generated by a compiler, which translates our
language to FSP. In particular, new transitions, that we call waiting loops, are
created in each state for each (shared) label not explicitly taken care of. These
transitions simply loop back to their source state.

Figure 4 shows the syntax of an adaptation rule, which is very similar to
the FSP syntax. We use grammar mixins in order to reuse the FSP syntax. An
adaptation rule is defined as an identifier and a body. The body has the same
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syntax as an FSP body (mixin ProcBody[[RuleCtx]]), but the mixin parameter
is propagated within ProcBody and makes it possible to define new productions,
here for ActLabel, which may now, in the context of an adaptation rule, include
a reaction, distinguished through the operator =>. The prefix + is used to easily
recognize adaptation rules.

+ ProcId = ProcBody[[RuleCtx]] . -> RuleDef
Label => Reaction -> ActLabel[[RuleCtx]]
{ Label ; }+ -> Reaction

+PlayRule = ( enter -> Inside),

Inside = ( video.acquire -> Video | audio.acquire -> Audio

| leave -> PlayRule ),

Video = ( audio.acquire => play -> Played | leave -> PlayRule ),

Audio = ( video.acquire => play -> Played | leave -> PlayRule ),

Played = ( leave => stop -> PlayRule ).

Fig. 4. Syntax of an adaptation rule (at the top) and example of an adaptation rule
that triggers the actions that plays and stops clips (at the bottom).

As an example, the process PlayRule at the bottom of Fig. 4 illustrates
an adaptation rule that plays the clips in the living room. Note the use of the
operator => to indicate the reactions play and stop. This rule can be afterward
instantiated for each user using prefixing, e.g. alice:PlayRule corresponds to
the adaptation rule that plays the clips for Alice.

Adaptation rules are expressive enough to observe context changes and re-
act. However, without an independent notion of context, contexts are implicitely
embedded in the adaptation rules to the detriment of modularity and easy rea-
soning.

3.2 Context

Context Modeling A fundamental part of a context-aware application is con-
text modeling. Due to its versatility, the notion of context can be represented
in different ways like key-value models, logic-based models and ontology-based
models [16]. The choice of a specific model depends on the required level of
abstraction. The exact GPS position of a person might not be of value for an
application but the name of the room the person is in, may be [3]. We aim to
abstract the notion of context as much as possible in order to facilitate the
definition of adaptation rules and the verification of the adapted systems.

A context represents an environmental state. Adaptation rules adapt an ap-
plication with respect to such a state. Usually, this adaptation is required as
soon as the context changes, which means that adaptation rules are triggered as
soon as the change is detected. The application detects context changes through
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computations such as the evaluation of a value in a key-value model, or the de-
tection of a new fact in a logic-based model. We consider these computations
as context-switch events and we model a context using them. In addition, we
assume that these events can be extracted from the application model. For ex-
ample, this is when alice.enter occurs that the system can detect that Alice
is in the living room. In this setting, we model a context as the tuple (context,
in, out, context provider), where context is the name given to the context, in and
out are context-switch events, in refers to the event making the system detect
that it is in context, out refers to the event making the system detect that it
is not in context anymore, and context provider is a process that defines these
events. In the remainder, it will be said that a context is active in all the states
following the in action and preceding the out action, otherwise it will be said to
be inactive.

Context Providers A context is defined in a context provider, which has the
same name as the context. A context provider is a process that observes events
and indicates what are the context-switch ones. A context provider can be ei-
ther primitive or composite. A primitive context provider observes events and
annotates, with the suffixes :in and :out, the in and out actions, respectively.

Figure 5 shows the syntax of a primitive context provider. A primitive context
provider is defined as an identifier and a body with the same syntax as an FSP.
Furthermore, an action label in the context of a primitive context provider,
can be a label followed by the suffix :in or :out. Figure 5 also illustrates a
primitive context provider, namely LivingRoom, which defines the context of
being in the living room. This context observes the base action enter and the
sequence enter -> leave. As the annotations indicate, the context is activated
at enter and deactivated at leave. In a similar way, we define the context
Connected, which models a resource connection context. A context provider can
be instantiated using prefixing, e.g. video:Connected represents the context of
a connection to the video resource.

@ ProcId = ProcBody[[CpCtx]] . -> PrimCxtDef
Label Suffix -> ActLabel[[CpCtx]]
:in | :out -> Suffix

@LivingRoom = ( enter:in -> leave:out -> LivingRoom ).

@Connected = ( acquire:in -> release:out -> Connected ).

Fig. 5. Syntax of a primitive context provider (at the top) and example (at the bottom).

More complex contexts can be defined by composing simple context providers
using operators. We provide the three basic logical operators: the conjunction
operator &, the disjunction operator |, and the negation operator !. For exam-
ple, the context LivingRoom & Connected is active when both LivingRoom and
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Connected are active, i.e. when in the context LivingRoom, Connected becomes
active, or vice-versa. In an analogous way, the context LivingRoom | Connected

is active when either LivingRoom or Connected is active. Finally, !LivingRoom
is active when LivingRoom is inactive, i.e. it is a context that is initially active
and becomes inactive as soon as LivingRoom becomes active.

Figure 6 shows the syntax of a composite context provider. This figure also
defines the context Ready as the conjunction of the context LivingRoom and the
context Connected, instantiated for each resource. Because of the conjunction,
Ready models the context in which a user is in the living room and a resource
has been connected for him/her.

@ ProcId = ! ProcId . -> CompCxtDef
@ ProcId = ProcId BinOp ProcId . -> CompCxtDef
& | | -> BinOp

@Ready = ( LivingRoom & video:Connected & audio:Connected ).

Fig. 6. Syntax of a composite context provider (at the top) and example (at the bot-
tom).

3.3 Context Rules

We define context rules as a means to define adaptation rules that abstract the
context away. A context rule can be seen as a parameterized adaptation rule that
receives a context as a parameter, and can observe the context-switch events in
and out associated to this context (through actions denoted by the keywords in
and out, respectively). Once defined, a context rule can be instantiated for a
concrete context. Figure 7 shows the syntax of a context rule (CtxRuleDef) and
its instantiation (CtxRuleInst).

The rule that plays the clips of our running example can be written in a
modular way using a context rule, as shown at the bottom of Fig. 7. PlayDef
defines such a rule in terms of a generic context. In the same way, we can model
a rule, namely ConnDef, that attempts to acquire a resource. It observes the
beginning of the context and can either react by performing acquire, if the
resource is free, or observe the deactivation of the context. Afterwards, it releases
the resource if it was previously acquired. These rules can be instantiated for
the concrete contexts LivingRoom and Ready. A context rule can be prefixed,
e.g. alice:PlayDef would correspond to the rule that plays clips for Alice. The
prefixing of a context rule is such that all the actions of the rule are prefixed,
except the context-switch events.

3.4 Composition

Adaptation rules adapt a base application. In terms of FSP, this adaptation
means a composition. We provide the operators + and * for denoting the se-
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+ ProcId ( ProcId ) = ProcBody[[CrCtx]] . -> CtxRuleDef
{ ActLabel[[CrCtx]] -> }+ -> ProcId ( ProcId ) -> Branch
Label => Reaction -> ActLabel[[CrCtx]]
( in | out ) => Reaction -> ActLabel[[CrCtx]]
in | out -> ActLabel[[CrCtx]]
+ ProcId = ProcId( ProcId ) . -> CtxRuleInst

+PlayDef(Cxt) = ( in => play -> out => stop -> PlayDef(Cxt) ).

+ConnDef(Cxt) = ( in => acquire -> out => release -> ConnDef(Cxt),

| in => out -> ConnDef(Cxt) ).

+ConnRule = ConnDef(LivingRoom).

+PlayRule = PlayDef(Ready).

Fig. 7. Syntax of a context rule (at the top) and examples (at the bottom).

quential composition of the FSP that represents a base application with one or
more (context) adaptation rules, whose syntax is shown in Fig. 8.

|| ProcId = BaseExpr SeqOp ProcId . -> Adaptation
ProcId -> BaseExpr
BaseExpr SeqOp ProcId -> BaseExpr
+ | * -> SeqOp

Fig. 8. Syntax of the composition of an application and adaptation rules.

The composition of the base application with a single rule gives as a result a
new FSP denoting an adapted base application. This composition is such that
a reaction defined for an event takes place after the event is performed by all
the base processes synchronizing on such an event. Furthermore, these processes
cannot continue until the reaction has been performed.

When applying several rules, these operators are left-associative, i.e. if B is
a standard FSP, and R1 and R2 are rules, then B + R1 + R2 is the same as
( B + R1 ) + R2. B is first composed with R1 giving as a result a new adapted
application that is afterward composed with R2. As a result, if two rules apply
to the same event, some form of precedence takes place. Let us consider the
example above when considering individual events. The general scheme is that
the reaction of R2 precedes the reaction of R1. In other words, the last adaptation
has priority. When considering context rules, this general scheme is applied to all
the events when using the operator +. The operator * behaves slightly differently
with respect to “out” reactions, which are in reverse order: the “in” reaction of
R2 precedes the “in” reaction of R1, but the “out” reaction of R2 comes after
the “out” reaction of R2 in order to obtain a form of nesting.
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3.5 Adaptation Rules and Aspects

Aspect-Oriented Programming [17] makes it possible to localize concerns that
cannot be encapsulated in standard modularization systems. In our language,
an adaptation rule can be seen as a kind of aspect. It observes actions that are
scattered in the definition of other processes and introduces behavior. However,
a specific property of aspects is that they may prevent the base program from
executing some actions, and this is clearly not supported by our adaptation rules.

We include support for aspects in our language by extending the syntax
of adaptation rules with aspect expressions. The extension allows adaptation
rules to observe when a base action is about to happen. Then, it can introduce
actions before and/or after the occurrence of the action. In addition, it can pre-
vent the base program from performing such an action. An adaptation rule is
equipped with aspect expressions of the form action > before; ps; after, where
action is a base action, before a sequence of actions performed before action, af-
ter a sequence of actions performed after action, and ps either skip or proceed.
The action skip means that the base action must be skipped and the action
proceed means that this base action must take place. With this extension, ex-
pressions of the form event => reaction are syntactic sugar for the expression
event > proceed;reaction. For the sake of simplicity, this paper just deals with
the case ps is proceed and only after actions are defined. Figure 9 shows the
way the syntax of (context) adaptation rules is extended.

Label > Advice -> ActLabel[[RuleCtx]]
Label > Advice -> ActLabel[[CrCtx]]
( in | out ) > Advice -> ActLabel[[CrCtx]]
( Label ; )* PS ( ; Label )* -> Advice
proceed | skip -> PS

Fig. 9. Extension of (context) adaptation rules with aspect expressions.

Including support for aspects in the language allows us to reuse previous work
on concurrent event-based aspect-oriented programming (CEAOP) [11, 18, 19].
In this way, we add support for concurrent rules using the model of concurrent
aspects as the next section shows.

This section has presented a language to model context-aware applications.
Our running example can be modeled in a modular way using explicit context
and context rules. The next section is about coordinating rules in order to avoid
inconsistent states in an application.

4 Concurrent Adaptation Rules

We denote as concurrent adaptation rules all the rules that are triggered by the
same event. In our running example, the rule that attempts to open a video
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connection is concurrent with the one for an audio connection. Both rules are
triggered by the same event: the entry to the living room. The uncoordinated
behaviors of these rules may lead to an inconsistent state in the base applica-
tion, as mentioned in the introduction of this paper. The necessity of coordinat-
ing concurrent rules has already been presented as the necessity of coordinated
adaptation [5]. We contribute to this by presenting a model for the coordination
of adaptation rules.

Adaptation rules are translated into aspects, as shown in the previous sec-
tion. Thus, the schemes for aspect coordination introduced by CEAOP can be
used for adaptation rules, based on a combination of event renaming and hiding,
and the use of specific operators. In the following we present the main points
behind the coordination of aspects restricted to adaptation rules, i.e. aspects
that always proceed and that only define after advices. More details about coor-
dinating full-blown aspects are available in [11]. In our model, a base application
is considered as a combination of several processes, and an adaptation rule as
an independent process that is coordinated with the base application and the
other adaptation rules. Adaptation rules are translated into FSPs, which are
composed with the FSPs that model the base application. Some variability is
allowed for the coordination, which determines the way the translation is done,
as described in the remainder of this section.

4.1 Coordinating the Base Application with Adaptation Rules

An adaptation rule can be composed with the base application following several
coordination schemes: (1) the reactions to an event can be performed in the
background as soon as the event occurs, while the base application may continue
its normal computation, (2) the base application may wait until the reaction has
been performed, or (3) the reactions can be performed in parallel with the event.
We embody these schemes in the operator sync(base,rule,parallel,yield), where
base is the FSP that models the base application, rule is an adaptation rule,
parallel is a boolean value denoting whether reactions are triggered in parallel
with events, and yield is a boolean value denoting whether the base application
has to wait for the end of the reactions. In this setting, an expression B + R
using the operator + of Sect. 3.4 is equivalent to sync(B,R,false,true), i.e.
the reactions occur after the event and the base application waits for the end of
them.

The coordination, using the operator sync, of an adaptation rule declaring
an expression event => reaction -> Q is implemented as follows. The reaction
is translated into the sequence at the bottom of Fig. 10. The base application
is instrumented such that all the occurrences of event -> P are translated into
the sequence at the top of Fig. 10. The following synchronization events are
included in the translations: pb_event (the event is about to be performed),
pe_event (the event has been just performed), and e_event (the end of the event
scope). Figure 10 illustrates a coordination sync(B,R,false,true). The labels
surrounded with squares correspond to the synchronization events and the verti-
cal lines represent the different rendezvous. After a first rendezvous at pb_event,
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the base application performs event. A second rendezvous is at pe_event. Then,
the actions denoted by reaction are performed until a last rendezvous at e_event.
The different options of sync can be achieved by hiding events. For example, if
pe_event is hidden the reaction is parallel to the event, or if e_event is hidden
the application does not wait for the reaction.

-> reaction-> -> e_event -> Q pb_event pe_event

-> e_eventevent -> P ->->pb_event pe_event

Fig. 10. Coordination of an application and an adaptation rule.

4.2 Coordinating Adaptation Rules

Let us come back to our running example and consider the rules for triggering
the video and audio connections. These rules are not coordinated, leading to an
inconsistent state in the application. Ordering the way resources are acquired
is a known manner to solve this problem. This means coordinating adaptation
rules.

Adaptation rules can be composed together using operators. The result of
applying an operator is a composite rule that can be afterward composed with
the base application. Two concurrent adaptation rules can be coordinated using
two different schemes: (1) reactions to a shared event can be performed sequen-
tially, or (2) they can be performed in parallel. We reuse the CEAOP operators
to implement these schemes: the operator Fun implements sequential reactions,
and the operator ParAnd parallel reactions.

The implementation is as follows. Let us consider two adaptation
rules declaring expressions of the form event => reaction1 -> Q, and
event => reaction2 -> R, respectively. Analogously to the previous section, the
expressions are translated into the sequences on the middle and at the bottom
of Fig. 11, respectively. The base application is instrumented such that all the
occurrences of event -> P are translated into the sequence at the top of Fig. 11.
This figure illustrates the operator Fun. This operator uses relabeling to impose
a rendezvous (indicated by a vertical line) between pe_event of the first rule and
e_event of the third one by giving a common name pe1_event. As a result, the
reactions are performed sequentially in the order reaction2 -> reaction1. With-
out this renaming, reaction1 would run in parallel with reaction2, which is the
behavior determined by ParAnd. (see Fig. 12). The operator Fun is used to im-
plement the composition of a base application with two rules using the operator
+ as defined in Sect. 3.4.
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Fig. 11. Coordination of adaptation rules using the operator Fun.
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reaction2-> ->

->-> event

Fig. 12. Coordination of adaptation rules using the operator ParAnd.

4.3 Coordinating Contexts and Adaptation Rules

A context provider is a process that observes events and indicates which are the
context-switch ones. A context rule uses these context-switch events in order
to define reactions that depends on the context. Therefore, the coordination of
the base application, context providers and context rules is done through these
events.

At the implementation level, some instrumentation is required. Let us con-
sider that a context is activated at the second occurrence of an event foo. In
this case, it is not possible to say that foo is the context-switch event, because
the first occurrence of foo does not activate the context. It is necessary to define
other events “representing” each context-switch event, generated at the same
time as the original context-switch event. If the name of the context is context,
then in_context and out_context represent the context-switch events in and out,
respectively.

Finally, a context provider is implemented as an adaptation rule throwing
as a reaction to the occurrence of a context-switch event the corresponding
pseudo context-switch event. Context rules are translated into adaptation rules
by replacing the in and out events by the corresponding pseudo context-switch
events.

This section has shown a model for the coordinated adaptation of an applica-
tion using explicit contexts and adaptation rules. Coordinating schemes such as
ordering reactions make it possible to keep a consistent application state while
adapting the application.

5 Related Work

Fact Spaces [10] is a logic-based approach to context-awareness implemented in
a concrete language called CRIME. One of the main ideas behind the model of
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Fact Spaces, inherited from Linda, is the existence of a distributed data base of
knowledge populated with shared facts. Each time a fact is added or removed
from the data base, subscribed applications are notified. New facts can be added
or actions in applications can be triggered as soon as their required facts are
matched. These rules correspond to a list of facts, which have to be satisfied in
order to trigger actions or publish other facts. Our language provides support for
defining similar rules but using events instead of facts. This allows us to easily
model concurrent rules and analyze concurrency properties using pre-existing
frameworks, which in a logic-based system is harder.

ContextL [20] is an object-oriented programming language that allows for
Context-oriented Programming. It provides means to associate partial classes
and method definitions with layers and to activate and deactivate such layers
in the control flow of a running program depending on the current context.
Thus, the behavior of objects is extended with the activated layers. Although
our approach is at the modeling level, we can find similarities. The behavior of
an object modeled in an FSP can be extended with context rules, which can be
seen as a kind of layers. Reactions are triggered depending on whether a given
context is active or not. A unique feature of our approach is that we specifically
deal with concurrent adaptation rules, whereas ContextL has no specific support
for concurrent layers.

Shankar et. al introduced the ECPAP framework for policy-based manage-
ment of a pervasive system [21]. The framework manages policies based on the
Event-Condition-Action pattern: a policy defines an action to be performed when
an event occurs under a given condition. In addition, the action is triggered only
if a precondition holds, and it is considered successful if a postcondition is satis-
fied after its execution. The approach deals with concurrent policies, i.e. policies
that define actions for a common event. When this event occurs a Petri net (built
at compile time) defines an optimal order of execution of the involved actions.
The adaptation rules of our approach are comparable with the policies of the
ECPAP framework. Indeed, when considering individual events, our adaptation
rules are based on a form of ECA pattern. However, our approach is more ab-
stract. We consider events not only as environmental events but also as any kind
of action (join point) in the computation of a system. In this way, an action
triggered by an adaptation rule can be seen as an event by another rule, thus
permitting the detection of possible conflicts between adaptation rules. Further-
more, linking related events using explicit events makes it possible to detect
other kinds of conflicts between rules. Finally, we include an explicit notion of
context and introduce context rules. The management of pre- and postcondition
together with the automatic ordering of reactions is an interesting feature of the
ECPAP framework that would be worth including in our approach.

In the area of Aspect-Oriented Programming, Tanter et al. introduced context-
aware aspects [22], as aspects that match base-program joint points depending
on whether a given context is active. They stated the necessity of context as a
first-class entity in aspect-oriented languages that has to be stateful, compos-
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able and parameterized. Our approach augments the proposal of Tanter et al.
by providing support to concurrent context-aware aspects.

Finally, our approach is based on CEAOP [11] and therefore includes stateful
aspects [23]. In our approach, part of a stateful aspect can be factorized out in
the notion of context. The instantiation of a context rule with a concrete context
can be seen as the completion of the initial state machine of a stateful aspect
with the states and transitions defined in the concrete context.

6 Conclusion

This paper has presented an approach to model coordinated adaptation of
context-aware applications by enhancing a simple process calculus, FSP, with
adaptation rules, context, context rules, and aspects. We have built an exten-
sion of the LTSA tool that supports processes written using our language.1 The
extension translates (context) adaptation rules and context providers into FSPs.
Then, these FSPs are manipulated with the standard LTSA tool in order to
check concurrency properties.

Note that our main contribution is not in expressiveness (everything is trans-
lated into FSP), but rather in clarity of the specification and modular reasoning.
In this regard, we provide a model that simplifies the analysis of concurrency
properties in context-aware applications. Furthermore, our approach can be used
as a model for context-aware applications that takes concurrency into account.

We are now interested in the use of this modeling language in two com-
plementary directions: the analysis of existing programs, e.g. programs written
using CRIME rules, with respect to their concurrency properties, as well as the
synthesis of actual implementations by refining part of the model (e.g. adding
parameters to actions) and combining the refined language to a general-purpose
programming language (e.g. Java) that could be used to implement the atomic
actions. Some work has already been done in this direction as we have previously
explored the possibility of using CEAOP as the basis of combining Java com-
ponents and aspects using behavioral interfaces [19]. When considering aspects,
these interfaces have much in common with adaptation rules.
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