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∗IRCCyN/École des Mines

4 rue Alfred Kastler, 44307 Nantes, France
†Institute of mathematics, University of Szczecin

Wielkopolska 15,70451 Szczecin, Poland

rabah@emn.fr sklar@univ.szczecin.pl

Keywords: Neutral type systems, exact controllability, stabilizability, sta-
bility

Abstract

Linear systems of neutral type are considered using the infinite di-

mensional approach. The main problems are asymptotic, non-exponential

stability, exact controllability and regular asymptotic stabilizability. The

main tools are the moment problem approach, the Riesz basis of invariant

subspaces and the Riesz basis of family of exponentials.

1 Introduction

Many applied problems from physics, mechanics, biology, and other fields can
be described by delay differential equations. A large class of such systems are
systems of neutral type. In this paper, we consider a general class of neutral
systems with distributed delays given by the equation

{
d

dt
[z(t) −Kzt] = Lzt +Bu(t), t ≥ 0,

z0 = ϕ,
(1)

where zt : [−1, 0] → Cn is the history of z defined by zt(s) = z(t + s). The
difference and delay operators K and L, respectively, are defined by

Kf = A−1f(−1) and Lf =

∫ 0

−1

A2(θ)
d

dθ
f(θ) dθ +

∫ 0

−1

A3(θ)f(θ) dθ

for f ∈ H1([−1, 0],Cn), where A−1 is a constant n×n matrix, A2, A3 are n×n
matrices whose elements belong to L2(−1, 0), and B is a constant n× r matrix.

A more general case may be when

Kf =

∫ 0

−1

dµ(θ)f(θ), f ∈ C([−1, 0],Cn),
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where µ is a matrix-valued function of bounded variation and continuous at zero.
But we limit ourself to above mentioned case when Kf = A−1f(−1) because
that the property of system are mainly characterized by the structure of the
matrix A−1. For more general forms of the operator K it may expected that
the situation is analogous, but it is not clear how the properties studied here
may be connected. Anyway, it is a domain for further investigation. Distributed
delay may arise in the natural modeling or after some feedback. Our purpose
is to investigate the problems of asymptotic stability, of stabilizability by linear
feedback and of exact controllability.

For that problems, the neutral type systems are less studied that the re-
tarded systems when K = 0. The difficulties are related to the following par-
ticular properties of neutral type systems: there may exist an infinite number
of eigenvalues in the right half plane, in particular near the imaginary axis; the
choice of the phase-space is crucial, in contrast to the case of retarded func-
tional differential equations where solutions are more smooth than the initial
data; some feedback with may change the structure of the system, etc.

2 The operator model

In [13] and several other works, the framework is based on the description of neu-
tral type systems in the space of continuous functions C([−1, 0]; Cn). However,
for several control problem, the Hilbert space structure is more convenient in
the study of our class of systems. In Hilbert spaces one can use the fundamental
tool of Riesz basis (or orthonormal basis modulo a bounded isomorphism). We
consider the operator model of neutral type systems introduced by Burns and
al. in product spaces. This approach was also used in [41] for the construction
of a spectral model. In [44] the authors consider the particular case of discrete
delay, which served as a model in [28, 30] to characterize the stabilizability of a
class of systems of neutral type.

The state space is M2(−1, 0; Cn) = Cn × L2(−1, 0; Cn), briefly M2, and
permits (1) to be rewritten as

d

dt
x(t) = Ax(t) + Bu(t), x(t) =

(
y(t)
zt(·)

)
, (2)

where the operators A and B are defined by

A

(
y(t)
zt(·)

)
=

(∫ 0

−1A2(θ)żt(θ)dθ +
∫ 0

−1A3(θ)zt(θ)dθ

dzt(θ)/dθ

)
, Bu =

(
Bu
0

)
(3)

The domain of A is given by

D(A) = {(y, z(·)) : z ∈ H1(−1, 0; Cn), y = z(0) −A−1z(−1)} ⊂M2

and the operator A is the infinitesimal generator of a C0-semigroup eAt. The
relation between the solutions of the delay system (1) and the system (2) is
zt(θ) = z(t+ θ).

In the particular case when A2(θ) = A3(θ) = 0, we use the notation Ã for

A. The properties of Ã can be expressed mainly in terms of the properties of
matrix A−1 only. Some important properties of A are close to those of Ā.
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3 Spectral analysis

Let us denote by µ1, ..., µℓ, µi 6= µj if i 6= j, the eigenvalues of A−1 and the

dimensions of their rootspaces (generalized eigenspaces) by p1, ..., pℓ,
∑ℓ

k=1 pk =

n. Consider the pointsλ
(k)
m ≡ ln |µm| + i(argµm + 2πk),m = 1, .., ℓ; k ∈ Z and

the circles L
(k)
m of fixed radius r ≤ r0 ≡ 1

3 min{|λ
(k)
m − λ

(j)
i |, (m, k) 6= (i, j)}

centered at λ
(k)
m .

Theorem 3.1. The spectrum of A consists of the eigenvalues only which are
the roots of the equation det∆(λ) = 0, where

∆A(λ) = ∆(λ) ≡ −λI + λe−λA−1 + λ

∫ 0

−1

eλsA2(s)ds+

∫ 0

−1

eλsA3(s)ds. (4)

The corresponding eigenvectors of A are ϕ =
(
C − e−λA−1C, e

λθC
)
, with C ∈

Ker∆(λ).
There exists N1 such that for any |k| ≥ N1, the total multiplicity of the roots

of the equation det ∆(λ) = 0, contained in the circle L
(k)
m , equals pm.

The description of the location of the spectrum of A we use Rouché theorem.

3.1 Basis of invariant subspaces

The most desired situation for concrete systems is to have a Riesz basis formed
by eigenvectors of A or, at least, by generalized eigenvectors. In more general
situations, one studies the existence of basises formed by subspaces. We remind
that a sequence of nonzero subspaces {Vk}∞i of the space V is called basis (of
subspaces) of the space V , if any vector x ∈ V can be uniquely presented as
x =

∑∞
k=1 xk, where xk ∈ Vk, k = 1, 2, .. We say that the basis {Vk}

∞
i is

orthogonal if Vi is orthogonal to Vj when i 6= j. A basis {Vk} of subspaces is
called a Riesz basis if there are an orthogonal basis of subspaces {Wk} and a
linear bounded invertible operator R, such that RVk = Wk.

The best ”candidates” to form the basis of subspaces are generalized eigen-
spaces of the generator of a semigroup, but there are simple examples (see
Example 3.3 below) showing that generalized eigenspaces do not form such a
basis in the general case.

One of the main ideas of our approach is to construct a Riesz basis of finite-
dimensional subspaces which are invariant for the generator of the semigroup
(see (2)).

In [31, 32] we obtained the following general result.

Theorem 3.2. There exists a sequence of invariant for A (see (2)) finite-
dimensional subspaces which constitute a Riesz basis in M2.

More precisely, these subspaces are {V
(k)
m , |k| ≥ N,m = 1, .., ℓ} and a 2(N +

1)n-dimensional subspace spanned by all eigen- and rootvectors, corresponding

to all eigenvalues of A, which are outside of all circles L
(k)
m , |k| ≥ N,m = 1, .., ℓ.

Here V
(k)
m ≡ P

(k)
m M2, where

P (k)
m M2 =

1

2πi

∫

L
(k)
m

R(A, λ)dλ

are spectral projectors; L
(k)
m are circles defined before.
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We emphasize that the operator A may not possess in a Riesz basis of
generalized eigenspaces. We illustrate this on the following

Example 3.3. Consider the particular case of the system (1):

ẋ(t) = A−1ẋ(t− 1) +A0x(t), A−1 =

(
1 1
0 1

)
, A0 =

(
α 0
0 β

)
. (5)

One can check that the characteristic equation is det∆(λ) = (α−λ+λe−λ)(β−
λ+ λe−λ) = 0 and for α 6= β there are two sequences of eigenvectors, such that
||v1

n − v2
n|| → 0, as n → ∞. It is clear that such family vectors do not form a

Riesz basis.

4 Stability

By stability we mean here asymptotic stability. For our neutral type system,
as for several infinite dimensional systems, we have essentially two notions of
asymptotic stability : exponential (or uniform) stability and strong stability.

Definition 4.1. A linear system in a Banach space X is exponentially stable if
the eAt semigroup verifies: ∃Mω > 1, ∃ω > 0, ∀x, ‖eAtx‖ ≤ Mωe−ωt‖x‖.
The system is strongly stable if ∀x, ‖eAtx‖ → 0, as t→ ∞.

The problem of exponential stability was widely described in several classical
works. An sufficiently exhaustive analysis may be found in [39] (see also the
references therein and the bibliographic notes). In our case the exponential
stability is completely determinated by the spectrum of the operator A. It is a
well known result for some linear neutral type systems: the spectrum has to be
bounded away from the imaginary axis (cf. [14, Theorem 6.1]).

Theorem 4.2. The system (2) is exponentially stable if and only if σ(A) ⊂
{λ : Reλ ≤ −α < 0}.

We can partially reformulate in terms of the matrix A−1 the condition on
the spectrum σ(A).

Theorem 4.3. System (2) is exponentially stable if and only if the following
conditions are verified

i) σ(A) ⊂ {λ : Reλ < 0}
ii) σ(A−1) ⊂ {λ : |λ| < 1}.

It can be interesting how the condition ii) of Theorem 4.3 may be formulated
for the case of a general linear operator K in the system (1).

We would like to study more deeply the problem of asymptotic nonexponen-
tial stability. To this end, we recall some important abstract result in this
domain. We have the following

Theorem 4.4. Let eAt, t ≥ 0 be a C0-semigroup in the Banach space X and A
be the infinitesimal generator of the semigroup. Assume that (σ(A)∩ (iR)) is at
most countable and the operator A∗ has no pure imaginary eigenvalues. Then
eAt is strongly asymptotically stable (i.e. eAtx → 0, t → +∞ as x ∈ X) if and
only if one of the following conditions is valid:
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i) There exists a norm ‖ · ‖1, equivalent to the initial one ‖ · ‖, such that
the semigroup eAt is contractive according to this norm: ‖eAtx‖1 ≤ ‖x‖1,
∀x ∈ X, t ≥ 0;

ii) The semigroup eAt is uniformly bounded: ∃C > 0 such that ‖eAt‖ ≤ C,
t ≥ 0.

The Theorem 4.4 was obtained initially in [38] for a bounded operator A.
The main idea were later used in [20] for the case of unbounded operator A, see
also [2] for another approach. The proof in [20] follow the scheme of the first
result [38]. The development of this theory concerns a large class of differential
equations in Banach space (see [39] and references therein). A more genral
result on the asymtotic behavior of the semigroup with respect to an arbitrary
asymptotic was recently obtained in [35].

Our main result on the asymptotic stability of the neutral type system (1)–
(2) is the following one.

Theorem 4.5. Assume σ(A) ⊂ {λ : Reλ < 0} and σ1 ≡ σ(A−1) ∩ {λ : |λ| =
1} 6= ∅ Then the following three mutually exclusive possibilities exist:

i) the part of the spectrum σ1 consists of simple eigenvalues only, i.e. to
each eigenvalue corresponds a one-dimensional eigenspace and there are
no rootvectors. In this case system (2) is asymptotically stable.

ii) the matrix A−1 has a Jordan block, corresponding to µ ∈ σ1. In this case
system (2) is unstable.

iii) there are no Jordan blocks, corresponding to eigenvalues in σ1, but there
exists µ ∈ σ1 whose eigenspace is at least two-dimensional. In this case
system (2) can be stable as well as unstable. Moreover, there exist two
systems with the same spectrum, such that one of them is stable while the
other one is unstable.

The last case may be illustrated by a non trivial example (see also [32] for
an example given partially in the M2–space framework).

Example 4.6. (Rabah-Sklyar-Barkhaev [29]) Consider the system

ż(t) −A−1ż(t− 1) = A0z(t)

with

A−1 =

(
−1 0
0 −1

)
, A0 =

(
−1 γ
0 −1

)
, γ = 0 or 1.

We have: σ(A) = {λ : λeλ + λ + eλ = 0} in C−, this can be proved by
Pontriaguin Theorem [27]. The multiplicity of eigenvalues is clearly 2, and they
do not depend of γ. The system is stable for γ = 0 and unstable for γ 6= 0.

5 Stabilizability

We say that the system (2) is stabilizable if there exists a linear feedback control
u(t) = F (zt(·)) = F (z(t+ ·)) such that the system (2) becomes asymptotically
stable.
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It is obvious that for linear systems in finite dimensional spaces the linearity
of the feedback implies that the control is bounded in every neighbourhood of the
origin. For infinite dimensional spaces the situation is much more complicated.
The boundedness of the feedback law u = F (zt(·)) depends on the topology of
the state space.

When the asymptotic stabilizability is achieved by a feedback law which
does not change the state space and is bounded with respect to the topology
of the state space, then we call it regular asymptotic stabilizability. Under
our assumption on the state space, namely H1([−1, 0],Cn), the natural linear
feedback is

Fz(t+ ·) =

∫ 0

−1

F2(θ)ż(t+ θ)dt+

∫ 0

−1

F3(θ)z(t+ θ)dt, (6)

where F2(·), F3(·) ∈ L2(−1, 0; Cn).
Several authors (see for example [49, 25, 26, 47] and references therein) use

feedback laws which for our system may take the form

k∑

i=1

Fiż(t− hi) +

∫ 0

−1

F2(θ)ż(t+ θ)dt+

∫ 0

−1

F3(θ)z(t+ θ)dt. (7)

This feedback law is not bounded in H1([−1, 0],Cn) and then stabilizability
is not regular. As a counterpart, they obtain exponentially stable closed loop
systems. If the original system is not formally stable (see [48]), i.e. the pure
neutral part (when A2 = A3 = 0) is not stable, the non regular feedback (6)
is necessary to stabilize. From the operator point of view, the regular feedback
law (6) means a perturbation of the infinitesimal generator A by the operator
BF which is relatively A-bounded (cf. [17]) and verifies D(A) = D(A + BF).
Such a perturbation does not mean, in general, that A+BF is the infinitesimal
generator of a C0-semigroup. However, in our case, this fact is verified directly
[32, 46] since after the feedback we get also a neutral type system like (1) with
D(A) = D(A + BF) (see below for more details).

From a physical point of view, A-boundedness of the stabilizing feedback F
means that the energy added by the feedback remains uniformly bounded in
every neighbourhood of 0 (see also another point of view in [48]). Hence the
problem of regular asymptotic stabilizability for the systems (1),(2) is to find a
linear relatively A-bounded feedback u = Fx such that the operator A + BF
generates a C0-semigroup e(A+BF)t with D(A + BF) = D(A) and for which
‖e(A+BF)tx‖ → 0, as t → ∞ for all x ∈ D(A). The main contribution of this
paper is that under some controllability conditions on the unstable poles of the
system, we can assign arbitrarily the eigenvalues of the closed loop system into
circles centered at the unstable eigenvalues of the operator A with radii rk such
that

∑
r2k < ∞. This is, in some sense, a generalization of the classical pole

assignment problem in finite dimensional space. Precisely we have the following

Theorem 5.1. Consider the system (1) under the following assumptions:

1) All the eigenvalues of the matrix A−1 satisfy |µ| ≤ 1.

2) All the eigenvalues µj ∈ σ1
def
= σ(A−1) ∩ {z : |z| = 1} are simple (we denote

their index j ∈ I).
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Then the system (1) is regularly asymptotic stabilizable if

3) rank
(
∆A(λ) B

)
= n for all Reλ ≥ 0, where

∆A(λ) = −λI + λe−λA−1 + λ

∫ 0

−1

eλsA2(s)ds+

∫ 0

−1

eλsA3(s)ds,

4) rank
(
µI −A−1 B

)
= n for all |µ| = 1.

6 Exact Controllability

The problem of controllability for delay systems was considered by several au-
thors in different framework. One approach is based on the analysis of time
delay system in a module framework (space over ring, see [22]). In this case
the controllability problem is considered in a formal way using different inter-
pretations of the Kalman rank condition. Another approach is based on the
analysis of time delay systems in vector spaces with finite or infinite dimension.
A powerful tool is to consider a delay system as a system in a Banach functional
space, this approach was developed widely in [13]. Because the state space for
delay systems is a functional space, the most important notion is the function
space controllability. A first important contribution in the characterization of
null functional controllability was given by Olbrot [23] by using some finite
dimensional tools as (A,B)-invariant subspaces for an extended system. For
retarded systems one can refer to [21] (and references therein) for the analysis
of function space controllability in abstract Banach spaces. The case of neu-
tral type systems with discrete delay was also considered in such a framework
(see O’Connor and Tarn [25] and references therein). A general analysis of the
time delay systems in infinite dimensional spaces is given in the book [6] where
several methods and references are given.

The problem considered in this paper is close to that studied in [25]. In this
work the exact controllability problem was considered for neutral type systems

with discrete delay using a semigroup approach in Sobolev spaces W
(1)
2 and a

boundary control problem.
We consider the problem of controllability for distributed delay system of

neutral type in the space M2(−h, 0; Cn) = Cn × L2(−h, 0; Cn) which is natural
for control problems.

The semigroup theory developed here is based on the Hilbert space model
introduced in [8]. One of our result is a generalization of the result in [25].
The main non trivial precision is the time of controllability. We generalize the
results given [16] for the case of a single input and one localized delay (see also
[4, 34]). The approach developed here is different from that of [25]. Our main
results are based on the characterization of controllability as a moment problem
and using some recent results on the solvability of this problem (see [3] for the
main tools used here). Using a precise Riesz basis in the space M2(−h, 0; Cn)
we can give a characterization of null-controllability and of the minimal time of
controllability.

The reachability set at time T is defined by

RT =

{∫ T

0

eAtBu(t)dt : u(·) ∈ L2(0, T ; Cn)

}

7



It is easy to show that RT1 ⊂ RT2 as T1 < T2. An important result is
that RT ⊂ D(A) ⊂ M2. This non-trivial fact permits to formulate the null-
controllability problem in the following setting:

i) To find maximal possible set RT (depending on T );

ii) To find minimal T for which the set RT becomes maximal possible, i.e.
RT = D(A).

Definition 6.1. The system (2) is said null-controllable at the time T if RT =
D(A)

The main tool is to consider the null-controllability problem as a problem of
moments.

6.1 The moment problem

In order to formulate the moment problem we need a Riesz basis in the Hilbert
space M2. We recall that a Riesz basis is a basis which may be transformed
to an orthogonal basis with respect to another equivalent scalar product. Each
Riesz basis possesses a biorthogonal basis. Let {ϕ} be a Riesz basis in M2

and {ψ} the corresponding biorthogonal basis. Then for each x ∈ M2 we have
x =

∑
ϕ∈{ϕ}〈x, ψ〉ϕ. In a separable Hilbert space there always exists a Riesz

basis.

A state x =

(
y
z(·)

)
∈ M2 is reachable at time T by a control u(·) ∈

L2(0, T ; Cr) iff the steering condition

x =

(
y
z(·)

)
=

∫ T

0

eAtBu(t)dt. (8)

holds. This steering condition may be expanded using the basis {ϕ}. A state x
is reachable iff

∑

ϕ∈{ϕ}

〈x, ψ〉ϕ =
∑

ϕ∈{ϕ}

∫ T

0

〈eAtBu(t), ψ〉dtϕ,

for some u(·) ∈ L2(−h, 0; Rr). Then the steering condition (8) can be substi-
tuted by the following system of equalities

〈x, ψ〉 =

∫ T

0

〈eAtBu(t), ψ〉dt, ψ ∈ {ψ}. (9)

Let {b1, . . . , br} be an arbitrary basis in ImB, the image of the matrix B and

bi =

(
bi
0

)
∈M2, i = 1, . . . , r. Then the right hand side of (9) takes the form

∫ T

0

〈eAtBu(t), ψ〉dt =

r∑

i=1

∫ T

0

〈eAtbi, ψ〉ui(t)dt. (10)

Effectiveness of the proposed approach becomes obvious if we assume that the
operator A possess a Riesz basis of eigenvector. This situation is characteristic,
for example, for control systems of hyperbolic type when A is skew-adjoint
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(A∗ = −A) and has a compact resolvent (see, for example, [1], [16], [17]). Let
in this case {ϕk}, k ∈ N, be a orthonormal eigenbasis with Aϕk = iλkϕk,
λk ∈ R. Assuming for simplicity r = 1, b1 = b =

∑
k αkϕk, αk 6= 0, we have

from (4), (5)

xk

αk

=

∫ T

0

e−iλktu(t)dt, k ∈ N, (11)

where x =
∑

k xkϕk. Equalities (6) are a non-Fourier trigonometric moment
problem whose solvability is closely connected with the property for the family
of exponentials e−iλkt, k ∈ N, to form a Riesz basis on the interval [0, T ] ([1]).
In particular, if e−iλkt forms a Riesz basis of L2[0, T0] then one has

RT =

{
x :

∑

k

(
xk

αk

)2

<∞

}
for all T ≥ T0. (12)

Obviously formula (12) gives the complete answer to the both items of the
controllability problem. Returning now to neutral type systems we observe that
the operator A given in is not skew-adjoint and, moreover, does not possess a
basis even of generalized eigenvectors. So the choice of a proper Riesz basis to
transform the steering condition in a moment problem is an essentially more
complicated problem.

6.2 The choice of basis

In order to design the needed basis for our case we use spectral the properties of
the operator A obtained in [32]. Let µ1, . . . , µℓ, µi 6= µj be eigenvalues of A−1

and let the integers pm be defined as : dim (A−1 − µmI)
n = pm, m = 1, . . . , ℓ.

Denote by

λ(k)
m =

1

h
(ln |µm| + i(argµm + 2πk)) , m = 1, . . . , ℓ; k ∈ Z,

and let L
(k)
m be the circles of the fixed radius r ≤ r0 = 1

3 min |λ
(k)
m −λ

(j)
i | centered

at λ
(k)
m .
Let {V

(k)
m } k∈ Z

m=1,...,ℓ
be a family of A-invariant subspaces given by

V (k)
m = P (k)

m M2, P (k)
m =

1

2πi

∫

L
(k)
m

R(A, λ)dλ.

The following theorem plays an essential role in our approach

Theorem 6.2. [31, 32] There exists N0 large enough such that for any N ≥ N0

i) dimV
(k)
m = pm, k ≥ N ,

ii) the family {V
(k)
m } |k|≥N

m=1,...,ℓ

∪ V̂N forms a Riesz basis (of subspaces) in M2,

where V̂N is a finite-dimensional subspace (dim V̂N = 2(N +1)n) spanned by all
generalized eigenvectors corresponding to all eigenvalues of A located outside of

all circles L
(k)
m , |k| ≥ N , m = 1, . . . , ℓ.

Using this theorem we construct a Riesz basis {ϕ} of the form

{
ϕk

m,j , |k| > N ;m = 1, . . . , l; j = 1, . . . , pm

}
∪

{
ϕ̂N

j , j = 1, . . . , 2(N + 1)n
}

9



where for any m = 1, . . . , l, and k : |k| > N the collection {ϕk
m,j}j=1,...,pm

is in

a special way chosen basis of V
(k)
m and {ϕ̂N

j }j=1,...,2(N+1)n is a basis of V̂N . In
this basis equalities (4) with regard to (5) turns into a moment problem with
respect to a special collection of quasipolynomials. Analyzing the mentioned
moment problem by means of the methods given in [1] we obtain our main
results concerning the null-controllability problem.

7 The main results

The characterization of the null-controllability is given by the following Theo-
rem.

Theorem 7.1. The system (2) is null-controllable by controls from L2(0, T ) for
some T > 0 iff the following two conditions hold:
i) rank [∆A(λ) B] = n, ∀λ ∈ C; where

∆A(λ) = −λI + λe−λhA−1 + λ

∫ 0

−h

eλsA2(s)ds+

∫ 0

−h

eλsA3(s)ds.

ii) rank [B A−1B · · · An−1
−1 B] = n.

The main results on the time of controllability are as follows.

Theorem 7.2. Let the conditions i) and ii) of Theorem 7.1 hold. Then

i) The system (2) is null-controllable at the time T as T > nh;

ii) If the system (2) is of single control (r = 1), then the estimation of the
time of controllability in i) is exact, i.e. the system is not controllable at
time T = nh.

For the multivariable case, the time depends on some controllability indices.
suppose that dimB = r. Let {b1, . . . , br} be an arbitrary basis noted β. Let us
introduce a set integers. We denote by Bi =

(
bi+1, . . . , br

)
, i = 0, 1, . . . , r − 1,

which gives in particular B0 = B and Br−1 = br and we put formally Br = 0.
Let us consider the integers

nβ
i = rank [Bi−1 A−1Bi−1 · · · An−1

−1 Bi−1], i = 1, . . . , r,

corresponding to the basis β. We need in fact the integers

mβ
i = nβ

i−1 − nβ
i ,

Let us denote by

mmin = max
β

mβ
1 mmax = min

β
max

i
mβ

i ,

for all possible choice of a basis β.
The main result for the multivariable case is the following Theorem.

Theorem 7.3. Let the conditions i) and ii) of the Theorem 7.1 hold, then

i) The system (2) is null-controllable at the time T > mmaxh;

10



ii) The system (2) is not null-controllable at the time T < mminh.

The proofs are based on the construction of a special Riesz basis of A-
invariant subspaces in the space M2 according to [31, 32] and on the analysis of
the properties of some quasi-exponential functions to be a Riesz basis in L2(0, T )
depending of the time T [3].
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