
Dynamic Adaptation of the Squid web cache with

Arachne

Marc Ségura-Devillechaise, Jean-Marc Menaud, Nicolas Loriant, Thomas

Fritz, Rémi Douence, Mario Südholt, Egon Wuchner

To cite this version:

Marc Ségura-Devillechaise, Jean-Marc Menaud, Nicolas Loriant, Thomas Fritz, Rémi Douence,
et al.. Dynamic Adaptation of the Squid web cache with Arachne. IEEE Software, Institute of
Electrical and Electronics Engineers, 2006, Special issue on Aspect-Oriented Programming, 23
(1). <inria-00442177>

HAL Id: inria-00442177

https://hal.inria.fr/inria-00442177

Submitted on 18 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00442177


3 4 I E E E  S O F T W A R E P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0  ©  2 0 0 6  I E E E

focus
Dynamic Adaptation 
of the Squid Web Cache
with Arachne

W
riting good software is often a challenge; writing adaptable
software can be even more difficult. For example, open im-
plementations must provide, at the time of application design,
both a functional interface that exposes the services being of-

fered and an adaptation interface that lets users customize their implemen-
tation.1 However, because adaptable interfaces often increase complexity,
common truisms such as “keep it simple, stupid” (KISS) and an emphasis on 

aspect-oriented programming

Marc Ségura-Devillechaise, Jean-Marc Menaud, Nicolas Loriant, Rémi Douence,
and Mario Südholt, École des Mines de Nantes

Thomas Fritz, University of British Columbia

Egon Wuchner, Siemens
The Arachne 
aspect-oriented
programming
system lets
developers
modularize changes
to networking
software with 
little perceptible
performance
overhead.

faster time to market encourage software de-
signers to sacrifice adaptability.

Networking software illustrates this well.
Because such software must meet high per-
formance and availability constraints, devel-
opers often neglect design goals such as adapt-
ability and modularity in the absence of
immediate benefits. For example, you could
write a Web cache modularly by composing an
HTTP parsing library such as libwww and a
threading library such as Posix and by using
your operating system’s virtual-memory mech-
anism to replicate Web pages on disk. So, for
performance reasons, real-world Web cache
implementations are large, monolithic appli-
cations usually written from scratch in C. For
instance, the Squid open source Web cache2

doesn’t even manage resources using operating
system services. Instead, Squid’s event-based
architecture communicates with the operating
system and reacts directly to the availability of
network cards and hard drives. (See other ap-
proaches in the “Related Work in Aspect
Modeling” sidebar.)

Moreover, performance issues such as la-
tency often require adaptations to networking
software. Since the Internet’s birth, latency has
remained stable, at around 100 ms.3,4 Within
the Internet backbone, latency drops to 30 ms,
almost reaching the theoretical limit imposed
by the speed of light and the earth’s circumfer-
ence.5 Web caches were a first attempt to cope
with latency. Nowadays, networks require the
continuous adaptation of legacy Web caches



for techniques such as prefetching and soft-
ware replication.

In legacy Web caches such as Squid, such
adaptation interfaces are typically needed for
functionalities that are applied across the
legacy code—that is, functionalities whose
code is scattered and tangled in the Web cache
code’s files and functions. Indeed, introducing
an adaptation interface after implementing a
large application results in crosscutting code
and inherently defies modular design efforts.6

Furthermore, anticipating adaptation needs
has its limits; for example, developers can’t
plan for modifications required by security
breaches arising from bugs.

Thus, using Squid as an example, we pro-
pose to design network software without adap-
tation interfaces, thus keeping the implementa-
tion as simple and efficient as possible. We
enable adaptation on a per-need basis with
Arachne, an aspect-oriented system we devised
for legacy C applications featuring an expres-
sive aspect language. Arachne lets us adapt
Squid modularly without sacrificing perform-
ance or needing to plan adaptations a priori.
Three examples illustrate this process: correct-
ing security breaches, reducing latency via
prefetching, and adding support for the Internet
Content Adaptation Protocol (ICAP) to Squid.

The Arachne aspect system
Our system uses the Arachne aspect lan-

guage and the Arachne weaver tool chain.

Aspect language
An AOP system’s join point model defines

the relevant basic execution events of a given
base application. Pointcuts allow programmers
to refer to all such events at which a function-
ality of interest is applied across, or crosscuts,
the base application. At the execution events
matched by pointcuts, advice can be used to
modify the base application’s execution.
Arachne features two basic kinds of join
points: C function calls and read/write accesses
to global variables and their local aliases.

Arachne’s advice language essentially con-
sists of C function calls, introduced with the
keyword then, which we can execute in addi-
tion to or instead of legacy function calls. We
define the function called by advice in a regu-
lar C source code file that is compiled along
with the aspect source code file containing the
advice. By default, Arachne executes the ad-

vice instead of the join point. When the advice
is omitted, Arachne executes the base program
join point. The pointcut language allows pro-
grams to design join points within the set of all
possible join points.

Pointcuts in Arachne match C construc-
tions. To match the different types of join

J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 3 5

AspectC1 and AspectC++2 extend C and C++, respectively, by an aspect
model very similar to AspectJ’s.3 They all rely on source code transformation
and thus cannot apply aspects to running C applications. Considering language
expressiveness, both approaches provide support only for aspects that address
single events and not sequences of events, as our sequence aspects do.

Toskana,4 DAC++,5 and Jasco6 are three examples of dynamic weavers
that, like Arachne, rewrite at runtime the compiled code that the processor
executes. Toskana, however, is limited to operating system kernels. DAC++
supports only C++ applications, and Jasco targets Java programs. Thus, we
cannot apply any of the three dynamic weavers to a legacy application
such as the Squid Web cache.

Tools such as Dyninst7 and Pin8 provide APIs that support dynamic code
patching as well as the binary rewriting of arbitrary assembly instructions at
runtime. However, these tools work at an abstraction level much lower than
the base program’s higher-level programming language. While devising an
aspect system on top of these might be feasible technically, the absence of a
well-defined and complete relation between C source and compiled code
remains a major problem. In addition, technical issues limit these approaches’
feasibility. Rewriting code with Dyninst, for example, is difficult because the
rewriting process might fail and corrupt the application. Pin, on the other
side, lets us insert code before or after a binary instruction but does not let
us replace one, so the implementation of around advice poses a problem.

References
1. Y. Coady and G. Kiczales, “Back to the Future: A Retroactive Study of Aspect Evolution in

Operating System Code,” Proc. 2nd Int’l Conf. Aspect-Oriented Software Development,
ACM Press, 2003, pp. 50–59.

2. O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “AspectC++: An Aspect-Oriented Extension
to the C++ Programming Language,” Proc. 40th Int’l Conf. Technology of Object-Oriented
Languages and Systems (TOOLS Pacific 02), Australian Computer Soc., 2002, pp. 53–60;
www.aspectc.org/fileadmin/publications. 

3. G. Kiczales et al., “Aspect-Oriented Programming,” ECOOP 97—Object-Oriented Program-
ming: 11th European Conf. (ECOOP 97), LNCS 1241, Springer, 1997, pp. 220–242.

4. M. Engel and B. Freisleben, “Supporting Autonomic Computing Functionality via Dynamic
Operating System Kernel Aspects,” Proc. 4th Int’l Conf. Aspect-Oriented Software Develop-
ment (AOSD 05), ACM Press, 2005, pp. 51–62.

5. S. Almajali and T. Elrad, “Coupling Availability and Efficiency for Aspect-Oriented Run-
time Weaving Systems,” Proc. Dynamic Aspects Workshop (DAW 05) at Int’l Conf. Aspect-
Oriented Software Development, ACM Press, 2005; www.iit.edu/~concur/publications.html. 

6. D. Suvée, W. Vanderperren, and V. Jonckers, “Jasco: An Aspect-Oriented Approach Tai-
lored for Component Based Software Development,” Proc. 2nd Int’l Conf. Aspect-Oriented
Software Development (AOSD 03), ACM Press, 2003, pp. 21–29.

7. J.K. Hollingsworth et al., “MDL: A Language and Compiler for Dynamic Program Instrumen-
tation,” Proc. Int’l Conf. Parallel Architectures and Compilation Techniques (PACT 97), IEEE
CS Press, 1997, pp. 201–213.

8. C.-K. Luk et al., “Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation,” Proc. 2005 ACM SIGPLAN Conf. Programming Language Design and Implementation
(PLDI 05), ACM Press, 2005, pp. 190–200.

Related Work in Aspect Modeling



points and to access information about the cor-
responding execution state, we use Arachne’s
pointcut language, which resembles AspectJ.
For instance, with a pointcut of the form
call(void _ xcalloc(size t, size t)),

we can refer to the join point designating a
call to the function xcalloc. The constructor
writeGlobal(var) matches a write access to a
global variable, while write(var) also matches
accesses to the variable’s local aliases—that is,
aliases of global variables having local scope.
The constructor controlflow, which takes a
list of function call pointcuts as its argument,
lets us denote sequences of nested function
calls, similar to AspectJ’s cflow-construct.
We can also combine pointcut expressions, for
example, using logical combinators such as or
(||). Furthermore, binder expressions let us
retrieve information about the execution state
in which a join point occurs: we can apply
args and return to function-call join points
to access the arguments and the function call’s
return value, and we can use value with read
and write accesses to retrieve the value being
read or written. An if(C) pointcut lets us re-
strict matching to contexts where the C ex-
pression holds.

Sequence aspects, denoted by seq(sts),
consist of a list of steps, each of which associ-
ates a pointcut with (possibly empty) advice.
A sequence instance is created each time the
first step’s pointcut matches a join point. Fur-
ther steps are activated in a “greedy” fash-
ion—that is, the step following the current one
is activated as soon as its pointcut matches the
current join point. We can repeat all but the
first and last steps multiple times using the
repetition operator*. A key feature of se-
quence aspects is that they can use any data
bound in one step (with arg, return, or
value) in a later step. This is especially useful
to match the value of a variable of the base
program and accesses to its local aliases: one
step can bind an address (using arg, return,
or value), and subsequent steps can restrict
accesses with read and write to that address.

Every time a join point matches the pointcut
of the aspect’s first step, a sequence instance is
created and space is allocated for all the data the
aspect is interested in. As the sequence aspect
executes, the data is collected, and as soon as the
last step is executed for a particular instance, it
frees the associated memory. So, the Arachne
implementation can represent sequences using a

small part of the base program’s execution his-
tory in the form of a bounded list of sequence
instances, which gets updated each time a new
step in the sequence occurs. 

We can use Arachne’s weaver tool to apply
a set of aspects to C applications. While
Arachne’s pointcut and advice languages es-
sentially resemble those of AspectJ, Arachne
differs from AspectJ and similar systems in
two ways:

■ Arachne’s aspect language features se-
quence aspects, which are useful for for-
mulating protocol manipulations—in par-
ticular, the Web cache manipulations we
present in this article.

■ Arachne’s weaving is dynamic; that is, we
can adapt running C applications without
stopping them. For example, dynamic
weaving lets us introduce prefetching strate-
gies or correct security breaches in a Web
cache, thus preserving service availability.

Compiler and runtime tool chain
The Arachne tool chain runs on Pentium

machines under the Linux operating system. It
consists of three tools: an aspect compiler, a
weaver, and a deweaver. The compiler (shell
command acc) transforms aspect source code
into an aspect dynamic link library (also
known under Linux as a shared library). To
ease interoperation with legacy code, acc can
link the aspect DLL it is compiling with other
DLLs and with static libraries or object files
produced by other compilers. Based on map-
pings between actual rewriting sites and their
symbolic descriptions, Arachne rewrites bi-
nary code referenced by the aspect with hooks
that point to the aspect DLLs. (A detailed de-
scription of the compilation and weaving
process is available elsewhere.7)

The dynamic weaver (shell command weave)
applies an aspect DLL to a running process. 
The code weave <pid> <aspect-library>
weaves the compiled aspect library into the
process identified by the process id pid. The
weaver supposes that the base program has
been compiled without function inlining and
that the symbols generated at compile time
haven’t been removed from the base program.
These assumptions are not uncommon: for ex-
ample, the default compilation process of the
Squid Web cache meets these expectations. In
general, Arachne exploits binary-code and

3 6 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Like most
legacy high-
performance
Web caches,

Squid is
designed
around an

event-based
architecture.



J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 3 7

linking standards8,9 that govern the execution
of compiled files and do not depend on code
patterns generated by specific compilers.
Therefore, we can weave aspects into any code
adhering to these standards. In addition,
Arachne provides a deweaver (deweave) to
unweave aspects from an application.

Writing aspects with Arachne
Like most legacy high-performance Web

caches, Squid is designed around an event-
based architecture, which breaks down event
handling and request processing into many
different functions and uses function pointers
and state machines to drive execution. For
performance reasons, functions must handle
several concerns at once and do not clearly re-
flect execution flow. Thus, adaptations of
Squid’s behavior tend to require modifications
at many places. As Squid amounts to several
Mbytes of undocumented source code, such
adaptations get very complex.

To assess Arachne, we consider both expres-
siveness and performance. We first focus on ex-
pressiveness: does Arachne enable us to imple-
ment useful adaptations of the Squid Web cache
concisely and modularly? (Unless explicitly
noted, we used the squid-2.5STABLE3 release
as a test bed for our adaptations.) Our adapta-
tion examples include removing a security
threat through protocol modifications, reduc-
ing latency, and adding support for a complete
network protocol (ICAP).

Correcting a security hole
In February 2002, the Computer Emer-

gency Readiness Team issued a vulnerability
note on Squid versions 2.3 and 2.4, pointing
out a buffer overflow in the FTP authentica-
tion mechanism. The function rfc1378_
escape_part could overflow the buffer’s
base_href and title_url fields contained
in the structure FtpStateData. A successful

exploitation could result in denial-of-service
attacks, thus compromising latency guaran-
tees. The Squid team corrected the mistake by
distributing a patch to apply to the Squid
source code. This patch alters how the two
fields are manipulated by five functions rele-
vant for handling ftp connections.

Although we could rewrite this patch as a
collection of Arachne aspects, we can also write
a sequence aspect that prevents a class of buffer
overflows, including as-yet unreported ones
(see figure 1). This sequence aspect defines a se-
quence of Squid functions (the protocol) that
leads to a buffer overflow. First, the buffer
length is retrieved at allocation time (call of
xcalloc), then matches assignments made to
that buffer. An advice, which replaces the faulty
assignment, is attached to this step. This advice
uses the regular C function reallocAndWrite
to resize and copy the appropriate data into the
buffer. The last step indicates that the buffer is
no longer used and lets Arachne free the mem-
ory associated with the collected data.

In contrast to the Squid team’s patch,
which requires in-depth comprehension of the
parsing of FTP requests, our sequence aspect
is based on simple knowledge about buffer
creation and use. In addition, because security
threats are usually first reported only after the
cache is in production, weaving aspects on the
fly is a great advantage. The traditional ap-
proach—patching the source code, recompil-
ing it, stopping the running version, and start-
ing the new version—would have at least
implied the loss of the Web pages replicated in
RAM. Therefore, the traditional recompila-
tion approach significantly degrades latency,
as RAM is faster than disk memory.

Adding prefetching over HTTP
to reduce latency

In the past two years, a number of Web
browsers have started to download pages be-

Figure 1. An aspect 
preventing buffer 
overflow.

seq(    /* first step : retrieve buffer and buffer size */

call(void * xcalloc(size_t, size_t)) && args(numberOfElements, elementSize) && return(buffer) ;

/* second step : identify and replace faulty assignments */

write(buffer) && size(writtenSize) && value(newValue) && 

if(writtenSize > numberOfElements * elementSize)

then reallocAndWrite(buffer, allocatedSize,writtenSize, newValue); */

/* third step : free memory associated to sequence when buffer is freed */

call(void xfree(void*)) && args(buffer); )



fore the end user requests them.10 Such
prefetching schemes trade network band-
width for reducing end-user-perceived la-
tency. As intermediaries, Web caches are bet-
ter suited to prefetch pages than individual
users are. However, Squid doesn’t include
prefetching. We’ve implemented Ken-ichi
Chinen’s and Suguru Yamaguchi’s simple
prefetching strategy,11 which prefetches 10
hyperlinks referenced in an HTML page
served by the cache. Benchmarks showed that
this strategy doubles the number of pages
served directly from the local cache upon an
end-user request, but at the expense of dou-
bling the consumed bandwidth.

The prefetching adaptation crosscuts the
Squid functions that process HTTP requests.
As figure 2 shows, we implemented it using
three aspects that modify the behavior of the
functions handling data reception. The first
aspect starts prefetching when clientBuild-
Reply creates an HTTP response. As comm_
write_mbuf transmits a page, the second as-
pect retrieves the hyperlinks contained in that
page. The third aspect then does the actual
prefetching, retrieving a few pages among the
detected hyperlinks. To avoid infinite loops,
the different pieces of advice distinguish be-
tween pages requested by a regular client and
those that were prefetched using the function
isPrefetch, which retrieves the correspon-
ding information from a hash table.

Instead of transforming an existing cache,
Chinen and Yamaguchi designed the Kotetu

Web cache from scratch to assess the benefits
of their prefetching policy. The latest version
of Kotetu consists of 38,762 lines of source
code and offers fewer features than Squid. In
comparison, our adaptation has no more than
1,059 LOC. Moreover, because prefetching
trades bandwidth for latency, it’s best used
when network load is low and avoided other-
wise. With Arachne, we can dynamically
weave and unweave aspects and thus optimize
the use of prefetching.

Adding ICAP support
Online advertisers want ads to change reg-

ularly. An end user consulting a site twice
should see two different ads. The advertising
providers also need to measure the audience
that each ad reaches. Therefore, most of the
time, ads are marked as not cacheable, thus
preventing caches and reducing latency. Some
researchers have suggested delegating ad inser-
tion to Web caches.12 The ICAP protocol was
created to empower Web caches with content
transformation. Each ICAP server is colocated
with a proxy or cache. Every time the proxy or
cache receives a request or a response, it for-
wards it to the ICAP server, which can then
modify it if necessary. Processing continues by
considering just the modified request or re-
sponse that the ICAP server returns. In addi-
tion, the specification lets the ICAP server sat-
isfy requests: in this case, the cache returns the
ICAP server’s response to the end user without
further processing. 

3 8 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Figure 2. Aspects for
prefetching.

/* start prefetching on creation of HTTP response */

controlflow(call(void clientSendMoreData(void*, char*, size_t)),

call(HttpReply * clientBuildReply(clientHttpRequest*, char*, size_t)) &&

args( request, buffer, bufferSize ))

then startPrefetching(request, buffer, bufferSize);

/* retrieve hyperlinks during page transmission */

controlflow(call(void clientSendMoreData(void*, char*, size t)),

call(void comm_write_mbuf(int, MemBuf, void*, void*)) &&

args(fd, mb, handler, handlerData) && if(! isPrefetch(handler)) )

then parseHyperlinks(fd, mb, handler, handlerData);

/* prefetch pages on completion of write */

call(void clientWriteComplete(int, char*, size_t, int, void�)) &&

args(fd, buf, size, error, data) && if(! isPrefetch(data))

then retrieveHyperlinks(fd, buf, size, error, data);



Squid does not yet support the ICAP proto-
col. We used Arachne to turn Squid into an
ICAP client—in other words, to dynamically
add a new network protocol to Squid. First,
because the standard strongly advises ICAP-
enabled caches to advertise their ICAP ability,
our aspects add an X-ICAP header to the
HTTP requests and responses entering and
leaving the cache. This enables content
providers to send a proxylet—a piece of
code—that runs on the ICAP server near the
cache. The content provider can delegate some
of its processing to the proxylet, including ad
insertion. Our probe’s second role is to load
the ICAP adaptation in Squid when it receives
a proxylet. All in all, the aspects composing
the adaptation—amounting to 554 Kbytes—
essentially modify the behavior of 15 Squid
functions. Due to space constraints, we won’t
present the code here (to obtain it, see
www.emn.fr/x-info/arachne/download.html).

Studying Arachne performance
We can’t evaluate adaptability benefits at

cache design time, so it’s crucial that Arachne
does not trade performance for adaptability.
To study this issue, we used our collection of
prefetching aspects to estimate the average
overhead Arachne introduces into Squid.
Measuring this required a significant modifi-
cation of Squid. We’ve chosen to use Squid
augmented with our prefetching adaptation.
We built a profiling version of Arachne that
tracked the time it spent in Arachne code. We
compared this duration to

■ the time spent in the adaptation (that is,
prefetching) code,

■ the time spent in Squid code to serve dif-
ferent Web pages, and

■ the time the user needed to fetch the page
from the cache.

Table 1 summarizes our results. The columns
represent

■ Size: size of the downloaded Web page
■ Client: time needed to fetch the page
■ Cache: time Squid needed to handle the

query as reported by its own timing mech-
anism in the log files

■ Prefetching: time spent running the adap-
tation code

■ Arachne: time spent in the Arachne infra-
structure

The time spent in prefetching code varies
slightly: we used publicly available pages con-
taining different amounts of links. In miss
cases, the requested page has not yet been
replicated in the cache. In hit cases, the re-
quested page is already available in the cache.
All values are averaged over 200 runs. For this
particular adaptation, the time spent in
Arachne never exceeded one-thousandth of the
time needed to run the adaptation code, and
the time needed to run the adaptation code
was several orders of magnitude smaller than
the time Squid required to serve a page.

We also compared the performance of
Squid adapted by manually modifying its C

J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 3 9

Table 1
Time spent in the Squid base program, Arachne, and the prefetching code

Size (Kbytes) Miss cases Hit cases

Client (sec) Cache (sec) Prefetching (µsec) Arachne (µsec) Client (sec) Cache (sec) Prefetching (µsec) Arachne (µsec)

3.8 <0.1 <0.1 2 0.008 <0.1 <0.1 2 0.003

46 <0.1 <0.1 39 0.010 <0.1 <0.1 39 0.007

70 0.1 <0.1 113 0.014 <0.1 <0.1 110 0.011

90 <0.1 <0.1 122 0.016 <0.1 <0.1 122 0.014

163 <0.1 <0.1 154 0.028 <0.1 <0.1 283 0.045

196 0.2 0.2 365 0.055 0.2 0.2 356 0.020

301 0.1 <0.1 43 0.044 <0.1 <0.1 42 0.051

1,182 0.6 0.6 924 0.141 0.5 0.5 919 0.142

3,875 1.3 1.3 16,679 0.677 1.0 1.0 1,801 0.446



source code to the performance of Squid
adapted with Arachne. We modified the Squid
source code to introduce the same prefetching
strategy that our Arachne-based prefetching
adaptation uses. We then benchmarked the
two caches’ performance with Web Poly-
graph.13 After filling the cache, the PolyMix-4
workload mimicked a one-day simulation in-
cluding the two request-rate peaks typically
observed in production environments. Filling
the cache is a necessary and lengthy operation
before evaluating its performance: for exam-
ple, requesting a page that the cache has to
fetch from the Web is usually a hundred to a
thousand times slower than fetching a page
that the cache has replicated locally. We per-
formed 10 simulations using our prefetching-
enabled Squid versions. The two peak phases
are the most interesting cases because they
stress the cache with a high throughput.

Table 2 summarizes the average results for
these two phases, including the request rate
and throughput from the client side. Due to
the effect of prefetching, the server-side re-
quest rate was close to 43 requests per second.
No significant differences exist between the
manual and Arachne-based prefetching caches:
1 percent on average versus about 1.5 percent
for the average variation between two simula-
tions with the same cache version. The miss
times (the time needed to deliver a document
when it’s not cached) as well as the hit times
(the time required to deliver a document that
is present in the cache) and the response times
are all very similar for the two cache variants.
This simulation showed no perceptible per-
formance difference between a static prefetch-

ing integration achieved by manual source
code modification and the dynamic prefetch-
ing integration Arachne performs.

B ecause networking developers can’t
assess the benefits of designing an
adaptable implementation at design

time, they often sacrifice adaptability for per-
formance and simplicity. The Squid Web cache
is no exception. But many reasons, ranging
from the need to cope with security threats to
the necessity of dealing with modifications of
existing protocols, call for adaptation. Such
adaptation requires unanticipated modifica-
tions of the source code and frequently cross-
cut the implementation.

This problem is not specific to networking
software or to C.  For example, we have ex-
tended Arachne  to  support C++ in order to
adapt image generation algorithms in Siemens’
medical scanners.13 Despite our efforts, design-
ing adaptation interfaces after program imple-
mentation is likely to continue to require signif-
icant language extensions. We plan to extend
the stateful aspect-oriented sequence-based
mechanism we proposed in this article to let
pointcuts refer to members of C structures.

References

1. G. Kiczales, “Beyond the Black Box: Open Implementa-
tion,” IEEE Software, vol. 13, no. 1, 1996, pp. 8–11.

2. D. Wessels, Squid: The Definitive Guide, O’Reilly and
Assoc., 2004.

3. D.L. Mills, Internet Delay Experiments, Network Work-
ing Group RFC 889, Dec. 1983; www.rfc-archive.org/
getrfc.php?rfc=889.

4 0 I E E E  S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 2
PolyMix-4 results for two peak phases

Phase 1 Phase 2

Arachne Manual Difference (%)* Arachne Manual Difference (%)*

Throughput (req/sec) 5.59 5.59 5.58 5.59

Average response time (ms) 1131.42 1146.07 �1.2 1085.31 1074.55 �1.0

Response time for a miss (ms) 2533.50 2539.52 �0.2 2528.35 2525.34 �1.8

Response time for a hit (ms) 28.96 28.76 ��.6 30.62 31.84 �3.8

Hit ratio 59.76 59.35 ��.6 61.77 62.22 �0.7

Errors 0.51 0.50 �1.9 0.34 0.34 0.0

*Negative values in difference columns indicate that the approach with Arachne was faster than the manual one.



4. J. Pointek et al., “Netdyn Revisited: A Replicated Study
of Network Dynamics,” Computer Networks and ISDN
Systems, vol. 29, no. 7, 1997, pp. 831–840.

5. B.-Y. Choi et al., “Analysis of Point-to-Point Packet De-
lay in an Operational Network,” Proc. 23rd  Ann. Joint
Conf. IEEE Computer and Comm. Societies (INFOCOM

2004), IEEE Press, 2004; www.ieee-infocom.org/2004/
Papers/37_4.pdf. 

6. G. Kiczales et al., “Aspect-Oriented Programming,”
ECOOP 97—Object-Oriented Programming: 11th Euro-
pean Conf. (ECOOP 97), LNCS 1241, Springer, 1997,
pp. 220–242.

7. R. Douence et al., “An Expressive Aspect Language for
System Applications with Arachne,” Proc. 4th Int’l
Conf. Aspect-Oriented Software Development, ACM
Press, 2005. 

8. U.S.L. System Unix, System V Application Binary Inter-
face Intel 386 Architecture Processor Supplement, 4th
ed., Prentice Hall, 1994; www.caldera.com/developers/
devspecs/abi386-4.pdf. 

9. Tool Interface Standard (TIS) Executable and Linking
Format (ELF) Specification, v. 1.2, Tool Interface Stan-
dards Committee, May 1995; www.cs.princeton.edu/
courses/archive/fall05/cos217/reading/elf.pdf.

10. D. Fisher and G. Saksena, “Link Prefetching in Mozilla:
A Server-Driven Approach,” Proc. 8th Int’l Workshop
Web Content Caching and Distribution (IWCW8), Klu-
wer Academic, 2004, pp. 283–292; http://2003.iwcw.
org/papers/fisher.pdf. 

11. K.-I. Chinen and S. Yamaguchi, “An Interactive Pre-
fetching Proxy Server for Improvement of WWW La-
tency,” Proc. 7th Ann. Conf. Internet Soc. (INET 97),
Internet Soc., 1997; www.isoc.org/inet97/proceedings/
A1/A1-3.HTM.   

12. A. Gupta and G. Baehr, “Ad Insertion at Proxies to Im-
prove Cache Hit Rates,” Proc. 4th Int’l Web Caching
Workshop, 1999; www.ircache.net/Cache/Workshop99/
Papers/gupta-final.ps.gz. 

13. A. Rousskov and D. Wessels, “High-Performance
Benchmarking with Web Polygraph,” Software Practice
and Experience, vol. 34, no. 2, 2004, pp. 187–211.

14. T. Fritz et al., “Automating Adaptive Image Generation
for Medical Devices Using Aspect-Oriented Program-
ming,” Proc. 10th IEEE Int’l Conf. Emerging Tech-
nologies and Factory Automation (ETFA 05), IEEE
Press, 2005.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

J a n u a r y / F e b r u a r y  2 0 0 6 I E E E  S O F T W A R E 4 1

About the Authors

Marc Ségura-Devillechaise is a project leader in the research and development
department at the Credit Cooperatif Bank. His research interests range from software engi-
neering to programming language implementations. He received his PhD in computer science
and a European master's degree in object-oriented and software engineering technologies
from Université de Nantes. Contact him at École des Mines de Nantes-INRIA, LINA, 4, rue Al-
fred Kastler, 44307 Nantes Cedex 3, France; msegura501@yahoo.fr.

Jean-Marc Menaud is an assistant professor of computer science at the École des Mines
de Nantes. His research interests include cache cooperative systems for large-scale distributed
information systems. He received his PhD in computer science from the University of Rennes.
Contact him at École des Mines de Nantes-INRIA, LINA, 4, rue Alfred Kastler, 44307 Nantes
Cedex 3, France; jmenaud@emn.fr.

Nicolas Loriant is a PhD student in the Obasco Group of the École des Mines de Nantes.
His research focuses on software engineering, aspect-oriented programming, and on-the-fly
patching. He received his degree in computer science from Université de Nantes. Contact him
at École des Mines de Nantes-INRIA, LINA, 4, rue Alfred Kastler, 44307 Nantes Cedex 3,
France; nloriant@emn.fr.

Thomas Fritz is a graduate student in computer science at the University of British Co-
lumbia. He received a Diploma degree in computer science from the Ludwig Maximilians Uni-
versity. His research interests include software engineering, and aspect-oriented software devel-
opment in particular. Contact him at the Software Practices Lab, Univ. of British Columbia,
201-2366 Main Mall, Vancouver, BC V6T 1Z4, Canada; fritz@cs.ubc.ca.

Rémi Douence is an assistant professor in computer science at Écoles des Mines de
Nantes. His research focuses on programming languages in general and in AOP in particular.
He received his PhD in computer science from Inria of Rennes and did a year of postdoctoral
research at Carnegie Mellon University. Contact him at École des Mines de Nantes-INRIA, LINA,
4, rue Alfred Kastler, 44307 Nantes Cedex 3, France; douence@emn.fr.

Mario Südholt is a researcher in computer science at Institut National de Récherche en
Informatique et en Automatique, on sabbatical from École des Mines de Nantes. His current re-
search focuses on the formal definition and realization of expressive approaches for aspect-ori-
ented programming and support for composition based on more powerful notions of component
interfaces. He received his PhD in computer science from the Technical University of Berlin and
did postdoctoral research at IRISA/INRIA. Contact him at École des Mines de Nantes-INRIA,
LINA, 4, rue Alfred Kastler, 44307 Nantes Cedex 3, France; sudholt@emn.fr.

Egon Wuchner is a software engineering researcher at Siemens Corporate Technology
R&D division. His research interests include the concepts, technologies, and tools needed to im-
prove large systems' comprehensibility, maintainability, and handling of operational require-
ments, and thus aspect-oriented software development. Contact him at Corporate Technology,
SE2, Siemens AG, Otto-Hahn-Ring 6, 81739 München, Germany; egon.wuchner@siemens.com.


