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Abstract. In this paper, we discuss the comparison of expected rewards for
discrete-time reward Markov chains with different state spaces. Necessary and suffi-
cient conditions for such a comparison are derived. Due to the special nature of the
introduced binary relation, a criterion may be formulated in terms of an inclusion
of polyhedral sets. Then, algebraic and geometric forms are easily obtained from
Haar’s Lemma. Our results allow us to discuss some earlier results on the stochastic
comparison of functions of Markov chains.
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Basic notation

• For all m ∈ N∗, ≤m is the component-wise ordering of Rm.
• Vectors are column vectors. ()> is the standard transpose operator.
• 1k (resp. 0k) denotes the k-dimensional vector with all components equal

to 1 (resp. 0).
• ∀k ≥ 1, the set Sk denotes the set of all k-dimensional stochastic vectors.
• The set of real (resp. non-negative) k×n-matrices is denoted by Mk,n(R)

(resp. Mk,n(R+)). 0m,k is the element of Mm,k(R) with all coefficients
equal to 0. Ik is the identity element of Mk,k(R).

• If G1 ∈Mm,n1(R), G2 ∈Mm,n2(R), then (G1 | G2) ∈Mm,n1+n2(R).

∗ Partially supported by the MATHSTIC CNRS project entitled Contrôle de
systèmes à événements discrets via des techniques de comparaison et de réduction
de systèmes stochastiques
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• If A,B ∈ Mm,n(R) then A ≤ B denotes the entry-wise comparison of
the matrices A and B.

1 Introduction

A discrete-time autonomous linear state-space model is the basic model in
control theory specified by{

x(0) ∈ Rd, x(n+ 1) = Ax(n), n ∈ N
ox(n) = Rx(n). (1)

where A ∈ Md,d(R) and R ∈ Ml,d(R). (x(n)) is the sequence of states of
the system and (ox(n)) the sequence of outputs. Such a system is said to be
positive [1] if, for any x(0) ∈ Rd, we have

0d ≤d x(0) =⇒ ∀n ∈ N, 0d ≤d x(n) and 0l ≤l ox(n).

Then, it is easily seen that the autonomous linear state-space model (1) is
positive iff 0d,d ≤ A and 0l,d ≤ R. We refer to [1] for a detailed account
for the theory and applications of such models. We only deal here with posi-
tive autonomous linear state-space model for which A is a stochastic matrix.
Specifically, the Markov reward models are considered.

A Markov reward model is a very general stochastic model. It is used, for
instance, in assessing the performability of systems [2] which is a measure
combining dependability and performance aspects of a system. Let us recall
the basic setup for such a class of models. We consider a E -valued Markov
chain (X(n)) where E is a finite set and A its transition probabilities matrix,
i.e. ∀i, j ∈ E , Aj,i = P (X(n + 1) = j | X(n) = i). Suppose that (X(n)) is a
Markovian model of some system. Now, a cost or reward ri ≥ 0 is associated
with each visit of (X(n)) to the state i ∈ E . Then, the random variable rX(n) is
the instantaneous reward “gained” at time n. The d-dimensional non-negative
vector r corresponding to the family of rewards {ri | i ∈ E } is often related to
a specific management/maintenance policy. With this simple Markov reward
model, we associate the autonomous linear state-space model specified by

(d,A, 1, r>) :
{

x(0) ∈ Sd, x(n+ 1) = Ax(n), n ∈ N
ox(n) = r>x(n). (2)

The scalar output ox(n) is the expected reward at time n for the vector of
rewards r. Then, we can be interested in comparing two policies which are
identified to the two vectors r and r′. We define two autonomous linear state-
space models (d,A, 1, r>) and (d,A, 1, r′>) as in (2). We can compare their
output sequences through the usual ordering on R. A slightly more general
situation is the comparison of two different weightings of the same family of
policies. Indeed, let us identify the policies r1, r2, . . . , rl to a l× d-matrix R.
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We consider two vectors of weights : c = (c1, . . . , cl) and c′ = (c′1, . . . , c
′
l). The

following autonomous linear state-space model is defined by

(d,A, l,R) :
{

x(0) ∈ Sd, x(n+ 1) = Ax(n), n ∈ N
ox(n) = Rx(n). (3)

The vector ox(n) is the vector of expected reward “gained” at time n according
to the different policies of “rewarding”. Then, we analyze the output sequence
(ox(n)) via

c>ox(n) ≤ c′>ox(n).

The two previous situations is easily adapted to the case where the underlying
Markov chains are different, that is we compare two different Markov models.
Thus, we can be interested in comparing various models of the same system
through their corresponding maintenance policies. In other words, we deal
with a decision making problem in a context of multi-criteria and multi-models
of a system. Therefore, the general comparison of the output sequences of
(multi-dimensional) Markov reward models should be investigated. This paper
proposes criteria for two such sequences to be comparable with respect to the
binary relation defined, for any (x,y) ∈ Rl × Rl′ , by

x ≤
C,C′

y
def⇐⇒ Cx ≤m C ′y, (4)

where C ∈ Mm,l(R) and C ′ ∈ Mm,l′(R). This binary relation should be
thought of as an abstract version of an integral stochastic order for discrete
random variables (e.g. see [3, Chap 2]). Let (ox(n)), (oy(n)) be the output
sequences of the systems (d,A, l,R) and (d′,A′, l′,R′) as defined in (3). We
investigate the conditions under which the assertion: ∀x(0) ∈ Rd,∀y(0) ∈ Rd′(

x(0) ∈ Sd,y(0) ∈ Sd′ , ox(0) ≤
C,C′

oy(0)
)

=⇒ ∀n ∈ N,ox(n) ≤
C,C′

oy(n),

(5)
is true. In this case, the two Markov reward models (d,A, l,R) and
(d′,A′, l′,R′) are said to be (C,C ′)-comparable.

The paper is organized as follows. Useful results on the polyhedrons and
polyhedral sets inclusion are recalled below. In Section 2, necessary and suffi-
cient conditions for (5) to be true are provided. In Section 3, the comparison
of functions of Markov chains and related works are discussed. We conclude
in Section 4.

The basic materials to our approach is now reported.

Inclusion of polyhedrons and invariance sets

The polyhedron associated with P ∈Mm,k(R) and p ∈ Rm is defined by

P(P ,p) := {x ∈ Rk | Px ≤m p}. (6)
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Recall that Sk, Sk×Sk′ are polyhedrons and the intersect of two polyhedrons
is a polyhedron.

We restate a result proved by Haar [4] that provides an algebraic charac-
terization of the inclusion of two polyhedral sets.

Lemma 1 (Haar). Let P ∈Mm,k(R),Q ∈Mr,k(R) and p ∈ Rm, q ∈ Rr. If
P(P ,p) 6= ∅ then

P(P ,p) ⊆ P(Q, q) ⇐⇒ ∃H ∈Mr,m(R+) : Q = HP and Hp ≤r q.

Now, we recall the connection between the inclusion of polyhedrons and
the invariant sets. A reference for such material is [5] for instance.

Definition 1. A subset V of Rk is said to be positively invariant under M ∈
Mm,k(R) if MV ⊆ V, where MV := {Mx | x ∈ V}.

The following corollary of Haar’s lemma is our basic tool for deriving our
results.

Lemma 2. Let P ∈Mm,k(R), M ∈Mk,k(R) and p, q ∈ Rm.
If P(P ,p) 6= ∅, then we have

M P(P ,p) ⊆ P(P , q) ⇐⇒ P(P ,p) ⊆ P(PM , q)
⇐⇒ ∃H ∈Mm,m(R+) : PM = HP and Hp ≤m q.

2 Comparison of multi-dimensional Markov reward
models

Let E and F be two finite sets with respective cardinal d and d′. Introduce
two Markov chains (X(n)) and (Y (n)) with respective state spaces E ,F and
transition probabilities matrices A and A′. The probability distribution of the
random variable X(n) (resp. Y (n)) is denoted by x(n) (resp. y(n)). Let us
consider the corresponding autonomous linear state-space models (d,A, l,R)
and (d′,A′, l′,R′) as in (3). The l × d (resp. l′ × d′) matrix R (resp. R′)
is called the rewards matrix associated with (X(n)) (resp. (Y (n))). The au-
tonomous linear state-space model (d,A, l,R) is called a multi-dimensional
Markov reward model associated with the Markov chain (X(n)) (or the sto-
chastic matrix A) and the rewards matrix R. The output ox(n) (resp. oy(n))
is the multi-dimensional expected reward at time n. Note that the sequence
(ox(n)) does not have a linear dynamics in general.

Define RSd := {Rx, x ∈ Sd} and R′Sd′ := {R′y, y ∈ Sd′}. Let us
introduce the following condition for C ∈Mm,l(R) and C ′ ∈Mm,l′(R):

H : {(x,y) ∈ RSd ×R′Sd′ | Cx ≤m C ′y} 6= ∅. (7)

Now, the main result of this section is proved by applying Lemma 2 to
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P :=



CR −C ′R′

−Id 0d,d′
0d′,d −Id′

1Td 0Td′
−1Td 0Td′
0Td 1Td′
0Td −1Td′


, p :=


0m+d+d′

1
−1
1
−1



and the following stochastic matrix as matrix M : M(A,A′) :=(
A 0d,d′

0d′,d A′

)
. We omit the details for saving space.

Theorem 1. Assume H. The multi-dimensional Markov reward models
(d,A, l,R) and (d′,A′, l′,R′) are said to be (C,C ′)-comparable iff any of
the following conditions is satisfied:

1. P
(
(CR | −C ′R′),0m

)
∩Sd×Sd′ ⊆ P

(
(CRA | −C ′R′A′),0m

)
∩Sd×Sd′ .

2. Geometric criterion. The polyhedron P
(
(CR | −C ′R′),0m

)
∩Sd×Sd′

is positively invariant under the matrix M(A,A′).
3. Algebraic criterion. There exist H ∈ Mm,m(R+) and vectors u,v ∈

Rm such that

−u1>d ≤ HCR−CRA, HC ′R′ −C ′R′A′ ≤ v1>d′ , u + v ≤m 0m.

The monotonicity property of a multi-dimensional Markov reward model
is now introduced from (5).

Definition 2. A multi-dimensional Markov reward model (d,A, l,R) is said
to be (C,C ′)-monotone when we have, for any x1(0),x2(0) ∈ Rd,(

x1(0),x2(0) ∈ Sd, ox1(0) ≤
C,C′

ox2(0)
)

=⇒ ∀n ∈ N,ox1(n) ≤
C,C′

ox2(n).

The following criteria for the (C,C ′)-monotonicity of the Markov reward
model (d,A, l,R) is deduced from Theorem 1 with A = A′.

Corollary 1. Assume H. The multi-dimensional Markov reward model
(d,A, l,R) is (C,C ′)-monotone iff any of the following conditions is satisfied:

1. P
(
(CR | −C ′R),0m

)
∩Sd×Sd′ ⊆ P

(
(CRA | −C ′RA),0m

)
∩Sd×Sd′ .

2. Geometric criterion. The polyhedron P
((

CR | −C ′R),0m
)
∩Sd×Sd′

is positively invariant under the matrix M(A,A).
3. Algebraic criterion. There exist H ∈ Mm,m(R+) and vectors u,v ∈

Rm such that

−u1>d ≤ HCR−CRA, HC ′R−C ′RA ≤ v1>d , u + v ≤m 0m.

These results provide comparison conditions of the marginal distributions
of functions of Markov chains. Thus, earlier results on stochastic comparison
of functions of Markov chains is discussed below.



54 Mourad Ahmane, James Ledoux, and Laurent Truffet

3 Functions of Markov chains

Let (X(n)) and (Y (n)) be two Markov chains with respective state spaces E :=
{e1, . . . , ed},F := {f1, . . . fd′} and transition probabilities matrices A,A′. Let
G ,G ′ be the finite sets {g1, . . . , gl} and {g′1, . . . , g′l′} respectively. Consider two
maps ϕ : E → G and ψ : F → G ′. The matrices R and R′ are specified as
follows

R(j, k) := 1 if ϕ(ek) = gj and R(j, k) := 0 otherwise
R′(j, k) := 1 if ψ(fk) = g′j and R′(j, k) := 0 otherwise. (8)

The processes (ϕ(X(n))) and (ψ(Y (n))) are said to be (deterministic) func-
tions of Markov chains. The sequence of outputs (ox(n)) does not have a linear
dynamics in general. Conditions on the matrix A under which (ox(n)) also
follows a linear dynamics may be found in [6]. Since R is stochastic, note that
the condition H has the form P

(
(C | −C ′),0m

)
6= ∅.

The stochastic comparison of one-dimensional distributions of functions of
Markov chains is well-known. This kind of problem is motivated for instance by
performance evaluation and/or optimization of telecommunications networks
(e.g. see [7]), by reliability assessment (e.g. see [8]). It also appears when
we look for Markovian bounds on the output stream of a queuing network
(e.g. see[9]). Some contributions on the comparison of the one-dimensional
distributions of functions of Markov chains are the following. We refer to the
original reference for the full details.

Doisy’s work.

Doisy studied the comparison of functions of Markov chains using a coupling
technique [8]. The setting is as follows

– G = G ′ (and thus l = l′) and there exists a partial order ≺ on G ;
– C = C ′ = UG

st ∈ Mm,l(R), where UG
st denotes the matrix associated

with the so-called strong ordering based on the partial order ≺ defined
on G . It means that each row of matrix UG

st corresponds to the indicator
function of an ≺-increasing subset of G . Recall that a ≺-increasing set
γ ⊆ G is defined by: γ := {g ∈ G : ∀g′ ∈ G (g ≺ g′ ⇒ g′ ∈ γ)}. Let us
note that when ≺ is a total order then UG

st is the l × l matrix defined by:
UG
st := [1{g≺g′}]g,g′∈G where 1{·} is the indicator function of the set {·}

(see also Kijima [10, Chap 3 and references therein]).
– two maps ϕ : E → G and ψ : F → G with associated matrices R and R′

defined in (8).

Doisy introduced the following definition of the (ϕ,ψ)-comparison of the two
stochastic matrices A and A′ [8, Def 1, Section 3]:

A ≤ϕ,ψ A′ ⇔
(
ei ∈ E , fj ∈ F , ϕ(ei) ≺ ψ(fj) ⇒ RAδi ≤

UG
st,U

G
st

R′A′δ′j
)
, (9)
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where (δi)i=1,...,d and (δ′j)j=1,...,d′ denote the canonical basis of Rd and Rd′ ,
respectively. The strongest connected result of Doisy is reformulated as follows
[8, Prop 2 and Th 4, Section 3].

Property 1. Let (d,A, l,R) and (d′,A′, l,R′) be two multi-dimensional
Markov reward models as defined in (3). Then, A ≤ϕ,ψ A′ iff (d,A, l,R)
and (d′,A′, l,R′) are (UG

st,U
G
st)-comparable.

The “only if” part was algebraically proved using the definition of the
(UG

st,U
G
st)-comparability of (d,A, l,R) and (d′,A′, l,R′). Doisy’s proof of the

“if part” is based on the construction of a suitable coupling of the underlying
Markov chains. An algebraic proof of the ‘if part” is provided from Theorem 1-
(3). Indeed, we know the following criterion for the (UG

st,U
G
st)-comparison to

hold: there exist H ∈Mm,m(R+) and u,v ∈ Rm such that

−u1>d ≤HUG
stR−UG

stRA (10a)

HUG
stR

′ −UG
stR

′A′ ≤ v1>d′ (10b)
u + v ≤m 0m. (10c)

We must prove that properties (10a-10c) implies that A ≤ϕ,ψ A′. First, note
that for any ei ∈ E and fj ∈ F , we have

ϕ(ei) ≺ ψ(fj) ⇐⇒ Rδi ≤
UG

st,U
G
st

R′δ′j ⇐⇒ UG
stRδi ≤m UG

stR
′δ′j .

Since H ∈Mm,m(R+), we have

HUG
stRδi ≤m HUG

stR
′δ′j . (11)

Second, suppose that the conditions (10a-10c) hold. We find that

UG
stRAδi ≤m HUG

stRδi + u from (10a)
≤m HUG

stRδi − v from (10c)
≤m HUG

stR
′δ′j − v from (11)

≤m UG
stR

′A′δ′j from (10b).

Thus, we find from (9) that A ≤ϕ,ψ A′. The proof is complete.
The comparison of the finite-dimensional distributions of functions of

Markov chains (also called in this context coupling condition) may be achieved
from condition (9) due to a special property of the strong ordering.

Abu-Amsha and Vincent’s work.

These authors considered the following setting in [11]:

– E is assumed to be totally ordered finite set;
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– G = G ′ = F (thus l = l′ = d′);
– R′ = Id′ , that is ψ = id;
– C = C ′ (that implies m = d = d′) is assumed to be invertible.

The authors founded the following sufficient condition for the Markov reward
models (d,A, l,R) and (d,A′, l, Id) to be comparable:

CRA ≤ CA′R and 0d,d ≤ CA′C−1.

The conditions above are equivalent to : ∃H ∈Md,d(R+) such that

CRA ≤ CA′R and CA′ = HC.

It is easily checked that the algebraic criterion reported in Theorem 1 is ful-
filled. However, it is also clear from Theorem 1 that these conditions are not
necessary.

4 Conclusion

Criteria for the (C,C ′)-comparison of multi-dimensional Markov rewards are
provided using Haar’s lemma. In particular, this applied to the comparison of
(deterministic) functions of Markov chains. Note that the probabilistic func-
tions of Markov chains or the Hidden Markov models can also be considered.
We do not go into further details here.
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