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Optimal Highway Maintenance Policies under Uncertainty 
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SUMMARY & CONCLUSIONS 

We develop an inspection and maintenance policy to 
minimize the cost of maintaining a given section of road or 
highway when there is a great deal of uncertainty in the 
degradation process. We propose to model the degradation of 
a section of road based on the proliferation and growth of 
cracks. We utilize a combination of a Poisson and gamma 
process to account for the tremendous amount of uncertainty 
and difficulty in predicting the proliferation of cracks. Our 
policy defines the optimal inspection interval as well as the 
minimum threshold at which to perform crack repairs. 
Furthermore, our policy contains a safety constraint to prevent 
the probability of a “catastrophic” failure from exceeding a 
pre-determined reliability value. Numerical calculations have 
shown that our model will extend the lifecycle of the road by 
performing preventive, conditioned-based maintenance to 
slow down the growth of cracks. Classical preventive 
maintenance policies usually shorten the lifecycle by forcing 
earlier renewals. 

1 INTRODUCTION 

In the year 2000, the United States had almost US$31 
billion in highway maintenance expenditures [1]. In order to 
devise an effective maintenance/rehabilitation strategy, an 
accurate model for the degradation of roads is needed. Cracks, 
specifically longitudinal wheel-path cracks in the pavement, 
are the primary cause for road maintenance. Myers et al. [2] 
reported that over 90% of road sections in Florida that are in 
need of repair have such cracks. The proliferation of a crack in 
asphalt concrete operates as follows. The traffic load applied 
to the pavement surface generates tensile stresses at the 
bottom of the asphalt layer. For new pavement, the tensile 
strength of the asphalt concrete initially exceeds the stress 
applied by the traffic load, and thus will remain free of cracks 
for a period of time. However, as the tensile strength of the 
road begins to degrade, fatigue cracks will initiate at weak 
spots at the bottom of the asphalt layer and overtime these 
cracks will propagate through the asphalt layer to the surface. 
The size of the crack will eventually reach some unacceptable 
level at which maintenance and/or rehabilitation becomes 
necessary. As cracks increase in size, contaminants are able to 
more easily infiltrate the road and disrupt the bond of 
pavement materials if they are not properly sealed, thus 
leading to further degradation. 

We propose to develop an accurate model of road 
degradation using longitudinal surface cracks. We decompose 
the cracking process into two phases: 1) the crack initiation 
and 2) the crack propagation. Based on this degradation model 
we will formulate an optimal policy for highway inspection in 
conjunction with maintenance and rehabilitation actions.  

2 MOTIVATION 

The development of mathematical models for road 
maintenance became prevalent with the Pavement 
Management System (PMS) developed by Golbai et al. [3] for 
the Arizona Department of Transportation (ADODT) and 
Woodward-Clyde Consultants. The PMS contains a Network 
Optimization System (NOS) which consists of two Markov 
decision models. Wang and Zaniewski [4] report that the PMS 
achieved dramatic cost savings at the ADODT and has gone 
on to be implemented in various forms by other highway 
agencies. 

Markov processes make up the majority of stochastic 
modeling approaches for pavement maintenance/rehabilitation 
[5]. The underlying degradation model of the Markov process 
is obtained either through statistical analysis of pavement data 
or some representative model. The greatest challenge in this 
approach is that an accurate degradation model is needed to 
construct the transition probability matrix of the Markov 
chain. Specifically a probability associated with each state 
transition. 

Many degradation models also deal with the propagation 
of cracks in a wide variety of settings and are largely based on 
the Paris and Erdogan [6] equation. The transition probability 
matrix approach may be utilized with either the general or 
crack-specific approach, while the Paris and Erdogan (1963) 
equation applies specifically to propagation of cracks as a 
function of applied stress.  

Wu and Ni [7] found that a stationary Markov chain 
model with a transition probability matrix based on statistical 
data does not accurately describe a crack growth process. 
They also note that while the Markov chain approach is often 
criticized for its accuracy, Yang’s model [5] and the 
polynomial model have parameters that are difficult to 
determine and must be obtained from a large sample of crack 
growth measurements and observations.  

There is a tremendous amount of uncertainty in 
degradation models due to the variability in material 
properties, environmental conditions, and traffic patterns [5]. 



Due to the difficulty in estimating the underlying degradation 
of the Markov chain approach and parameters for the Paris 
and Erdogan equation we propose the use of gamma processes 
to model the crack growth. Gamma processes have recently 
received a tremendous amount of attention in the reliability 
and maintainability literature as means to the model 
degradation of many civil engineering structures under 
uncertainty [8]. 

The use of a gamma process to model crack growth in 
conjunction with a Poisson for the appearance of a crack was 
first proposed by van Noortwijk et al. [9] for the modeling of 
scour holes of the Eastern-Scheldt barrier in the Netherlands. 
This work was then extended by van Noortwijk and Klatter 
[10] to allow the scour erosion to be decreasing rather than 
constant. We propose to further extend this model by applying 
it to road maintenance. We model the appearance of a crack in 
the road as a Poisson process and the propagation of the crack 
as a gamma process. The two previous models assumed that 
only one action was possible upon detection of a scour hole. 
No decision had to be made; a repair was automatically 
initiated. We allow for three possible actions: 1) do nothing, 2) 
maintenance: repair the crack, or 3) rehabilitation: completely 
resurface the section of road. Furthermore, we implement a 
safety constraint to ensure that the state of the road does not 
fall below a pre-determined threshold with a given reliability. 

The evaluation of the size of a crack is a valuable metric 
for determining the optimal maintenance and rehabilitation 
strategy for roads [11]. The primary method used by most 
state departments of transportation in the United States to 
evaluate crack depths in pavement is core sampling. This 
method is time-consuming, costly, and destructive. 
Nondestructive techniques such as impact-echo or ultrasound 
do exist [12, 13], however they are designed for use on 
concrete and not suitable for the asphalt pavement of roads. 
However, longitudinal surface cracks may be inspected 
visually and accurately without causing further damage to the 
road itself. It can also be assumed that a strong correlation 
exists between the length and the depth of the crack. The 
objective of this paper is to formulate an optimal inspection 
and maintenance/rehabilitation policy based on cracks in the 
road. 

3 MODEL ASSUMPTIONS 

Surface cracks can be detected via visual inspection. As 
previously mentioned, this has the advantage of being both 
non-destructive and extremely accurate. For our model, 
inspection is assumed to occur in a constant, periodic manner 
where the detection and measurement of a crack are assumed 
to be perfect. We denote the length of equivalent inspection 
intervals as •. A periodic inspection policy is chosen for 
practical purposes so transportation departments can 
effectively budget and schedule the funds and manpower 
necessary. Inspection is also assumed to occur 
instantaneously. In practice, a special vehicle outfitted with a 
video camera films the road so that the actual human visual 
assessment of the road can occur in a lab. This prevents road 
closures and allows for more accurate measurements than in 

the field. For our cost model formulation we let cs represent 
the fixed cost for inspecting a given length of road.  

Let Ni be the number of cracks that appear at the end of 
the i th period since the last inspection. Further, consider some 
crack },,2,1{ iNj K∈ where the length of the crack j at time t, t 
• 0 is denoted as Lj(t) where l j(0) = 0 (l j denotes a specific 
instance of the random variable Lj). The arrival times (T1, T2, 
…) of initiated cracks are assumed to follow a Poisson process 
with intensity parameter • and thus be exchangeable and 
memoryless. While we recognize that the initiation of cracks 
overtime is most likely a non-stationary process, the stationary 
assumption is made to facilitate parameter estimation in 
practice. Once a crack has been initiated, its length 
propagation is modeled by a gamma process with shape 
function •t > 0 and scale parameter • > 0. This process denotes 
a constant crack growth with a linear trend. The initiation and 
growth process of a crack is shown in Figure 1. 

Figure 1 – Crack Initiation and Growth Process 

4 PROBLEM STATEMENT 

As mentioned above, there are three possible actions after 
inspection occurs. It must first be decided whether to “do 
nothing” or take some action (i.e., maintenance or 
rehabilitation). No action will be taken during a given 
inspection period if the total length of all observed cracks is 
less than the decision variable •. We must optimize • in order 
to determine the maximum threshold in which it is optimal to 
take no action with the road. Therefore, the “do nothing” 
action is taken if: 
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If the decision is made that some action must be taken, 
then an evaluation must be made as to whether to maintain or 
rehabilitate the road. A rehabilitation action is defined as the 
complete resurfacing of the road to an as-good-as-new 
condition. Thus, rehabilitation is a complete renewal point. A 
maintenance action is defined as repairing each crack on an 
individual basis to an as-good-as-new condition. For our 
model, this is a semi-renewal point as we will be tracking the 
total number of repaired cracks as an indicator for when a 
rehabilitation action is needed. 

Repairs, if carried out, are assumed to occur 
instantaneously and immediately after their detection and be 
perfect in nature. Let the cost of maintenance at the end of the 
i th time period be Cm(i) with both a fixed and a linear variable 
cost component denoted cf and cv, respectively. Their 
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relationship is defined as follows: 
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The cost of rehabilitation, denoted cr, is a singled fixed 
cost per section of road under consideration and leads to a 
complete renewal of the process. Furthermore, it is assumed 
that cr >> cm,i such that cr + cm,i ~ cr. Stipulating that the cost of 
rehabilitation is much larger than the cost to repair individual 
cracks ensures our model will not choose to preemptively 
rehabilitate and also reflects the real world cost, man-power, 
and political problems associated with shutting down and 
resurfacing a section of road or highway. A rehabilitation 
action is considered to occur immediately upon recognition of 
the need and be instantaneous. The immediate and 
instantaneous assumption of the maintenance and 
rehabilitation actions is justified due to the relatively small 
amount of time required to carry out these actions in 
comparison to the total life of the road and the length of the 
inspection intervals. For quality and safety reasons, a 
rehabilitation action is deemed necessary when the total length 
of all cracks previously maintained, Lm, plus the total length of 
cracks in need of maintenance exceeds a threshold l r. lr is a 
given parameter that will vary depending on the length of the 
section of road under consideration and the quality standards 
of a particular area. This is necessary to prevent the road from 
becoming a complete patch work of repaired cracks. It is a 
value set by considering a number of different points of view 
such as engineering, management, cost control, local 
government priorities, and how much past repair is deemed 
tolerable on a given section of road. Thus, rehabilitation will 
occur if the following is true 
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Finally, we allow for a “safety rule” to ensure that our 
optimization model does not allow the probability of a given 
total length of all cracks in a section of road to exceed a 
specified safety threshold within an inspection interval. This 
requires two parameters: 1) the maximum total length of all 
cracks allowed at which point the road would be unsafe or 
unusable, denoted ls, and 2) the maximum allowable 
probability that the total length of all cracks will exceed the 
safety threshold ls. This maximum allowable probability is 
denoted ps. This safety rule is given by 
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The safety constraint also ensures that in our cost optimization 
model, the “do nothing” action is not taken at every inspection 
interval. 

The possible actions in our model are summarized in 
Figure 2 based on a hypothetical scenario that begins with a 
brand new road. The first inspection occurs at time •. Since the 
road is new, there are no previously repaired cracks and thus 
Lm(•) = 0 < lr and no rehabilitation action is taken. At end of • 
two cracks have formed, however, they are less than the repair 

threshold •, so no maintenance will occur either, leaving 
managers to “do nothing.”  At the end of 2•, the two initial 
cracks have continued to grow and a third has formed. There 
are still no previously repaired cracks and the total length of 
the three cracks does not exceed lr, so no rehabilitation action 
is performed. However, the total length of all three cracks now 
exceeds • and so a maintenance action is taken and the cracks 
are repaired. At the end of 3• two new cracks have formed. 
The previous cracks do not appear because they have been 
repaired. The total length of the two new cracks plus the total 
length of all previously repaired cracks do not yet exceed lr, so 
no rehabilitation action is performed. The two new cracks do 
exceed • so a repair action is taken. Finally at the end of the 4th 
inspection cycle, three more cracks have formed pushing the 
total length of all existing cracks plus the total length of all 
previous repaired cracks over lr, and the rehabilitation action is 
taken to completely renew the road. 

Figure 2 – Summary of Actions 

The goal of the maintenance decision model is to 
determine the optimal inspection interval •, and the optimum 
maintenance threshold •, that minimizes the expected average 
cost per time period given by 
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where E•(•) is the expectation defined by a Markov 
renewal cycle, Pm and PR are the long-run probabilities 
associated with performing maintenance and rehabilitation, 
respectively, and E(X(•)) is the expected value of the 
cumulative length of all cracks at time •. The derivation of 
these values is discussed in the next section. 

5 DETERMINING THE STATIONARY LAW 

We propose to solve our model by making use of Markov 
semi-renewal theory which allows us to only consider the 
semi-renewal period in evaluating the optimal infinite horizon 
solution. We define an inspection point (τ, 2τ, …)  as a semi-
renewal point of the Markov process. It is not a complete 
renewal as we are tracking the amount of crack repairs. We 
must determine the stationary law of the semi-renewal interval 
•. The stationary law dictates that the long-run probability 
distribution that governs the process for any time t in one 
inspection interval is equivalent for all other inspection 
intervals. We begin by defining the state of the system at time 
t, ),0( τ∈t : 

Lj(t) 

τ τ τ τ 



The initial state of the system in Markov semi-renewal 
theory can be specified based upon our knowledge of the 
system at a defined time t = 0. The stochastic processes being 
applied in our model allow for estimating the probabilities of 
system states before and after inspection and subsequent to 
any repairs or rehabilitation actions at any time t, based upon 
our specification of the initial state. The evolution of the 
system between 0 and t is referred to ft(x, n | x0, n0) where x0 is 
the initial cumulative length of all unrepaired cracks at the 
beginning of the inspection cycle and n0 is the initial number 
of cracks. 

We find that the expected length of crack growth in a 
given inspection period • given an initial number of cracks n0, 
and initial cumulative growth length x0, is given by 
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It should be noted that [ )γ,00 ∈x , Nn ∈0 , and y0 < lr. 
To define the density function for multiple cracks, we 

introduce the function f*n(x) that represents the nth convolution 
of the function f(x). Thus, Nnt ∈∀ , the density function is 
given by 
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where Ga(•) denotes the density function of the gamma 
distribution and  
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Finally, we define the stationary law in two parts. Let I 
denote a binary variable indicating whether a repair has been 
made since the last rehabilitation: I { y = 0} (no repairs), I{ • • y < lr } 
(repairs have been made). The stationary law is denoted as 
π(x, y, z) which represents the long-run probability of being in 
state (x, y, z). It is given by 

where PR is given by 
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Recall that PR is the long-run probability of performing a 
rehabilitation action. Thus, using the stationary law, we can 
compute the probability of performing a maintenance action as 
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We implement a 4-step algorithm for computing the 
stationary law beginning with an arbitrary value of PR. The 
algorithm operates as follows: 

1. Determine ( )0,0,0π̂ . 
2. Iteratively evaluate ( )0,,ˆ nxπ  for all x > 0, n. 
3. Evaluate ( )ynx ,,π̂  for all x > 0, n, y > 0. 
4. Solve for ( )ynx ,,π  by normalizing ( )ynx ,,π̂  i.e., 

 ( ) ( )
normP

ynx
ynx

,,ˆ
,,

ππ =    (12) 

where 

( )0,0,0π̂  is an estimate of ( )ynx ,,π  based on an arbitrary 
value of PR and is thus not a true density function as the 
probabilities do not sum to 1.  It is normalized by Pnorm which 
will cancel out PR and leave the true value of ( )ynx ,,π .  A 
three-dimensional plot of the stationary law for a given set of 
parameters is shown in Figure 3. The x and y axes represent 
the x and y variables, respectively. The z-axis 
represents ( )∑

∞
=1 ,,n ynxπ . 

In Figure 3 the semi-renewals are clearly seen as the value 
of y cycles through multiples of γ, in this instance γ = 10. The 
initial cycle after a rehabilitation has the highest probability of 
occurrence and each cycle after has a decreasing probability of 
occurrence due to the increase variability in the combinations 
of x and y values. 

From the stationary law, the optimal policy is found by 
searching for the minimum cost over an iteration of potential • 
and • values. The cost function (5) is a convex function of 
these parameters and the algorithm may be terminated once 
the cost begins to increase (i.e., if the iteration starts from • = 0 
and • = 0, the cost function will decrease until the optimum 
value is reached, after which the function will increase). 

6 NUMERICAL EXAMPLE 

Consider the following parameters for road degradation, 
maintenance costs and the limit on the maximum allowable 
repaired cracks: 

 
• = 0.1 • = 3 • = 10 lr = 60 
ci = 10 cf = 10 cv = 5 cr = 1000 
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Figure 3 – Density Function of the Stationary Law 

 
The plot in Figure 4 demonstrates the convexity of the 

cost function as a function of • for a fixed value of • = 10.  
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Figure 4 – Convexity of Cost Function 

Due to the convexity one knows they have reach the 
minimum cost as the cost curve will continue to decrease as a 
function of increasing γ values until the minimum is obtained 
and subsequent values of γ will cause the cost function to 
increase. 

7 DISCUSSION 

In this paper we have formulated an optimal inspection 
and maintenance policy for highways based on the state of the 
road. We are able to formulate this policy under conditions of 
great uncertainty as only 3 parameters are required for the 

degradation model, namely λ, α and β. This is a drastic 
reduction compared to other statistical and Markov chain 
approaches in the literature which require a tremendous 
amount of data for the statistical models. In practice one can 
easily estimate values of λ based on rate of appearance of 
cracks. α and β can also be easily be found and adjusted for 
various highway material compositions, traffic patterns, and 
environmental conditions without having to collect a large 
amount of data. Our policy is very easy to implement in 
practical settings as it gives maintenance managers the 
periodic inspection interval τ and clear guidelines on whether 
to “do nothing”, repair, or rehabilitate after each inspection. 
Solving for the optimal policy can be done quickly as the 
equations and algorithm have been coded to run on a 
computer. 
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