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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50617011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00538529v2


1 INTRODUCTION 
 
One of the most important objectives for the main-
tenance managers is to balance the maintenance ac-
tion costs with the investment cost. There is an in-
tensive research to provide the most appropriate 
strategies for organizing a set of maintenance actions 
generally based on complex degradation models to 
optimize a decision criterion. These models usually 
consider different maintenance actions from the “as 
good as new” replacement by an identical item, im-
perfect maintenance which restores the item to an 
acceptable condition and minimal or “as bad as old” 
repair. They do not allow us to take into account the 
appearance of new technology with lower operating 
and maintenance costs, smaller failure rates, higher 
quality and output rates. This information is impor-
tant for managers to decide the replacement invest-
ment plan. On the other side, the models devoted to 
the optimization of the investment planning with the 
introduction of the technological change (TC) are 
generally based on the observations of the economi-
cal performance of the maintenance process. The 
proposed models do not consider the diversity of 
maintenance decisions tackled by the deterioration-
based maintenance models.  

These reasons motivate us to provide an appropri-
ate model to meet the operational and strategic re-
quirements. This model is developed to organize 
both the maintenance and replacement decisions for 

a continuously deterioration system, under technolo-
gical evolution. 

Most of the references considering the influence 
of technology change are strictly economical-
oriented (Bethuyne 2002, Bean et al. 1994, Elton et 
al. 1976, Goldstein et al. 1986, Goldstein & Mehrez 
1996, Hritoneko & Yatsenko 2007, 2008a, b, 2009, 
Huisman & Kort 2004Nair 1995, 1997, Ott et al. 
1995, Smith et al. 2003, 2007, Rajagopalan 1999). 
Their approach are based more on the modeling of 
the maintenance process through cost functions such 
as evolution of the operating-maintenance cost in-
stead of the traditional failure indicators such as  the 
degradation or failure rate models. Thanks to these 
models, the managers can decide the best time for 
replacement investment of equipment under tech-
nological evolution but do not consider the mainten-
ance strategies as well as the impact of technology 
change on it. 

The present work continues in the direction intro-

duced by articles (Borgonovo et al. 2000, Clavareau 

& Labeau 2009a, b, Dogramaci & Fraiman 2004, 

Hopp & Nair 1994, Karsak & Tolga 1998, Michel et 

al. 2004, Mercier 2008) that take into account the 

failure characteristics of the equipment in the re-

placement problem under technological develop-

ment. We construct a model that allows us to decide 

whether to imperfectly maintain, to replace with a 

higher technology model currently available on the 
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enced by the expectation of future technology. We then use stochastic dynamic programming (i.e., Markov 

decision process) to solve for the optimal maintenance and replacement policy of the equipment as a function 

of performance and cost. Finally, we illustrate the problem through several numerical examples. 

 

 



market, or wait for a potentially even better technol-

ogy to appear in the near future. The technology evo-

lution is modeled by a non-homogenous Poisson 

process and the effect of a new technology is mea-

surable through the degradation characteristics. We 

also consider that performance of equipment in use 

will stochastically degrade over time due to deteri-

oration while its accrued profit and maintenance cost 

will stochastically decrease and increase respective-

ly. The objective of this paper is to maximize reve-

nue over a given planning period horizon. The reve-

nue is defined here as the difference of the incomes 

and the outcomes. The incomes are the profit, a 

function of the associated degradation level, and the 

salvage value in case of replacement which is in-

creasing in the expected mean residual life and pro-

portional to the purchase price of new identical item. 

The outcomes are the different maintenance costs 

and the purchase price in case of replacement with a 

new technology. A discrete time non-stationary 

Markov Decision Process (MDP) formulation is 

proposed to determine the optimal action plan. 
This paper is structured as follows: In Section 2, a 

related literature is presented to motivate the present 
work. Section 3 is devoted to the mathematical for-
mulation. In Section 4, the performance of our mod-
el is discussed through numerical examples. Finally, 
a conclusion and future work are discussed in Sec-
tion 5. 

2 RELATED LITERATURE 
 
There are few articles that consider the maintenance 
– replacement problem under technological devel-
opment with degradation performance. The articles 
of Clavareau & Labeau (2009a, b), Michel et al. 
(2004), Mercier (2008) examine preventive, correc-
tive replacement strategies of N identical compo-
nents. However, because of the complexity of the 
system, they must simplify the technological evolu-
tion model. They consider a single new technology 
that has already appeared on the market with deter-
ministic parameters. These assumptions are very li-
mited because the technology develops rapidly and 
continuously. In addition, they are interested only in 
finding the optimal policy to replace obsolete 
equipments by new type, without considering 
whether the replacements is necessary. In our model, 
to attach special importance to both the continuation 
and the flexibility of technological change, we sim-
plify the model by examining single equipment such 
as articles (Borgonovo et al. 2000, Hopp & Nair 
1994, Dogramaci & Fraiman 2004).  

We formulate a discrete time non-stationary Mar-
kov Decision Process to determine the optimal main-
tenance – replacement policy. The similar model 

with non-stationary technological appearance’s 
probability in time was proposed by Nair (1995, 
1997). However, in these papers, the author only 
considers replacement problem, not examining deci-
sion to maintenance as our model. Karsark & Tolga 
(1998) integrate overhaul policy into replacement 
problem. With geometric technological evolution 
model, they formulate a discrete time Markov deci-
sion process to determine an optimal overhaul-
replacement policy which maximizes the expected 
present worth over a finite horizon time. But they al-
so study this problem from manager’s point of view, 
not taking into account failure rate or deterioration 
process of machines. Considering of parametric per-
formance represented by a Markovian deterioration 
process, Hopp & Nair (1994) also utilize MDP algo-
rithm to dealing the equipment replacement problem 
under technological change. However, recall that 
they only consider the equipment replacement prob-
lem while our work also examines the decision of 
maintenance. On the other hand, unlike Hopp & Nair 
(1994) reviewing unique challenger, we study a 
technological sequence.  

To model sequential technological evolution, we 
combine the geometric model and uncertain appari-
tion model of technology. The geometric technologi-
cal evolution model is presented by Borgonovo et al. 
(2000), Smith et al. (2003), Karsak & Tolga (1998), 
Hritoneko & Yatsenko (2007, 2008a, b), Bethuyne 
(2002). But except Borgonovo et al. (2000), the rest 
study the problem without parametric degradation. 
They utilize the geometric model to form the cost 
functions in vintage equipment or in time. Unlike 
these articles, we present technology change by the 
improvement of the expected deterioration rate. 
Moreover, our profit or maintenance cost functions 
are only dependent on degradation state. As the ex-
pected degradation rate of equipments is improved 
over technology generation, accrued profit and main-
tenance cost will be dependent on technology gener-
ation.  

In addition, we also consider non-stationary like-
lihood of new technology’s apparition over time. 
Thereby, we overcome the disadvantages of the 
geometric model proposed by Borgonovo et al. 
(2000). In that article, the failure rate decreases ex-
ponentially over time, i.e. at any time, a machine can 
be replaced by new one which operates better with 
its reliability parameters determined at that time. In 
reality, this assumption is unreasonable because 
technical characteristics of the equipment can’t al-
ways be changed over time. It changes only at the 
concurrent instant of a new technological generation. 
Recall that Nair (1995, 1997) also considers the non-
stationary probability of the appearance of new tech-
nologies. But in his model, Nair focuses on the prob-
lem of capital investment decisions due to technolo-
gical change rather than physical deterioration of 
equipment. To simplify its exposition, he also don’t 



consider salvage values while we establish the rea-
sonable salvage value function which depends on its 
mean residual life and the purchase price of identical 
technology at this time. 

3 MODEL FORMULATION 

3.1 Maintenance problem 

Consider a repairable machine that operates conti-
nuously from the new state, X = 0, until a failure 
threshold, ζ. A machine is characterized by its ex-
pected deterioration rate. In the failure state, denoted 
m, the machine continues to operate but unprofita-
bly. To reveal the deterioration level, periodic in-
spections are performed. The inter-inspection inter-
val, τ, defines the decision epochs.  

We assume that only one new technology can ap-

pear in a decision interval, τ. We introduce 1

1





k

ip , the 

non stationary probability that technology k+1 ap-

pears in the interval τ given the latest available tech-

nology at decision epoch i is k. The difference in the 

technologies k and k+1 is modeled by an improve-

ment factor on the expected instantaneous deteriora-

tion rates.  
Let (x, k, j) be the system state at the beginning of 

the i
th

 decision epoch with observed deterioration 
level x when technology j is used and the technology 
k, k ≥ j, is available. Then, the maintenance decisions 
are restricted to: 

1) Do nothing (DN): The machine continues to 
deteriorate until next decision epoch and gene-
rates a profit g(x). Note that g(x) is the accrued 
profit within a period, depends only on the deteri-
oration state at the beginning of that period. This 
assumption is not very restrictive in case where 
the decision period is sufficiently small and the 
decreasing rate of the profit function in deteriora-
tion state is not very fast.   
2) Maintain (M) which allows to restore the ma-
chine in a given deterioration level, max(0, x-d) 
where d models the maintenance efficiency. An 
increasing maintenance cost in the deterioration, 
cM(x), is incurred and as we assume that the main-
tenance time is negligible, then, in the next deci-
sion interval, the machine deteriorates from the 
level x-d and generates a profit g(x-d).  

3) Replace (R) the equipment with the latest 

available technology k. The replacement time is 

also negligible. The cost of such a replacement is 

given by the difference between the purchase price 

of the new machine ci,k and the salvage value 

bi,j(x). The purchase price is an increasing function 

of technology and decreasing over time. The sal-

vage value is proportional to the purchase price of 

technology j and decreasing in the remaining life-

time. In the i
th

 decision period after the replace-

ment, the new machine generates a profit g(0). 

Note that as the deterioration rates of new tech-

nological machine, the purchase price can be es-

timated. This is realistic in case where the tech-

nical parameters and specifications of futures 

designs may be know beforehand.  
 In case of failure, the do nothing action is still al-
lowed but the profit in the next decision epoch is as-
sumed to be negative g(m) < 0.    

3.2 Decision criteria formulation 

In this paper, we use a non-stationary MDP formula-

tion to find the optimal maintenance-replacement 

policy to maximize the expected discounted value-

to-go over the finite horizon time denoted by V
π
(s). 

If the last decision period is N, at decision epoch 

N+1, we do not make any decision and the maxi-

mum expected discounted value-to-go from the deci-

sion epoch N+1 over the infinite horizon is VN+1(s) = 

0 ( Ss : state space of system).    
Let Vi(x,k,j) denote the maximum expected dis-

counted value from the decision epoch i, (k ≤ i) to 
the last epoch N. Then, V1(s) = V

π
(s). 

(x,k,j)} R(x,k,j) DM(x,k,j){DN (x,k,j) V iiii ,,max    

                     (1) 

where DNi, Mi, Ri are alternately choice to do noth-
ing, to maintain and to replace at decision epoch i

th
. 

We have: 
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 λ: discount factor;  λ   [0, 1]. 

3.3 Transition probabilities 

To compute the transition probabilities, we propose 
to discretize the deteriorating state of machine as fol-
lows. Let z denote the discrete deterioration state at 
the beginning of the current decision period. z is the 
first value of NX discrete intervals of length l on [0, 
ζ] (which ζ is the failure threshold of the machine). 
That is to say, if the deterioration state (x) at the be-
ginning of current decision period belongs to the in-
tervals ([0, l[, [l, 2l[, [2l, 3l[, ..., [(NX - 1)l, ζ[), we 
approximate x by z {0, l, 2l, 3l ... (NX-1)l} and 
when the deterioration state (x) at the beginning of 
current decision period is exceed the failure thre-
shold (x ≥ ζ), we use m to present failure state of the 



machine. The deterioration state of the machine (x) 
is approximated by z, z  {0, l, 2l, 3l ... (NX-1)l, m}. 
Then, after preventive maintenance, the deterioration 
state is reduced by a determined amount of deteriora-
tion units d. The transition probability is: 
 

'
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where x’  {z, z+l, …, (NX-1)l, ζ}; k’ {k, k+1} 

 Recall that the deterioration state of the machine 

at the next decision epoch depends only on its dete-

rioration state at the current epoch decision and the 

technological generation of this machine, denoted by 

pj(x’|x); and '

1

k

ip   is the appearance probability of the 

next technological generation (k+1) at the next deci-

sion epoch (i+1) with k’ = k+1 or inversely, it is the 

non-appearance probability with k’= k. 
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with z, z’  {0, l, 2l, 3l … (NX-1)l} and fj(y) is the 
probability density function of the deterioration 
process of the machine’s generation j

th
 within the 

decision period τ. Similarly, 

dyyfxmp
z

jj )()|( 






              (7) 

4 NUMERICAL EXAMPLES 
 
In this section, we present numerical examples to il-
lustrate the performance of our model. 
 

4.1 Input parameters 

4.1.1 The appearance probability of new technology 

We define the appearance probability of new tech-
nology k+1 at decision epoch i+1, given the latest 
available technology at decision epoch i is k, as a 
time increasing function:  

 )1(1

1

kik

ip 

                   (8) 

δ is the factor that reflects the non-appearance prob-

ability of next generation (k+1) at next decision 

epoch (i+1) when the latest available technology at 

the current epoch i is k and k   i. The smaller δ is, 

the greater appearance probability is. And ε is the 

factor characterized the increasing rate of the ap-

pearance probability of new technology over time; 

ie. if the technological generation k+1 is not appear 

at decision epoch i+1, then it can appear at the next 

decision epoch (i+2) with probability 1 - δε given the 

appearance probability of (k+1) at (i+1) is 1 - δ. We 

have: δ, ε  [0, 1].  

     

4.1.2 Deterioration process 

We consider the machine whose degradation process 
is modeled by the Gamma distribution: Gamma 
processes are often used to model the equipment’s 
degradation (Van der Weide et al. 2007, Van Noort-
wijk. 2009). 
 In any decision period, the increments of deteri-
oration Xj(i + 1) – Xj(i) are independent, identical, 
and follow the stationary Gamma distribution with 
shape parameter αjτ (recall that τ is length of a deci-
sion period) and scale parameter β. The probability 
density function of the deterioration process of the 
machine’s generation j in decision period τ is: 
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where β is a constant and a discussion for the im-

provement of αj is given in the next paragraph. 

 

4.1.3 Impacts of the technological evolution 

As we have assumed, the technological evolution 
aims to improve degradation characteristics, and 
specifically the expected degradation rate. In case of 
stationary gamma processes, this expected degrada-
tion rate is directly proportional to the shape parame-
ter αj. We model the impact of the technological 
evolution with the following decreasing exponential 
geometric function: 

bae j

j   )1(                (10) 

where κ, a, b are constants;  j ≥ 1. 
Due to technological development, the deteriora-

tion rate of the machine is improved. It is convergent 
to the critical value, b, but the deterioration could 
not be excluded. We choose arbitrarily κ, a, b such 
as values in Table 1.  

Additionally, under technological evolution, the 
purchase price of a new machine is assumed to be 
decreasing over time and normally increasing over 
technological generation: 

11

1,1,

 ki

ki uvcc                 (11)
 

where c1,1 is the purchase price the first of technolo-
gical generation at the first decision epoch; v is a 
constant, characterizing the decrease of purchase 
price over time (v ≤ 1) and u is constant, characteriz-
ing the change of the purchase price over technolo-
gical generation. We choose arbitrarily c1,1, v, u such 
as values in Table 1,  then ci,k is given in Table 2. 

We assume the salvage value is a function of the 
current purchase price of this technology at this deci-
sion epoch, and the Mean Residual Lifetime (MRL). 



According to the degradation assumptions, if x is the 
observed state, we define the MRL(x) as the expected 
number of decision epoch from the current decision 
epoch until the failure. In case of stationary gamma 
processes, the mean deterioration rate on a decision 
epoch is constant and equals to αjτ/β. Hence, we 
have: 

)(  )( xxMRL
j

 



.            (12) 

Then, we propose the following function for the sal-

vage value,  x ϵ [0, ζ] 

))](exp(1[)( ,, xrMRLhcxb jiji   
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j
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h, r are constant.  

4.1.4 The profit and maintenance cost function 

We know that the machine will operate less effi-
ciently when its deterioration state is greater. There-
fore, the expected accrued profit function in a deci-
sion period τ is decreasing by deterioration state and 
the greater the deterioration state is, the faster the 
decreases of the profit function is. To reflect this na-
ture, we use a decreasing concave function of deteri-
oration state x to characterize the accrued profit.  

)exp()(
1

0 xrrgxg g



                      (14) 

 x ϵ [0, ζ]; g0, rg are constant. 
 On the contrary, the greater the deterioration state 
is, the faster the increase of the maintenance cost 
function is. Therefore, we use an increasing convex 
maintenance cost function.    

)exp()(
1

0 xrrcxc cM



                   (15) 

 x ϵ [0, ζ]; c0, rc are constant. 

 

Table 1. The input parameters for the Example 1 

Appearance prob-
ability 

δ ε    

0.8 0.96    

Profit & Discount 
factor 

g0 rg λ   

213.2 1.2 0.8   

Maintenance & 
Failure threshold  

d c0 rC ζ  

1.4 3.322 0.178 20  

Deterioration 
process 

β a b κ NX 

2.22 3 0.4 0.4 100 

Salvage value & 
Purchase price 

h r c1,1 v u 

0.8 0.4 100 0.98 1.05  
 

Table 2. The purchase price for the Example 1 of the technolo-

gy k at decision epoch i, N = 5. 

i ci,1 ci,2 ci,3 ci,4 ci,5 

1 100     

2 98 102.9    

3 96.04 100.84 105.88   

4 94.12 98.83 103.77 108.95  

5 92.24 96.85 101.69 106.78 112.11 

 

4.2 Analysis from numerical experiments 

4.2.1 Basic properties of the optimal policy. 

The optimal policy for the Example 1 is given in Ta-
ble 3. For each decision epoch i, with the used tech-
nology j, given the generation k is the latest available 
technology, the decision matrix defines the optimal 
maintenance decision according to the current dete-
rioration x: Do nothing if x ϵ [x1, x2), maintain if x ϵ 
[x2, x3) and replace with the new technology if x ϵ 
[x3, x4]. 

 Table 3. The optimal policy in Example 1, N = 5 

i k,  j Do Nothing 

[x1,   x2) 

Maintenance 

[x2 ,   x3) 

Replacement 

[x3,   x4] 

1 1, 1  [0,  1.5) [1.5,  7.5) [7.5,   20] 

2 1, 1  [0,  2.3) [2.3,  7.7) [7.7,   20] 

2, 1 

2, 2 

 [0,  2.3) 

 [0,  2.9)  

[2.3,  8.3) 

[2.9 , 7.7) 

[8.3,   20]  

[7.7,   20]  

3 1, 1  [0,  3.7) [3.7,  8.3) [8.3,   20]  

2, 1 

2, 2 

 [0,  3.7) 

 [0,  4.3) 

[3.7,  9.1) 

[4.3,  8.3) 

[9.1,   20] 

[8.3,   20]  

3, 1 

3, 2 

3, 3 

 [0,  3.7) 

 [0,  4.3) 

 [0,  4.5) 

[3.7,  9.9) 

[4.3,  9.1) 

[4.5,  8.5) 

[9.9,   20]  

[9.1,   20]  

[8.5,   20]  

4 1, 1  [0,  5.9) [5.9,  9.5) [9.5,   20]  

2, 1 

2, 2 

 [0,  5.9) 

 [0,   6.1) 

[5.9, 10.5) 

[6.1,  9.3) 

[10.5, 20] 

[9.3,   20]  

3, 1 

3, 2 

3, 3 

 [0,  5.9) 

 [0,  6.1) 

 [0,  6.3) 

[5.9,  11.3) 

[6.1,  10.3) 

[6.3,   9.3) 

[11.3, 20]  

[10.3, 20] 

[9.3,   20] 

4, 1 

4, 2 

4, 3 

4, 4 

 [0,  5.9) 

 [0,  6.1) 

 [0,  6.3) 

 [0,  6.5) 

[5.9,  11.9) 

[6.1,   11.1) 

[6.3,   10.3) 

[6.5,     9.7)  

[11.9,  20]  

[11.1,  20] 

[10.3,  20]  

[9.7,    20]  

5 1, 1  [0, 10.1) [10.1, 12.9) [12.9,  20]  

2, 1 

2, 2 

 [0, 10.1) 

 [0, 10.1) 

[10.1, 13.7) 

[10.1, 11.7) 

[13.7,  20]  

[11.7,  20] 

3, 1 

3, 2 

3, 3 

 [0,  10.1) 

 [0,  10.1) 

[0,   10.1) 

[10.1, 14.5) 

[10.1, 12.9) 

[10.1, 11.5) 

[14.5,  20] 

 [12.9, 20]  

[11.5,  20]  

4, 1 

4, 2 

4, 3 

4, 4 

 [0,  10.1) 

 [0,  10.1) 

 [0,  10.1) 

 [0,  10.1) 

[10.1, 15.3) 

[10.1, 13.7) 

[10.1, 12.5) 

[10.1, 11.5) 

[15.3,  20]  

[13.7,  20] 

[12.5,  20]  

[11.5,  20]  

  5, 1 

  5, 2 

  5, 3 

  5, 4 

  [0,  10.1) 

[0,  10.1) 

[0,  10.1) 

[0,  10.1) 

[10.1, 15.9) 

[10.1, 14.5) 

[10.1, 13.3) 

[10.1, 12.5) 

[15.9,  20] 

[14.5,  20] 

 [13.3, 20] 

 [12.5, 20]  



  5, 5 [0,  10.1) [10.1, 11.7) [11.7,  20]  

 
 
We find that the optimal policy for Example 1, 

given in Table 3 has some basic properties: 
1) The maintenance threshold (x2), i.e. the first 
time where the optimal policy prescribes to main-
tain across deterioration state x, depends only on 
the technological generation of the used machine 
j. Consider, for example, at decision epoch i = 3, 
the used technology j = 1, for which the optimal 
policy prescribes maintenance from the deteriora-
tion state x2 = 3.7 despite the latest available 
technology k = 1, 2, or 3. Moreover, the greater 
the used technology is, the higher the threshold is, 
because deterioration rate is improved under 
technological development. For example, at i = 3, 
k = 3, this threshold is: x2 = 3.7; 4.3; 4.5 for the 
used technology j = 1, 2, 3 respectively.  
2) The replacement threshold (x3) is non-
decreasing in the difference between the latest 
available technology and the used technology be-
cause the purchase price is increasing over tech-
nological generation. For example, at decision 
epoch i = 3, when the latest available technology 
is k = 3, the replacement threshold is 9.9; 9.1; 8.5 
for the technology used is j = 1, 2, 3 respectively. 
Certainly, this threshold depends also on used 
technological generation (j). It is non-decreasing 
in the used technology j. For example, at the deci-
sion epoch i = 3, when the used technology (j) is 
also the latest technology available (k), the re-
placement threshold is 8.3; 8.3; 8.5 for j = k = 1, 
2, 3 respectively. 
These properties are maintained even if the finite 

horizon N is large enough. Consider, Example 2 with 
the input parameters as Example 1: the optimal poli-
cy for the first three decision epochs in planning ho-
rizon N = 20 is given in Table 4. 
 

Table 4. The optimal policy for the first three decision epochs 

in planning horizon N = 20.  

i k,  j Do Nothing 

[x1,   x2) 

Maintenance 

[x2 ,   x3) 

Replacement 

[x3,   x4] 

1 1, 1  [0, 1.5) [1.5,  7.3) [7.3,  20] 

2 1, 1  [0, 1.5) [1.5,  7.1) [7.1,  20] 

2, 1 

2, 2 

 [0, 1.5) 

 [0, 1.7) 

[1.5,  7.3) 

[1.7,  7.1) 

[7.3,  20]  

[7.1,  20]  

3 1, 1  [0, 1.5) [1.5,  7.1) [7.1,  20]  

2, 1 

2, 2 

 [0, 1.5)  

 [0, 1.7) 

[1.5   7.1) 

[1.7,  7.1) 

[7.1,  20]  

[7.1,  20]  

3, 1 

3, 2 

3, 3 

 [0, 1.5) 

 [0, 1.7) 

 [0, 1.9) 

[1.5,  7.5) 

[1.7,  7.5) 

[1.9,  7.3) 

[7.5,  20]  

[7.5,  20]  

[7.3,  20]  

 

4.2.2 Influence of the technological improvement pa-

rameter on the optimal policy 

Recall that technological development is characte-
rized by the improvement of the deterioration rate 
and the change of the purchase price ci,k. Now, we 
consider the influence of these parameters on the op-
timal maintenance-replacement policy. 

Note that the characterization of purchase price is 
represented by equation: ci,k = c1,1v

i-1
u

k-1
 where u is 

parameter that reflects directly the change of pur-
chase price under technological development. When 
u > 1, the purchase price is increasing in technologi-
cal generation, inversely, u < 1 this is the case where 
the technological improvement contributes to reduce 
the purchase price, and u = 1 is the case where the 
technological change does not influent on the pur-
chase price.  

As illustrated by the numerical examples in plan-
ning horizon N = 20, with u = 0.95, 1 and 1.05, con-
sider the first three decision epochs (Table 5), we 
find that at the first decision epoch, the smaller u is, 
the higher the replacement threshold (x3) is. x3 = 7.7; 
7.5; 7.3 respectively. The firm tends to keep the ma-
chine used for waiting the appearance of new tech-
nology. In the case where the new technology was 
available on the market, the firm tends to replace 
earlier when u is smaller. For example, at decision 
epoch i = 2, given j = 1 and k = 2, the replacement 
threshold is 7.3, 6.9, 6.5 for u = 1.05, 1, 0.95 respec-
tively.  

Specially, in the obsolete case, when the firms 
decide to replace early, the optimal policy can be 
non-monotone with respect to the DN and DM 
across deterioration x for given k, j. For example, 
with u = 0.95, at decision epoch i = 2, for k = 2, j = 
1, the optimal policy prescribes do nothing until x = 
2.5, maintain from x = 2.5 to 4.7 and then do noth-
ing again at x = 4.7 until 6.5 (Table 6). 

 

Table 5. The replacement threshold for the first three decision 

epochs in planning horizon N = 20 with u = 0.95; 1; 1.05 

i k,  j u = 0.95 u = 1 u = 1.05 

1 1, 1 7.7 7.5 7.3 

2 1, 1 7.7 7.5  7.1 

2, 1 

2, 2 

6.5 

7.1 

6.9 

7.1 

7.3 

7.1 

3 1, 1 7.7 7.5 7.1 

2, 1 

2, 2 

6.5 

7.1 

6.9 

7.1 

7.1 

7.1 

3, 1 

3, 2 

3, 3 

5.5 

6.1 

6.7 

6.5 

6.5 

6.9 

7.5 

7.5 

7.3 

 

Table 6. The optimal policy for the first three decision epochs 

in the planning horizon N = 20 with u = 0.95 

i k,  j Do Nothing Maintenance Replacement 

1 1, 1  [0,   1.5) [1.5,  7.7) [7.7,  20] 

2 1, 1  [0,   1.5) [1.5,  7.7) [7.7,  20] 



2, 1 

 

2, 2 

 [0,   2.5) 

[4.7,  6.5) 

 [0,    1.9) 

[2.5,  4.7) 

 

[1.9,  7.1) 

 

[6.5,  20]  

[7.1,  20]  

3 1, 1  [0,    1.5) [1.5,  7.7) [7.7,  20]  

2, 1 

 

2, 2 

 [0,    3.1) 

 [4.1, 6.5) 

 [0,    1.9) 

 [6.9, 7.1) 

[3.1,  4.1) 

 

[1.9,  6.9) 

 

[6.5,  20]  

 

[7.1,  20]  

3, 1 

3, 2 

3, 3 

 [0,    5.5) 

 [0,    6.1) 

[0,    2.1) 

------------- 

------------- 

[2.1,     6.7) 

[5.5,  20]  

[6. 1, 20]  

[6.7,  20]  

 

Now, we will consider how the improvement of 
the deterioration rate influences the optimal policy. 
Recall that the shape parameter of stationary Gamma 
function of deterioration process is represented by 
the decreasing exponential geometric function (equa-
tion 10); where κ characterizes directly the im-
provement of the deterioration rate.  

We implement numerical examples in planning 
horizon N = 20 with κ = 0.4, 1, 1.5 and obtain the 
results in Table 7. We find that when j = k, the re-
placement threshold is non decreasing in κ. Special-
ly, at the first decision epoch, the replacement thre-
shold is increasing in κ, because the firms tend to 
replace later for waiting the new technology when 
the improvement of deterioration rate is more effi-
cient (κ is increasing). Consider, at i = 1, the shape 
parameter of the first technological generation is the 
same as in the case where κ = 0.4, 1, 1.5, then, the 
replacement threshold is 7.3, 7.5, 7.7, respectively. 
The case where the obsolete problem appears (j < k) 
is more complex. The replacement threshold is non-
monotonic in κ. For example, at i = 3, the replace-
ment threshold is decreasing in κ, for (k = 2, j = 1) 
or for (k = 3, j = 1), but it is increasing in κ for (k = 
3, j = 2).  

Moreover, this parameter (κ) influences also on 
the maintenance policy such as: the increase of the 
maintenance threshold (x2) in j > 1 and the appear-
ance of the non-monotone property with respect to 
the DN and DM across deterioration x for given k, j. 
As illustrated by Table 8, with κ = 1.5, at decision 
epoch i = 2, for k = 2, j = 1, the optimal policy pre-
scribes do nothing until x2 = 1.5, maintain from x = 
1.5 to 5.9 and then do nothing again from x = 5.9 to 
6.3. 

 

Table 7. The dependence of the replacement threshold on κ in 

planning horizon N = 20 

i k,  j κ = 0.4 κ =1 κ =1.5 

1 1, 1 7.3 7.5 7.7 

2 1, 1 7.1 7.5  7.5 

2, 1 

2, 2 

7.3 

7.1 

6.5 

7.3 

6.3 

7.3 

3 1, 1 7.1 7.3 7.5 

2, 1 7.1 6.5 6.3 

2, 2 7.1 7.1 7.3 

3, 1 

3, 2 

3, 3 

7.5 

7.5 

7.3 

6.9 

7.7 

7.5 

6.7 

7.9 

7.5 

 

Table 8. The optimal policy for the first three decision epochs 

in the planning horizon N = 20 with κ = 1.5 

i k,  j Do Nothing Maintenance Replacement 

1 1, 1  [0,   1.5) [1.5,  7.7) [7.7,  20] 

2 1, 1  [0,   1.5) [1.5,  7.5) [7.5,  20] 

2, 1 

 

2, 2 

 [0,   1.5) 

[5.9, 6.3) 

 [0,    2.1) 

[1.5,  5.9) 

 

[2.1,  7.3) 

 

[6.3,  20]  

[7.3,  20]  

3 1, 1  [0,    1.5) [1.5,  7.5) [7.5,  20]  

2, 1 

 

2, 2 

 [0,    1.5) 

 [5.9, 6.3) 

 [0,    2.1)           

[1.5,  5.9) 

 

[2.1,  7.3) 

 

[6.3,  20]  

[7.3,  20]  

3, 1 

3, 2 

3, 3 

 [0,    1.5) 

 [0,    2.1) 

[0,     2.1) 

[1.5,  6.7) 

[2.1,  7.9) 

[2.1,  7.5) 

[6.7,  20]  

[7.9,  20]  

[7.5,  20]  

5 CONCLUSION 

In this paper, we proposed a model that allows us to 
consider both the investment and the maintenance 
problem of the stochastic deterioration system under 
the technological development. It determines the 
maintenance strategy from the operator’s point of 
view, based on parametric performance of system. In 
addition, it allows the manager to take into account 
the necessary information of technology change to 
decide the best time for replacement investment of 
equipment as well as to consider the impact of tech-
nological evolution on the maintenance strategies.     

We have considered a lot of assumptions and pa-
rameters in our model to tackle the complexity of the 
decision environment for the maintenance managers. 
We have assumed that technological evolution is 
stochastic and the impact of a new technology can be 
measured not only from an economical point of view 
but also on the system deterioration performance. 
This high number of parameters is also due to our 
choice of integrating a quite well-advanced mainten-
ance strategy (condition-based repair and replace-
ment policy) to ensure the “local” optimality, i.e. in-
dependently on the technical change opportunity, in 
the strategic decision context.  

We then used stochastic dynamic programming 
(i.e., discrete non-stationary Markov decision 
process) to solve for the optimal maintenance and 
replacement policy of the equipment as a function of 
performance and cost. And finally, we presented 
numerical examples to illustrate performance of our 
model and to consider the influence of the parame-
ters characterized the technological development on 
the optimal maintenance-replacement policy.  



Some proposed assumptions can be seen as limita-
tions of our model. The uncertainty in the technolo-
gical evolution, e.g., is just considered in the time of 
appearance of a new generation but the associated 
purchase cost and the deterioration improvement are 
deterministic. In fact, these can be stochastic and dif-
ficult to capture.  

The future work could reflect the stochastic cha-
racterization of these parameters. Furthermore, the 
stochastic efficiency of the imperfect maintenance 
action could also be included in our model or the 
conception of technology horizon N such that the 
initial optimal decision would be invariant even if 
more than N technologies wear to appear in future, 
could be consider .  
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