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STABILITY AND STABILIZABILITY OF MIXED RETARDED-NEUTRAL TYPE
SYSTEMS ∗

Rabah Rabah1, Grigory M. Sklyar2 and Pavel Yu. Barkhayev3

Abstract. We analyze the stability and stabilizability properties of mixed retarded-neutral type sys-
tems when the neutral term may be singular. We consider an operator differential equation model
of the system in a Hilbert space, and we are interested in the critical case when there is a sequence
of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially
stable, and we study conditions under which it will be strongly stable. The behavior of spectra of
mixed retarded-neutral type systems prevents the direct application of retarded system methods and
the approach of pure neutral type systems for the analysis of stability. In this paper, two techniques
are combined to obtain the conditions of asymptotic non-exponential stability: the existence of a Riesz
basis of invariant finite-dimensional subspaces and the boundedness of the resolvent in some subspaces
of a special decomposition of the state space. For unstable systems, the techniques introduced enable
the concept of regular strong stabilizability for mixed retarded-neutral type systems to be analyzed.

1991 Mathematics Subject Classification. 34K40, 34K20, 93C23, 93D15.

April 29, 2011.

1. Introduction

The interest in delay differential equations and the corresponding infinite-dimensional systems stems from
the fact that many systems in economics, science and engineering can be described by such equations. The
stability theory of such systems has been studied intensively (see e.g. [3, 10, 15]). A number of results have
been obtained for retarded systems, however an analysis of neutral type systems is much more complicated and
these systems are thus less fully understood. We consider neutral type systems given by the following functional
differential equation:

d
dt

[z(t)−Kzt] = Lzt +Bu(t), t ≥ 0, (1)
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where zt : [−1, 0] → Cn is the history of z defined by zt(θ) = z(t + θ). We assume the delay operator
L : H1([−1, 0],Cn)→ Cn to be linear and bounded, thus, it has the following form:

Lf =
∫ 0

−1

A2(θ)f ′(θ) dθ +
∫ 0

−1

A3(θ)f(θ) dθ, f ∈ H1([−1, 0],Cn), (2)

where A2, A3 are n × n-matrices whose elements belong to L2([−1, 0],C). We take the difference operator K
in the form

Kf = A−1f(−1), (3)

where A−1 is a constant n × n-matrix. The form (3) may be considered as a particular case of the operator
K : C([−1, 0],Cn) → Cn given by Kf =

∫ 0

−1
dµ(θ)f(θ), where µ(·) : [−1, 0] → Cn×n is of bounded variation

and continuous at zero. However, the analysis of the system (1) with K as in (3) is difficult enough to warrant
a study of its own. As we shall see, the results depend strongly on the properties of the matrix A−1.

The well-known approach, when studying systems of the form (1), is to consider a corresponding infinite-
dimensional model ẋ = Ax, where A is the infinitesimal generator of a C0-semigroup. For systems (1)–(3), the
resolvent of the operator A allows an explicit representation (see [27,28]). Such a representation is an effective
tool for analyzing the exponential stability property since the latter is equivalent to the uniform boundedness
of the resolvent on the complex right half-plane. The resolvent boundedness approach is exhaustive when one
considers the stability of pure retarded type systems (A−1 = 0) since such systems may be exponentially stable
or unstable only. This is because the exponential growth of the semigroup {etA}t≥0 is determined by the
spectrum’s location and there is only a finite number of eigenvalues of A in any half-plane {λ : Reλ ≥ C}.

For neutral-type systems (A−1 6= 0), in addition to the notion of exponential stability, which is characterized
by the condition that the spectrum is bounded away from the imaginary axis (see [12, Theorem 6.1], [10]), we
have the notion of strong asymptotic non-exponential stability. This type of stability may occur in some critical
cases when the exponential stability is not possible (see e.g. [6]). Thus, strong stability cannot be described
in terms of the resolvent boundedness. In [27, 28], for neutral type systems with a non-singular neutral term
(detA−1 6= 0), this type of stability has been precisely investigated for systems of the form (1)–(3) and some
necessary and sufficient conditions of strong stability and instability have been proved. The proofs are based
on such a powerful tool as the existence of a Riesz basis of A-invariant finite-dimensional subspaces of the state
space and on further application of the results on strong stability in Banach spaces, which originated in [33]
and was later developed in [1, 18, 31, 32] and many others (see e.g. [35] for a review). A recent development
was described by one of the authors [30]. In this work, the concept of a maximal asymptotic was introduced
and conditions of the lack of maximal asymptotic were given, which is a generalization of the strong stability
condition. Another approach is to characterize non-closed subspaces of initial conditions, where the rate of
convergence to 0 is polynomial (see [2, 5] and our Remark 5.2).

In the case of neutral type systems with a singular neutral term (detA−1 = 0 and A−1 6= 0), which we call
mixed retarded-neutral type systems, strong stability may also occur. However, the approach given in [27, 28]
cannot be directly applied to such systems, since the existence of a Riesz basis of A-invariant finite-dimensional
subspaces of the whole state space cannot be guaranteed. Moreover, mixed retarded-neutral type systems, in
general, cannot be decomposed into systems of pure neutral and pure retarded types. Therefore, the analysis
of strong stability for mixed retarded-neutral type systems poses a difficult problem, which requires additional
essential ideas.

Other approaches are also hard to use for neutral type systems. In particular, in the frequency-domain
approach to the stability of delay systems, neutral type systems are difficult to analyze since they have chains
of poles close to the imaginary axis (see some recent results in [4] and [22]).

The method presented in this paper is based on a decomposition of the initial infinite dimensional model
ẋ = Ax into two systems ẋ0 = A0x0 and ẋ1 = A1x1 in such a way that the spectra of A0, A1 satisfy:
Re σ(A0) ≤ −ε and −ε < Re σ(A1) < 0 for some ε > 0. Generally speaking, the operators A0 and A1 are not
the models of delay systems (retarded or neutral), which means, in particular, that the relation between their
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exponential growth and spectrum’s location is a priori unknown. We prove the exponential stability of the
operator A0 by analyzing the boundedness of its resolvent. This direct analysis requires subtle estimates and
the proof is technically complicated. For the analysis of the subsystem ẋ1 = A1x1, we apply methods of strong
stability introduced in [27, 28]. Finally, the introduced approach allows us to prove for mixed retarded-neutral
type systems the results on strong stability formulated in [28] for pure neutral type systems (det(A−1 6= 0).

Besides, for control systems, the proposed approach can analyze the notion of regular asymptotic stabilizabil-
ity [29] which is closely related to the strong stability notion. The techniques of regular asymptotic stabilizability
were introduced in [29] and the sufficient condition for the system (1)–(3) to be stabilizable was proved in the
case detA−1 6= 0. In the present paper, using the same framework as for stability, we show that these results
also hold for mixed retarded-neutral type systems.

The general framework is the theory of C0-semigroups of linear bounded operators (see e.g. [35]). In order
to specify the main contribution of our paper, let us first give the operator model of the system (1)–(3). We
consider first the system without control (u ≡ 0), i.e. given by the equation

ż(t) = A−1ż(t− 1) +
∫ 0

−1

A2(θ)
d
dθ
z(t+ θ) dθ +

∫ 0

−1

A3(θ)z(t+ θ) dθ, t ≥ 0. (4)

We use the model introduced by Burns et al. [7] in a Hilbert state space. The state space is M2(−1, 0; Cn)def= Cn×
L2(−1, 0; Cn), abbreviated M2. The operator model is given by the equation

ẋ = Ax, x(t) =
(

y(t)
zt(·)

)
∈M2, (5)

where the state operator is defined by

Ax(t) = A
(

y(t)
zt(·)

)
=
( ∫ 0

−1
A2(θ) d

dθ zt(θ) dθ +
∫ 0

−1
A3(θ)zt(θ) dθ

dzt(θ)/ dθ

)
, (6)

with the domain

D(A) = {(y, z(·))T : z ∈ H1(−1, 0; Cn), y = z(0)−A−1z(−1)} ⊂M2.

The operator A is the infinitesimal generator of a C0-semigroup. The solutions of (4) and (5) are related as
zt(θ) = z(t+ θ), θ ∈ [−1, 0].

For the controlled system (1)–(3), i.e. for the equation

ż(t) = A−1ż(t− 1) +
∫ 0

−1

A2(θ)
d
dθ
z(t+ θ) dθ +

∫ 0

−1

A3(θ)z(t+ θ) dθ +Bu, (7)

the corresponding operator model is
ẋ = Ax+ Bu, (8)

where the operator B : Cp →M2 is defined by the n× p-matrix B as follows: Budef= (Bu, 0)T .
The operator A given by (6) possesses only a discrete spectrum σ(A) and, moreover, the growth of the

semigroup {etA}t≥0 is determined by the spectrum’s location. Namely, denoting by ωs = sup{Reλ : λ ∈ σ(A)}
and by ω0 = inf{ω : ‖eAtx‖ ≤Meωt‖x‖}, we have the relation ω0 = ωs (see e.g. [10, Theorem 4.3]).

For the stability problem, the last fact implies that the semigroup {etA}t≥0 is exponentially stable if and only
if the spectrum of A satisfies ωs < 0. However, this type of stability is not the only possible one for systems
of the form (4) (e.g. the same situation can also happen for some hyperbolic partial differential equations).
Namely, if ωs = 0 (and A−1 6= 0), then there may be a sequence of eigenvalues with real parts approaching zero
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and imaginary parts tending to infinity. In this critical case, exponential stability is not possible: ‖etA‖ 6→ 0
when t→∞, but asymptotic non-exponential stability may occur: lim

t→+∞
etAx = 0 for all x ∈M2.

For system (5), satisfying the assumption detA−1 6= 0, the problem of strong stability has been analyzed
in [27,28]. The main result obtained may be formulated as follows.

Theorem 1.1. [28, R. Rabah, G.M. Sklyar, A.V. Rezounenko] Consider the system (5) such that detA−1 6= 0.
Let us put σ1 = σ(A−1) ∩ {µ : |µ| = 1}. Assume that σ(A) ⊂ {λ : Reλ < 0} (necessary condition). Then one
(and only one) of the following three statements is true:

(i) σ1 consists of simple eigenvalues only, i.e. a one-dimensional eigenspace corresponds to each eigenvalue
and there are no root vectors. Then system (5) is asymptotically stable.

(ii) The matrix A−1 has a Jordan block, corresponding to an eigenvalue µ ∈ σ1. Then (5) is unstable.
(iii) There are no Jordan blocks, corresponding to eigenvalues from σ1, but there is an eigenvalue µ ∈ σ1

whose eigenspace is at least two-dimensional. In this case, system (5) can be either stable or unstable.
Moreover, there are two systems with the same spectrum, such that one of them is stable while the other
is unstable.

Let us discuss the importance of the assumption detA−1 6= 0. The proof of Theorem 1.1 given in [28] is
based on the following facts. Firstly, if detA−1 6= 0, then the spectrum of A is located in a vertical strip
d1 ≤ Re σ(A) ≤ d2. Namely, in [27, 28] it was shown that σ(A) = {ln |µm|+ i(argµm + 2πk) +O(1/k) : µm ∈
σ(A−1), k ∈ Z}. From the latter, the necessary condition for the system to be asymptotically stable also follows:
σ(A−1) ⊂ {µ : |µ| ≤ 1}.

Secondly, such a location of the spectrum proves the existence of a Riesz basis of generalized eigenvectors for
the operator A = Ã corresponding to the case A2(θ) ≡ A3(θ) ≡ 0. For a general operator A, the generalized
eigenvectors may not constitute a basis of the state space (see an example in [27] and some general conditions
in [36]). However, in [27, 28] the existence of a Riesz basis of A-invariant finite-dimensional subspaces of the
space M2 was proved (see also [37]). Such a basis is a powerful tool that has been applied for the analysis of
strong stability.

If we allow the matrix A−1 to be singular, then the location of the spectrum described above does not hold
anymore. Generally speaking, in this case, for any α ∈ R there is an infinite number of eigenvalues which
are situated on the left of the vertical line Reλ = α. Thus, the existence of a Riesz basis of A-invariant finite-
dimensional subspaces for the whole space M2 cannot be guaranteed. As a consequence, the proof of the item (i)
of Theorem 1.1 given in [28], which is essentially based on the Riesz basis technique, is no longer satisfactory
and the stability needs to be analyzed another way.

However, it can be asserted that nonzero µm ∈ σ(A−1) define the spectral set {ln |µm| + i(argµm + 2πk) +
O(1/k) : µm ∈ σ(A−1), µm 6= 0, k ∈ Z} ⊂ σ(A) which belongs to a vertical strip. In particular, this can be
asserted for µm ∈ σ1. The fact that Theorem 1.1 is formulated in terms of σ1 and the last remark gave us the
idea to decompose the initial system (5) into two systems

ẋ = Ax⇔
{
ẋ0 = A0x0

ẋ1 = A1x1
(9)

in such a way that σ(A0) = σ(A) ∩ {λ : −∞ < Reλ ≤ −ε} and σ(A1) = σ(A) ∩ {λ : −ε < Reλ ≤ ωs = 0}, for
some ε > 0.

To obtain the representation (9), we construct a special spectral decomposition of the state space: M2 =
M0

2 ⊕M1
2 , where M0

2 , M1
2 are A-invariant subspaces. We define A0 = A|M0

2
and A1 = A|M1

2
.

The spectrum of the system ẋ1 = A1x1 is such that the corresponding eigenvectors form a Riesz basis of the
subspace M1

2 . The strong stability of the semigroup {etA|M1
2
}t≥0 is proved using the methods of [28].

The semigroup {etA|M0
2
}t≥0 is exponentially stable. We prove this fact using the equivalent condition con-

sisting of the uniform boundedness of the resolvent R(λ,A)|M0
2

on the set {λ : Reλ ≥ 0}. Thus, we prove that
the initial system ẋ = Ax is asymptotically stable. The mentioned scheme requires complicated technique.
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To complete the stability analysis, we revisit the example showing the item (iii) with a simpler formulation
than in [28], where it was given using the Riesz basis technique. The analysis of the spectrum carried out in
our example is essentially based on the deep results on transcendental equations obtained by L. Pontryagin [23].
We notice also that the proof of the item (ii) given in [28] does not involve the Riesz basis technique and that
it is the same for the case detA−1 = 0 .

The techniques of direct spectral decompositions and resolvent boundedness presented above allow us to
extend the results to the stabilizability problem given in [29] for the case of a singular matrix A−1.

The general problem of stabilizability of control systems is to find a feedback u = Fx such that the closed-
loop system ẋ = (A+BF)x is asymptotically stable in some sense. For the system (7), the result of exponential
stabilizability may be derived from those obtained for some particular cases (see e.g. [9,11,20,21]). The required
feedback for our system is of the form

F (z(t+ ·)) = F−1ż(t− 1) +
∫ 0

−1

F2(θ)ż(t+ θ) dθ +
∫ 0

−1

F3(θ)z(t+ θ) dθ.

Our purpose is to obtain, as in [29], the condition of asymptotic non-exponential stabilizability of the system (7)
with the regular feedback

F (z(t+ ·)) =
∫ 0

−1

F2(θ)ż(t+ θ) dθ +
∫ 0

−1

F3(θ)z(t+ θ) dθ,

where F2(·), F3(·) ∈ L2(−1, 0; Cn×p). The motivation is that this kind of feedback is relatively bounded with
respect to the state operator A and does not change the domain of A: D(A) = D(A + BF). The natural
necessary condition of regular stabilizability is σ(A−1) ⊂ {µ : |µ| ≤ 1} because A−1 is not modified by the
feedback. Under the same restrictive condition detA−1 6= 0 in [29], the following result on stabilizability was
obtained.

Theorem 1.2. [29, R. Rabah, G.M. Sklyar, A.V. Rezounenko] Let the system (7) verify the following assump-
tions:

(1) All the eigenvalues of the matrix A−1 satisfy |µ| ≤ 1.
(2) All the eigenvalues µ ∈ σ1 = σ(A−1) ∩ {µ : |µ| = 1} are simple.

Then the system is regularly asymptotically stabilizable if
(3) rank(∆(λ), B) = n for all λ : Reλ ≥ 0,
(4) rank(µI −A−1, B) = n for all µ ∈ σ1.

The proof of this theorem given in [29] uses the existence of a Riesz basis of finite-dimensional eigenspaces
of the whole state space M2 and, thus, it requires the assumption detA−1 6= 0. To avoid this assumption,
we construct and prove another spectral decomposition which takes into account the unstable part of the
system. By means of this decomposition, we separate a subsystem which is generated by the part of the
spectrum corresponding to the zero eigenvalues, i.e. the singularities of the matrix A−1. Proving the resolvent
boundedness, we show the exponential stability of this subsystem. The main “critical” part of the system is in
A-invariant subspaces, where we apply the same methods as were given in [29], namely, the theorem on infinite
pole assignment, introduced there, and a classical pole assignment result in finite dimensional spaces.

The paper is organized as follows. In Section 2, we recall the results on the spectrum, eigenvectors and the
resolvent of the operator A obtained in [28,29]. Besides, we prove some properties of eigenvectors. In Section 3,
we construct and prove two direct spectral decompositions of the state space. One of them is used to prove the
main result on stability and the other for the proof of the result on stabilizability. Section 4 is devoted to the
proof of the uniform boundedness of the restriction of the resolvent on some invariant subspaces. Finally, in
Sections 5 and 6, we give the formulation and the proof of our main results on stability and stabilizability. In
addition, in Section 5 we give an explicit example of two systems having the same spectrum in the open left
half-plane but one of these systems is asymptotically stable while the other is unstable.
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2. Preliminaries

In this section, we recall several results on the location of the spectrum of the operator A, on the explicit form
of its resolvent and on the form of the eigenvectors of A and A∗. We prove some properties of the eigenvectors
of A and A∗.

2.1. The resolvent and the spectrum

The results given in this subsection have been presented and proved in [27–29]. Some formulations of the
propositions are adapted for the case detA−1 = 0.

Proposition 2.1 ( [28, Proposition 1]). The resolvent of the operator A has the following form:

R(λ,A)
(

z
ξ(·)

)
≡

 e−λA−1

∫ 0

−1
e−λsξ(s)ds+ (I − e−λA−1)∆−1(λ)D(z, ξ, λ)∫ θ

0
eλ(θ−s)ξ(s)ds+ eλθ∆−1(λ)D(z, ξ, λ)

 , (10)

where z ∈ Cn, ξ(·) ∈ L2(−1, 0; Cn); ∆(λ) is the matrix function defined by

∆(λ) = ∆A(λ) = −λI + λe−λA−1 + λ

∫ 0

−1

eλsA2(s)ds+
∫ 0

−1

eλsA3(s)ds, (11)

and D(z, ξ, λ) is the following vector-function with values in Cn:

D(z, ξ, λ) = z + λe−λA−1

∫ 0

−1
e−λθξ(θ) dθ −

∫ 0

−1
A2(θ)ξ(θ) dθ

−
∫ 0

−1
eλθ [λA2(θ) +A3(θ)]

[∫ θ
0

e−λsξ(s) ds
]

dθ.
(12)

From (10), one may see that the resolvent does not exist in the points of singularity of the matrix ∆(λ), i.e.
the equation det ∆(λ) = 0 defines the eigenvalues of the operator A. Now let us characterize the spectrum of
A more precisely.

We denote by µ1, . . . , µ` the set of distinct eigenvalues of the matrix A−1 and by p1, . . . , p` their multiplicities.
We recall the notation σ1 = σ(A−1)∩ {µ : |µ| = 1} and assume that σ1 = {µ1, . . . , µ`1}, `1 ≤ `. We notice that
one of the eigenvalues µ`1+1, . . . , µ` may be zero.

Further, when studying stability and stabilizability problems, we consider mainly the situations when the
eigenvalues from σ1 are simple. This gives us a motivation to assume below (if the opposite is not mentioned)
that p1 = . . . = p`1 = 1. Besides, without loss of generality, we assume that the matrix A−1 is in the following
Jordan form:

A−1 =



µ1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . µ`1 0 . . . 0
0 . . . 0 J`1+1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . J`


, (13)

where J`1+1, . . . , J` are Jordan blocks corresponding to the eigenvalues µ`1+1, . . . , µ`.
Let us denote by Ã the state operator in the case when A2(θ) ≡ A3(θ) ≡ 0. It is not difficult to see that the

spectrum of Ã has the following structure

σ(Ã) = {λ̃km = ln |µm|+ i(argµm + 2πk) : m = 1, . . . , `, µm 6= 0, k ∈ Z} ∪ {0}.

We denote by Lkm(r(k)) the circles centered at λ̃km with radii r(k).
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Proposition 2.2. Let σ1 = {µ1, . . . , µ`1} consist of simple eigenvalues only. There exists N1 ∈ N such that the
total multiplicity of the roots of the equation det ∆(λ) = 0, contained in the circles Lkm(r(k)), equals pm = 1 for
all m = 1, . . . , `1 and k : |k| ≥ N1, and the radii r(k) satisfy the relation

∑
k∈Z

(r(k))2 <∞.

This proposition is a particular case of [29, Theorem 4] which was formulated and proved there under the
assumption detA−1 6= 0. The proof for the case detA−1 = 0 remains the same. A similar result was obtained
for systems given by transfer functions in [4, 22].

Notation 2.1. We denote the eigenvalues of A mentioned in Proposition 2.2 by λkm, m = 1, . . . , `1, |k| ≥ N1.

Remark 2.3. Proposition 2.2 is formulated for m = 1, . . . , `1, however, it also holds for all those indices
m = 1, . . . , ` which correspond to nonzero eigenvalues µm ∈ σ(A−1).

Remark 2.4. In the case detA−1 6= 0, the spectrum of A belongs to a vertical strip which is bounded from
the left and from the right. However, in the case detA−1 = 0, in addition to the eigenvalues mentioned in
Proposition 2.2, the operator A may also possess an infinite sequence of eigenvalues with real parts tending to
−∞.

Similar results hold for the operator A∗. The spectra of A and A∗ are related as σ(A∗) = σ(A). Eigenvalues
of A∗ are the roots of the equation det ∆∗(λ) = 0, where

∆∗(λ) = ∆A∗(λ) = −λI + λe−λA∗−1 + λ

∫ 0

−1

eλsA∗2(s) ds+
∫ 0

−1

eλsA∗3(s) ds,

and the relation (∆(λ))∗ = ∆∗(λ) holds. The eigenvalues λkm, m = 1, . . . , `1, |k| ≥ N1 may be described as in
Proposition 2.2.

2.2. Eigenvectors of A and A∗

First, we give the explicit form of eigenvectors given in [28,29].

Proposition 2.5 ( [28, Theorem 2], [29, Theorem 7]). The eigenvectors ϕ and ψ of A and A∗, respectively,
are given by:

ϕ = ϕ(λ) =
(

(I − e−λA−1)x
eλθx

)
, (14)

ψ = ψ(λ) =

 y[
λe−λθ −A∗2(θ) + e−λθ

θ∫
0

eλs(A∗3(s) + λA∗2(s))ds

]
y

 , (15)

where x = x(λ) ∈ Ker∆(λ), x 6= 0 and y = y(λ) ∈ Ker∆∗(λ), y 6= 0.

Below we give several properties of the sets of eigenvectors and we begin with the calculation of the scalar
product between the eigenvectors of A and A∗.

Lemma 2.6. Let λ0, λ1 ∈ σ(A) and ϕ = ϕ(λ0), ψ = ψ(λ1) be the corresponding eigenvectors: (A− λ0I)ϕ = 0,
(A∗ − λ1I)ψ = 0. Then the scalar product 〈ϕ,ψ〉M2 is given by:

〈ϕ,ψ〉M2 =
{

0, for λ0 6= λ1,
−〈∆′(λ0)x, y〉Cn , for λ0 = λ1,

(16)

where ∆′(λ) = d
dλ∆(λ) and x = x(λ0), y = y(λ1) are defined by (14) and (15).
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Proof. Since ϕ(λ0) and ψ(λ1) are eigenvectors of adjoint operators, then 〈ϕ,ψ〉M2 = 0 when λ0 6= λ1. Let us
consider the case λ0 = λ1 and compute directly the scalar product 〈ϕ,ψ〉M2 using the representations (14)–(15):

〈ϕ,ψ〉M2 = 〈(I − e−λ0A−1)x, y〉Cn +
0∫
−1

〈eλ0θx, λ0e−λ0θy〉Cn dθ −
0∫
−1

〈eλ0θx,A∗2(θ)y〉Cn dθ

+
0∫
−1

〈
eλ0θx, e−λ0θ

θ∫
0

eλ0s(A∗3(s) + λ0A
∗
2(s)) ds · y

〉
Cn

dθ

=
〈
(I − e−λ0A−1)x, y

〉
+

〈
0∫
−1

λ0 dθ · x, y

〉
Cn
−

〈
0∫
−1

eλ0θA2(θ) dθ · x, y

〉
Cn

+

〈
0∫
−1

θ∫
0

eλ0s(A3(s) + λ0A2(s)) ds dθ · x, y

〉
Cn

= 〈Γ(λ0)x, y〉Cn ,

where

Γ(λ0) = I − e−λ0A−1 + λ0I −
∫ 0

−1

eλ0θA2(θ) dθ +
∫ 0

−1

∫ θ

0

eλ0s(A3(s) + λ0A2(s)) ds dθ.

The last term of Γ(λ0), which is the integral over the domain −1 ≤ θ ≤ s ≤ 0, we rewrite using the identity∫ 0

−1

∫ θ
0
G(s, θ) ds dθ = −

∫ 0

−1

∫ s
−1
G(s, θ) dθ ds. Thus, we obtain:

Γ(λ0) = I − e−λ0A−1 + λ0I −
0∫
−1

eλ0θA2(θ) dθ −
0∫
−1

eλ0s(A3(s) + λ0A2(s))
s∫
−1

dθ ds

=

(
I − e−λ0A−1 −

0∫
−1

eλ0s(sA3(s) + sλ0A2(s) +A2(s)) ds

)

+

(
λ0I −

0∫
−1

eλ0s(A3(s) + λ0A2(s)) ds

)
= −∆′(λ0)−∆(λ0).

Taking into account the relation x ∈ Ker∆(λ0), we conclude that

〈ϕ,ψ〉M2 = −〈∆′(λ0)x, y〉Cn .

The latter completes the proof of the lemma. �

For ϕ(λkm) and ψ(λkm) we will use the notation ϕkm and ψkm respectively. Besides, we use xkm and ykm instead
of x(λkm) and y(λkm).

Lemma 2.7. Let σ1 = {µ1, . . . , µ`1} consist of simple eigenvalues only. The eigenvectors ϕkm, m = 1, . . . , `1,
k : |k| ≥ N1 constitute a Riesz basis of the closure of their linear span. The same holds for eigenvectors ψkm,
m = 1, . . . , `1, k : |k| ≥ N1.

A more general formulation of this proposition was given in [27, Theorem 7, Theorem 15] under the assumption
detA−1 6= 0. We give a sketch of the proof in our case.

The families of functions {eλ̃kmθ}k∈Z form an orthogonal basis of the space L2([−1, 0],C) for eachm = 1, . . . , `1,
where λ̃km = i(argµm + 2πk) are eigenvalues of the operator Ã. Thus, the functions {eλ̃kmθ}|k|≥N , N ∈ N form
a basis of the closure of their linear span.

Since we have chosen the matrix A−1 in the form (13) and due to (14), the eigenvectors ϕ̃km of Ã are of the

form ϕ̃km =
(

0
eλ̃
k
mθem

)
, em = (0, . . . , 1, . . . , 0)T . Therefore, the family {ϕ̃km : m = 1, . . . , `1 : |k| ≥ N1} is a

basis of the closure of its linear span.
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The eigenvectors ϕkm =

(
(I − e−λ

k
mA−1)xkm

eλ
k
mθxkm

)
of A are quadratically close to ϕ̃km. To prove this fact,

we should argue similarly to Theorem 15 given in [27] (based essentially on perturbation theory [14]). Thus,
eigenvectors ϕkm, m = 1, . . . , `1, k : |k| ≥ N1 constitute a Riesz basis of the closure of their linear span.

From Lemma 2.6 and Lemma 2.7, we conclude the following.

Corollary 2.8. The sequences ϕkm and ψkm, m = 1, . . . , `1, k : |k| ≥ N1 are biorthogonal after normalization
and 〈ϕkm, ψkm〉M2 = −〈∆′(λkm)xkm, y

k
m〉Cn .

The following relation will be used essentially in the analysis of the boundedness of the resolvent in Section 4.

Lemma 2.9. Let ψ = ψ(λ0), λ0 ∈ σ(A) be an eigenvector of the operator A∗ and let g = (z, ξ(·)) ∈ M2 be
orthogonal to ψ: g ⊥ ψ. Then the following relation holds:

D(z, ξ, λ0) ∈ Im∆(λ0), (17)

where D(z, ξ, λ) is defined by (12).

Proof. We show the relation D(z, ξ, λ0) ⊥ Ker∆∗(λ0) which is equivalent to (17). The eigenvector ψ is of the
form (15):

ψ =

(
y[

λ0e−λ0θ −A∗2(θ) + e−λ0θ
∫ θ

0
eλ0sA∗3(s) ds+ λ0e−λ0θ

∫ θ
0

eλ0sA∗2(s) ds
]
y

)
,

where y = y(λ0) ∈ Ker∆∗(λ0). For any g = (z, ξ(·)), which is orthogonal to ψ, we obtain:

0 = 〈g, ψ〉M2 = 〈z, y〉Cn +
0∫
−1

〈
ξ(θ), λ0e−λ0θy

〉
Cn

dθ −
0∫
−1

〈ξ(θ), A∗2(θ)y〉Cn dθ

+
0∫
−1

〈
ξ(θ), e−λ0θ

θ∫
0

eλ0s(A∗3(s) + λ0A
∗
2(s)) ds · y

〉
Cn

dθ

= 〈z, y〉Cn +

〈
0∫
−1

λ0e−λ0θξ(θ) dθ, y

〉
Cn
−

〈
0∫
−1

A2(θ)ξ(θ) dθ, y

〉
Cn

+

〈
0∫
−1

[
e−λ0θ

θ∫
0

eλ0s(A3(s) + λ0A2(s)) ds

]
ξ(θ) dθ, y

〉
Cn
.

(18)

Using the identity
∫ 0

−1

∫ θ
0
G(s, θ) ds dθ = −

∫ 0

−1

∫ s
−1
G(s, θ) dθ ds which holds for any function G(s, θ), we

rewrite the last term of (18), and, finally, we obtain the relation:

0 = 〈g, ψ〉M2 =

〈
z +

0∫
−1

λ0e−λ0θξ(θ) dθ +
0∫
−1

A2(θ)ξ(θ) dθ

−
0∫
−1

eλ0s [A3(s) + λ0A2(s)]
s∫
−1

e−λ0θξ(θ) dθ ds, y

〉
Cn
.

(19)

Since y ∈ Ker∆∗(λ0), then for any x ∈ Cn we have:

0 = 〈x,∆∗(λ0)y〉Cn = 〈∆(λ0)x, y〉Cn .
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Therefore, for any θ the relation 〈e−λ0θ∆(λ0)ξ(θ), y〉Cn = 0 holds, and, integrating it by θ from −1 to 0, we
obtain:

0 =

〈
0∫
−1

e−λ0θ∆(λ0)ξ(θ) dθ, y

〉
Cn

=

〈
−

0∫
−1

λ0e−λ0θξ(θ) dθ +
0∫
−1

λ0e−λ0θA−1ξ(θ) dθ

+
0∫
−1

eλ0s [A3(s) + λ0A2(s)] ds
0∫
−1

e−λ0θξ(θ) dθ, y

〉
Cn
.

(20)

Let us sum up the left-hand sides and the right-hand sides of the relations (20) and (19). In the obtained
relation, the term

∫ 0

−1
λ0e−λ0θξ(θ) dθ is cancelled. The last terms of (20) and (19) are summed up according to

the identity −
∫ 0

−1

∫ s
−1
G(s, θ) dθ ds +

∫ 0

−1

∫ 0

−1
G(s, θ) dθ ds = −

∫ 0

−1

∫ s
0
G(s, θ) dθ ds = −

∫ 0

−1

∫ θ
0
G(θ, s) ds dθ

which holds true for any function G(s, θ). Finally, we obtain:

0 =

〈
z + λ0e−λ0A−1

0∫
−1

e−λ0θξ(θ) dθ −
0∫
−1

A2(θ)ξ(θ) dθ

−
0∫
−1

eλ0θ [A3(θ) + λ0A2(θ)]

[
θ∫
0

e−λ0sξ(s) ds

]
dθ, y

〉
Cn

≡ 〈D(z, ξ, λ0), y〉Cn .

Since y ∈ Ker∆∗(λ0), we conclude that D(z, ξ, λ0) ⊥ Ker∆∗(λ0). This completes the proof of the lemma. �

Remark 2.10. We emphasize the fact that det ∆(λ0) = 0 and, therefore, the matrix ∆−1(λ0) does not exist.
However, the proved relation D(z, ξ, λ0) ∈ Im∆(λ0) means that the inverse image of the vector D(z, ξ, λ0) with
respect to the matrix ∆(λ0) does exist.

3. Spectral decompositions of the state space

We recall that we consider the operator A in the case when all eigenvalues from σ1 ⊂ σ(A−1) are simple.
In this section, we construct two spectral decompositions of the state space M2. Assuming that σ(A) ⊂ {λ :
Reλ < 0}, in the first subsection we construct a decomposition which we use later in Section 5 for the stability
analysis. In the second subsection, we assume only |µ| ≤ 1 for all µ ∈ σ(A−1) (i.e. a part of the spectrum
of A may belong to the closed right half-plane) and construct a decomposition needed in Section 6 for the
stabilizability analysis. The structures of these decompositions are very similar. In the third subsection, we
prove some technical results used in the proofs of the validity of the decompositions.

3.1. Spectral decomposition for the stability problem

For the stability analysis, our aim is to divide the system into an exponentially stable part and a strongly
asymptotically stable part. To do this, we construct a decomposition of the state space M2 into the direct sum
of two A-invariant subspaces and prove its validity.

We divide the spectrum of A into two parts. For some N ≥ N1, we define

Λ1 = Λ1(N) = {λkm ∈ σ(A), m = 1, . . . , `1, |k| ≥ N}, (21)

and represent the spectrum as follows:
σ(A) = Λ0 ∪ Λ1.

Remark 3.1. The set Λ1 is determined by N ∈ N. For any small ε > 0, there is a big enough N such that Λ1

belongs to the vertical strip {λ : −ε < Reλ < 0}.
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We introduce two subspaces of M2:

M1
2 = M1

2 (N) = Cl Lin{ϕ : (A− λI)ϕ = 0, λ ∈ Λ1}, (22)

M̂1
2 = M̂1

2 (N) = Cl Lin{ψ : (A∗ − λI)ψ = 0, λ ∈ Λ1}. (23)

Obviously, M1
2 is A-invariant and M̂1

2 is A∗-invariant. We introduce M0
2 = M0

2 (N) which satisfies

M2 = M̂1
2

⊥
⊕M0

2 . (24)

Due to the construction, M0
2 is an A-invariant subspace.

Remark 3.2. We recall that, due to Lemma 2.7, eigenvectors {ϕkm} of A, corresponding to λkm ∈ Λ1, form a
Riesz basis of the closure of their linear span. The same holds for eigenvectors {ψkm} of A∗, corresponding to
λkm, λkm ∈ Λ1.

The main result of this subsection is the following theorem.

Theorem 3.3 (on direct decomposition). Let σ1 = {µ1, . . . , µ`1} consist of simple eigenvalues only. For any
N ≥ N1, the subset Λ1 = Λ1(N) ⊂ σ(A) given by (21) and the subspaces M0

2 , M1
2 , M̂1

2 , given by (22), (23) and
(24) define the direct decomposition of the space:

M2 = M1
2 ⊕M0

2 , (25)

where the subspaces M1
2 , M0

2 are A-invariant.

Proof. To prove (25) we show that any element ξ ∈M2 allows the following representation:

ξ = ξ0 +
`1∑
m=1

∑
|k|≥N

ckmϕ
k
m, ξ0 ∈M0

2 , ϕ
k
m ∈M1

2 ,

`1∑
m=1

∑
|k|≥N

|ckm|2 <∞,

where, as we have noticed above, the eigenvectors {ϕkm : (A − λkmI)ϕkm = 0, λkm ∈ Λ1} given by (14) form a
Riesz basis of the closure of their linear span. Besides, the eigenvectors { 1

λkm
ψkm : (A∗−λkmI)ψkm = 0, λkm ∈ Λ1}

form a Riesz basis of the closure of their linear span, where eigenvectors ψkm are given by (15). We use the
notation ψ̂km = 1

λkm
ψkm.

Using the representations (14) and (15), we choose eigenvectors with ‖xkm‖Cn = 1 and ‖ykm‖Cn = 1. Due
to Lemma 3.5 given in Subsection 3.3, there is C > 0 such that ‖ϕkm‖M2 ≤ C and ‖ψ̂km‖M2 ≤ C for all
m = 1, . . . , `1, |k| ≥ N .

Applying the decomposition (24) to vectors ϕkm, we obtain

ϕkm = γkm +
`1∑
i=1

∑
|j|≥N

aji ψ̂
j
i , γkm ∈M0

2 .

Since 〈ϕkm, ψ̂
j
i 〉 = 0 for (m, k) 6= (i, j) (Corollary 2.8), the last representation may be rewritten as follows:

ϕkm = γkm + akmψ̂
k
m, γkm ∈M0

2 . (26)

Moreover, due to (16) we have the relation

akm =
〈ϕkm, ψ̂km〉M2

‖ψ̂km‖2M2

=
1
λkm
〈ϕkm, ψkm〉M2

‖ψ̂km‖2M2

=
− 1
λkm
〈∆′(λkm)xkm, y

k
m〉Cn

‖ψ̂km‖2M2

. (27)
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From (26) and (27) it also follows that

‖γkm‖ ≤ ‖ϕkm‖+ |akm|‖ψ̂km‖ ≤ C +

√
| 1
λkm
〈∆′(λkm)xkm, ykm〉|. (28)

Using the decomposition (24) and the relation (26), we represent each vector ξ ∈M2 as follows:

ξ = ξ̂0 +
`1∑
m=1

∑
|k|≥N

bkmψ̂
k
m = ξ̂0 −

`1∑
m=1

∑
|k|≥N

bkm
akm
γkm +

`1∑
m=1

∑
|k|≥N

bkm
akm
ϕkm

= ξ0 +
`1∑
m=1

∑
|k|≥N

ckmϕ
k
m,

(29)

where ξ̂0 ∈M0
2 ,

`1∑
m=1

∑
|k|≥N

|bkm|2 <∞, ξ0 = ξ̂0 −
`1∑
m=1

∑
|k|≥N

bkm
akm
γkm ∈M0

2 , ckm = bkm
akm

.

To prove the validity of the decomposition (29), it is enough to show that
∣∣∣ 1
akm

∣∣∣ ≤ C1 and ‖γkm‖ ≤ C2 for
some 0 < C1, C2 < +∞. Taking into account (27) and (28), the latter provides the estimate

0 < C1 ≤
∣∣∣∣ 1
λkm
〈∆′(λkm)xkm, y

k
m〉
∣∣∣∣ ≤ C2, λkm ∈ Λ1.

This estimate is proved by Lemma 3.11 given in Subsection 3.3.
Thus, the representation (29) holds for any ξ ∈M2. The proof of the theorem is now complete. �

3.2. Spectral decomposition for the stabilizability problem

We recall that for the stabilizability problem we assume only that |µ| ≤ 1 for all µ ∈ σ(A−1). In this
case, an infinite number of eigenvalues may belong to the right-half plane. On the other hand, only a finite
number of eigenvalues may be located on the right of a vertical line Reλ = ε for any ε > 0. For the analysis of
stabilizability, it is convenient to construct a decomposition of the state space into three A-invariant subspaces.

We divide the spectrum of A into three parts:

σ(A) = Λ0 ∪ Λ1 ∪ Λ2, (30)

where the subsets Λ0, Λ1, Λ2 are constructed by the following procedure.
Let N0 be such that λkm ∈ Lkm(r), r ≤ 1

3 |λ̃
k
m − λ̃

j
i |, (m, k) 6= (i, j) for all k ≥ N0 and for all m such that

µm 6= 0. First, we construct an auxiliary division

σ(A) = χ1 ∪ χ0, χ1 = {λkm ∈ σ(A) : |k| ≥ N0,m = 1, . . . , `, µm 6= 0}.

Due to the construction, any vertical strip St(δ1, δ2) = {λ : δ1 < Reλ < δ2} contains only a finite number of
eigenvalues from χ0. We also recall that ωs = sup{Reλ : λ ∈ σ(A)} < +∞.

If σ1 6= ∅ then for any r > 0 the strip St(−r, r) contains an infinite number of eigenvalues from χ1 and, as we
have noticed above, only a finite number of eigenvalues from χ0. Let us fix some r > 0 and consider the value

ε = min
λ∈St(−r,r)∩χ0

|Reλ|.

If ε > 0, then the vertical strip St(−ε, ε) does not contain eigenvalues from χ0 but contains an infinite number
of eigenvalues from χ1. Moreover, the strip St(ε, r) contains only a finite number of eigenvalues from χ1. Thus,
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the strip St(ε, ωs) contains a finite number of eigenvalues of the operator A and, therefore, we conclude that
these eigenvalues are located in a rectangle {λ : ε ≤ Reλ ≤ ω0, |Imλ| < M} for some M > 0. Finally, we put

Λ0 = σ(A) ∩ {λ : Reλ ≤ −ε},
Λ1 = σ(A) ∩ St(−ε, ε),
Λ2 = σ(A) ∩ St(ε, ωs).

(31)

We notice that the relation ε = 0 means that there are eigenvalues with a zero real part. In these cases, we
calculate min

λ∈St(−r,r)∩χ0

|Reλ| without taking these eigenvalues into consideration and, after constructing (31), we

add these eigenvalues to Λ2.
The obtained sets of eigenvalues may be described as follows: Λ0 belongs to the left half-plane and is

separated from the imaginary axis; Λ1 consists of an infinite number of simple eigenvalues which may be stable
or unstable, the corresponding eigenvectors form a Riesz basis of the closure of their linear span; Λ2 consists of
a finite number of unstable eigenvalues.

Passing now to the construction of invariant subspaces, let us denote the elements of the finite set Λ2 as λi,
i = 1, . . . , r, the corresponding generalized eigenvectors by ϕi,j : (A−λiI)jϕi,j = 0, j = 0, . . . , si−1. We also use
the notations proposed above: the eigenvalues from Λ1 are denoted by λkm and the corresponding eigenvectors
by ϕkm, m = 1, . . . , `1, |k| ≥ N .

We introduce the following two infinite-dimensional subspaces of eigenvectors:

M1
2 = Cl Lin{ϕkm : (A− λkmI)ϕkm = 0, λkm ∈ Λ1},

M̂1
2 = Cl Lin{ψkm : (A∗ − λkmI)ψkm = 0, λkm ∈ Λ1},

(32)

two finite-dimensional subspaces of eigenvectors and root-vectors:

M2
2 = Lin{ϕi,j : (A− λiI)jϕi,j = 0, λi ∈ Λ2, j = 0, . . . , si − 1},

M̂2
2 = Lin{ψi,j : (A∗ − λiI)jψi,j = 0, λi ∈ Λ2, j = 0, . . . , si − 1},

(33)

and the subspace M0
2 , which satisfies

M2 = (M̂1
2 ⊕ M̂2

2 )
⊥
⊕M0

2 . (34)
Thus, we have constructed three A-invariant subspaces: M0

2 , M1
2 and M2

2 . The main result of this subsection
is the following theorem.

Theorem 3.4. Let σ1 = {µ1, . . . , µ`1} consist of simple eigenvalues only. For any N ≥ N1, the decomposition
of the spectrum (31) and the subspaces given by (32), (33) and (34) define the direct decomposition of the space
M2:

M2 = M0
2 ⊕M1

2 ⊕M2
2 ,

where the subspaces M0
2 , M1

2 , M2
2 are A-invariant.

Proof. The proof of this proposition is very similar to that of Theorem 3.3. We prove that any element ξ ∈M2

allows the representation:

ξ = ξ0 +
`1∑
m=1

∑
|k|≥N

ckmϕ
k
m +

r∑
i=1

si−1∑
j=0

ci,jϕi,j , ξ0 ∈M0
2 ,

`1∑
m=1

∑
|k|≥N

|ckm|2 <∞.

The eigenvectors {ϕkm : λkm ∈ Λ1} form a Riesz basis of the closure of their linear span. The finite set of
the generalized eigenvectors {ϕi,j : λi ∈ Λ2} is also a basis of their linear span. These vectors are linearly
independent of eigenvectors {ϕkm}. Thus, eigenvectors {ϕkm} ∪ {ϕi,j} form a basis of the closure of their linear
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span. Arguing in the same way, we conclude that the set {ψ̂km}∪{ψ̂i,j} is also a basis of the closure of its linear
span, where ψ̂km = 1

λkm
ψkm and ψ̂i,j = 1

λi
ψi,j . Moreover, without loss of generality, we may assume that the sets

{ϕkm} ∪ {ϕi,j} and {ψ̂km} ∪ {ψ̂i,j} are biorthogonal after the normalization.
Using the representations (14) and (15), we choose eigenvectors with ‖xkm‖Cn = 1 and ‖ykm‖Cn = 1. Due to

Lemma 3.5, there is C > 0 such that ‖ϕkm‖M2 ≤ C and ‖ψ̂km‖M2 ≤ C for all m = 1, . . . , `1, |k| ≥ N .
Applying the decomposition (24) to vectors ϕkm, we obtain

ϕkm = γkm +
`1∑
i=1

∑
|j|≥N

akmψ̂
k
m +

r∑
i=1

si−1∑
j=0

ai,jψ̂i,j , γkm ∈M0
2 .

Since the sets {ϕ} and {ψ} are biorthogonal, the last representation can be rewritten as follows:

ϕkm = γkm + akmψ̂
k
m, γkm ∈M0

2 , (35)

and, moreover, due to Lemma 2.6 we have

akm =
〈ϕkm, ψ̂km〉M2

‖ψ̂km‖2M2

=
1
λkm
〈ϕkm, ψkm〉M2

‖ψ̂km‖2M2

=
− 1
λkm
〈∆′(λkm)xkm, y

k
m〉Cn

‖ψ̂km‖2M2

. (36)

Besides, arguing in the same way, we obtain:

ϕi,j = γi,j + ai,jψ̂i,j1 , γi,j ∈M0
2 , j1 = 0, . . . , si − 1.

From (35) and (36) it also follows that

‖γkm‖ ≤ ‖ϕkm‖+ |akm|‖ψ̂km‖ ≤ C +

√
| 1
λ
〈∆′(λkm)xkm, ykm〉|. (37)

Using the decomposition (24) and the relation (35), we represent each vector ξ ∈M2 as follows:

ξ = ξ̂0 +
`1∑
m=1

∑
|k|≥N

bkmψ̂
k
m +

r∑
i=1

si−1∑
j=0

bi,jψ̂i,j

= ξ̂0 −
`1∑
m=1

∑
|k|≥N

bkm
akm

γkm −
r∑
i=1

si−1∑
j=0

bi,j
ai,j

γi,j +
`1∑
m=1

∑
|k|≥N

bλ
akm

ϕkm +
r∑
i=1

si−1∑
j=0

bi,j
ai,j

ϕi,j

= ξ0 +
`1∑
m=1

∑
|k|≥N

ckmϕ
k
m +

r∑
i=1

si−1∑
j=0

ci,jϕi,j , (38)

where ξ̂0 ∈M0
2 ,

`1∑
m=1

∑
|k|≥N

|bkm|2 <∞, ξ0 = ξ̂0 −
`1∑
m=1

∑
|k|≥N

bkm
akm
γkm −

r∑
i=1

si−1∑
j=0

bi,j
ai,j

γi,j ∈M0
2 , ckm = bkm

akm
.

To prove the validity of the decomposition (38) it is enough to show that
∣∣∣ 1
akm

∣∣∣ ≤ C1 and ‖γkm‖ ≤ C2. Taking
into account (36) and (37), the latter gives the estimate

0 < C1 ≤
∣∣∣∣ 1
λkm
〈∆′(λkm)xkm, y

k
m〉
∣∣∣∣ ≤ C2, λkm ∈ Λ1.

This estimate is proved by Lemma 3.11. Therefore, the representation (38) holds for any ξ ∈ M2, and this
completes the proof of the theorem. �
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3.3. Auxiliary results

In this subsection, we prove several estimates which have been used in the proofs of Theorem 3.3 and
Theorem 3.4.

Lemma 3.5. Let us consider eigenvectors ϕkm = ϕ(λkm) and ψkm = ψ(λkm) and their representations (14) and
(15). Let us assume that ‖xkm‖Cn = ‖ykm‖Cn = 1 in these representations. Then, for any N ∈ N there is a
constant C > 0 such that

‖ϕkm‖ ≤ C,
1
|λkm|

‖ψkm‖ ≤ C, m = 1, . . . , `1, |k| ≥ N.

In other words, the two families of eigenvectors {ϕkm : m = 1, . . . , `1, |k| ≥ N} with ‖xkm‖Cn = 1 and{
1

λkm
ψkm : m = 1, . . . , `1, |k| ≥ N

}
with ‖ykm‖Cn = 1 are bounded.

Proof. Using (14) and the relation ‖xkm‖Cn = 1 we obtain:

‖ϕkm‖2 = ‖(I − e−λ
k
mA−1)xkm‖2 +

0∫
−1

‖eλkmθxkm‖2 dθ

≤ ‖I − e−λ
k
mA−1‖2 +

0∫
−1

e2Reλkmθ dθ

≤ 1 + e2Reλkm‖A−1‖2 + 1−e−2Reλkm

2Reλkm
≤ C.

The last inequality holds since the real function 1−e−2s

s is bounded in every bounded neighborhood of 0. This
gives the first inequality.

From (15) and since ‖ykm‖Cn = 1, we have:

‖ 1

λkm
ψkm‖2 = 1

|λkm|2
∥∥ykm∥∥2 +

0∫
−1

∥∥∥(e−λkmθ − 1

λkm
A∗2(θ)+

+ 1

λkm
e−λkmθ

θ∫
0

eλkmsA∗3(s) ds+ e−λkmθ
θ∫
0

eλkmsA∗2(s) ds)ykm
∥∥∥2

dθ

≤
∥∥ykm∥∥2

(
1

|λkm|2
+ e2Reλkm−1

2Reλkm
+ 1
|λkm|2

‖A∗2(θ)‖2L2

)
+

0∫
−1

e−2Reλkmθ dθ
0∫
−1

e2Reλkms
(

1
|λkm|2

‖A∗3(s)‖+ ‖A∗2(s)‖
)

ds

≤ 1
|λkm|2

+ 1
|λkm|2

‖A∗2(θ)‖2L2
+ e2Reλkm−1

2Reλkm

(
1 + 1

|λkm|2
‖A∗3(θ)‖2L2

+ ‖A∗2(θ)‖2L2

)
≤

(
1

|λkm|2
+ C1

)
(‖A∗2(θ)‖2L2

+ 1) + C1
|λkm|2

‖A∗3(θ)‖2L2
≤ C2,

where C1 and C2 are some constants. �

Remark 3.6. We notice that the norm of eigenvectors ψkm (assuming ‖ykm‖ = 1) increases infinitely when
k →∞. This can be seen in the example of eigenvectors ψ̃km of the operator Ã∗ (A∗2(θ) = A∗2(θ) ≡ 0):

‖ψ̃km‖2 = ‖ykm‖2 +
∫ 0

−1

‖λkme−λ
k
mθykm‖2 dθ = ‖ykm‖2

(
1 + |λkm|2

e2Reλkm − 1
2Reλkm

)

≥ (1 + C3|λkm|2)→ +∞, k →∞,
where C3 is a constant.
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To formulate the next proposition we introduce the matrices

Rm =
(
R̂m 0
0 I

)
, R̂m =


0 0 . . . 0 1
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
1 0 . . . 0 0

 ∈ Cm×m, m = 1, . . . , `1,

where I = In−m is the identity matrix of dimension n −m. Obviously, R1 = I and R−1
m = R∗m = Rm for all

m = 1, . . . , `1.

Lemma 3.7. Assume that σ1 = {µ1, . . . , µ`1} consists of simple eigenvalues only. There exists N ∈ N such
that for any λkm ∈ Λ1, |k| ≥ N and the corresponding matrix ∆(λkm) there are matrices Pm,k, Qm,k of the form

Pm,k =


1 −p2 . . . −pn
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , Qm,k =


1 0 . . . 0
−q2 1 . . . 0

...
...

. . .
...

−qn 0 . . . 1

 (39)

such that the product 1
λkm
Pm,kRm∆(λkm)RmQm,k has the following form:

1
λkm

Pm,kRm∆(λkm)RmQm,k =


0 0 . . . 0
0
...
0

Sm,k

 , detSm,k 6= 0. (40)

Moreover, for any ε > 0, there is N ∈ Z such that for any |k| ≥ N the components pi = pi(m, k), qi = qi(m, k)
of the matrices (39) may be estimated as follows:

|pi| ≤ ε, |qi| ≤ ε, i = 2, . . . , n. (41)

Proof. We begin with the analysis of the structure of the matrix

1
λkm

Rm∆(λkm)Rm = −I + e−λ
k
mRmA−1Rm +

∫ 0

−1

eλ
k
msRm

(
A2(s) +

1
λkm

A3(s)
)
Rm ds.

Since the matrix A−1 is in Jordan form (13), the multiplication of A−1 on Rm from the left and from the right
changes the places of the one-dimensional Jordan blocks µ1 and µm:

RmA−1Rm =
(
µm 0
0 S

)
, S ∈ C(n−1)×(n−1).

We introduce the notation

∫ 0

−1

eλsRm

(
A2(s) +

1
λ
A3(s)

)
Rm ds =

 ε11(λ) . . . ε1n(λ)
...

. . .
...

εn1(λ) . . . εnn(λ)

 . (42)

According to Proposition 4.5, the elements of the matrix (42) tend to zero when |Imλ| → ∞ (and |Reλ| ≤ C <
∞). Thus, |εij(λkm)| → 0 when k →∞.
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In the introduced notation, the singular matrix 1
λkm
Rm∆(λkm)Rm has the following form:

1
λkm

Rm∆(λkm)Rm =


−1 + e−λ

k
mµm + ε11(λkm) ε12(λkm) . . . ε1n(λkm)
ε21(λkm)

...
εn1(λkm)

Sm,k

 , (43)

where

Sm,k = −In−1 + e−λ
k
mS +

 ε22(λkm) . . . ε2n(λkm)
...

. . .
...

εn2(λkm) . . . εnn(λkm)


and In−1 is the identity matrix of dimension n− 1. Let us prove that

detSm,k 6= 0. (44)

Consider the identity −In−1 + e−λ
k
mS = −In−1 + e−λ̃

k
mS + (e−λ

k
m − e−λ̃

k
m)S, where λ̃km = i(argµm + 2πk) is an

eigenvalue of the operator Ã. Since eλ̃
k
m = µm we have

−I + e−λ̃
k
mRmA−1Rm =

(
0 0
0 −In−1 + e−λ̃

k
mS

)
,

and since the multiplicity of the eigenvalue µm ∈ σ1 equals 1, we conclude that det(−In−1 + e−λ̃
k
mS) 6= 0. Since

|λkm − λ̃km| → 0 when k → ∞, then for any ε > 0 there is N > 0 such that for k : |k| ≥ N the estimates
|e−λkm − e−λ̃

k
m |‖S‖ ≤ ε

2 and |εij(λkm)| ≤ ε
2 hold. Thus, we have that detSm,k = det(−In−1 + e−λ̃

k
mS + Bm,k),

where the absolute value of each component of Bm,k is less than ε. Therefore, there is N > 0 such that Sm,k is
invertible and we obtain the relation (44).

Since detSm,k 6= 0, from the relation (43), we conclude that the first row of the matrix 1
λkm
Rm∆(λkm)Rm is

a linear combination of all other rows and the first column is a linear combination of all other columns:

ε1i(λkm) = p2s2i + . . .+ pnsni, i = 2, . . . , n,

εj1(λkm) = q2sj2 + . . .+ qnsjn, j = 2, . . . , n,
(45)

where sij = sij(m, k), 2 ≤ i, j ≤ n are the components of the matrix Sm,k.
Let us consider the matrices Pm,k, Qm,k of the form (39) with the coefficients p2, . . . , pn and q2, . . . , qn defined

by (45). Direct computations give us that 1
λkm
Pm,kRm∆(λkm)RmQm,k is of the form (40), i.e.:

1
λkm

Pm,kRm∆(λkm)RmQm,k =


0 0 . . . 0
0
...
0

Sm,k

 .

Let us estimate the coefficients p2, . . . , pn and q2, . . . , qn. The equations (45) may be rewritten in the form:

v1 = (Sm,k)Tw1, v2 = Sm,kw2,

where v1 = (ε12(λkm), . . . , ε1n(λkm))T , w1 = (p2, . . . , pn)T , v2 = (ε21(λkm), . . . , εn1(λkm))T , w2 = (q2, . . . , qn)T .
Since detSm,k 6= 0 then

w1 = (S−1
m,k)T v1, w2 = S−1

m,kv2
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and since the values εij(λkm) are small then to show (41), we have to prove that the estimate ‖S−1
m,k‖ ≤ C, C > 0

holds for all k : |k| ≥ N .
As we have shown above, Sm,k = −In−1 + 1

µm
S + Bm,k, where elements of the matrices Bm,k tend to

zero when k → ∞. Thus, there is N ∈ Z such that for all k : |k| ≥ N the norm of the matrix B̃m,k
def= −(

−In−1 + 1
µm
S
)−1

Bm,k is small enough, say ‖B̃m,k‖ < 1
2 . Thus, the inverse matrix of In−1 − B̃m,k exists for

every |k| ≥ N , and these inverse matrices are bounded uniformly by k:

‖(In−1 − B̃m,k)−1‖ = ‖
∞∑
i=0

(B̃m,k)i‖ ≤ C1, |k| ≥ N.

Thus, we obtain the estimate

‖S−1
m,k‖ =

∥∥∥∥∥(In−1 − B̃m,k)−1

(
−In−1 +

1
µm

S

)−1
∥∥∥∥∥ ≤ C1

∥∥∥∥∥
(
−In−1 +

1
µm

S

)−1
∥∥∥∥∥ ≤ C.

The proof of the lemma is complete. �

Corollary 3.8. The matrix function ∆̂m,k(λ) def= 1
λPm,kRm∆(λ)RmQm,k, where Pm,k, Qm,k are given by (39),

enables the following representation in a bounded neighborhood U(λkm) of the corresponding eigenvalue λkm ∈ Λ1,
|k| ≥ N :

∆̂m,k(λ) =


(λ− λkm)rm,k11 (λ) (λ− λkm)rm,k12 (λ) . . . (λ− λkm)rm,k1n (λ)
(λ− λkm)rm,k21 (λ)

...
(λ− λkm)rm,kn1 (λ)

Sm,k(λ)

 , (46)

where the functions rm,kij (λ) are analytic in U(λkm). Moreover,

rm,k11 (λkm) 6= 0, |rm,k11 (λkm)| → 1, k →∞. (47)

Proof. Since ∆(λ) is analytic, then all the components of the matrix function

∆̂m,k(λ) =
1
λ
Pm,kRm∆(λ)RmQm,k

are analytic in a bounded neighborhood of the point λkm. Moreover, since the matrix ∆̂m,k(λkm) has the form
(40), then we conclude that ∆̂m,k(λ) is of the form (46).

Let us prove the relation (47). If we assume that rm,k11 (λkm) = 0, then (λ− λkm)rm,k11 (λ) = (λ− λkm)2r̂m,k11 (λ),
where r̂m,k11 (λ) is analytic. The latter implies that the multiplicity of the root λ = λkm of the equation
det ∆̂m,k(λ) = 0 is greater than or equal to 2, i.e. det ∆̂m,k(λ) = (λ − λkm)2r(λ), where r(λ) is an analytic
function. Indeed, decomposing det ∆̂m,k(λ) by the elements of the first row, we see that all the terms of this
decomposition have the common multiplier (λ− λkm)2. Thus, we obtain that the multiplicity of λ = λkm as the
root of the equation det ∆(λ) = 0 is greater than or equal to 2, and this is in contradiction with the assumption
that λkm is an eigenvalue of multiplicity one of the operator A.

Taking into account (43) and the form of the transformations (40), we see that

(λ− λkm)rm,k11 (λ) =
(
−1 + e−λµm + ε11(λ)

)
−

n∑
i=2

piεi1(λ)−
n∑
j=2

qjε1j(λ). (48)
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Differentiating (48) by λ and substituting λ = λkm, we obtain

rm,k11 (λkm) = −e−λ
k
mµm +

ε11(λ)−
n∑
i=2

piεi1(λ)−
n∑
j=2

qjε1j(λ)

′
λ=λkm

.

The terms (εij(λ))′ are of the form

(εij(λ))′ =
∫ 0

−1

eλs
(
sA2(s) +

s

λ
A3(s)− 1

λ2
A3(s)

)
ij

ds,

therefore, due to Proposition 4.5 and Lemma 3.7, we conclude thatε11(λ)−
n∑
i=2

piεi1(λ)−
n∑
j=2

qjε1j(λ)

′
λ=λkm

→ 0, k →∞.

Since −e−λ
k
mµm → −1 when k →∞, we obtain the relation (47) and, in particular, there is a constant C > 0

and an integer N such that for |k| > N we have

0 < C ≤
∣∣∣rm,k11 (λkm)

∣∣∣ .
The latter completes the proof of the proposition. �

Remark 3.9. The same arguments give that

|rm,ki1 (λkm)| → 0, |rm,k1j (λkm)| → 0, k →∞

for all i = 2, . . . , n and for all i = 2, . . . , n.

Proof. Indeed, let us consider rm,k1j (λ) for j = 2, . . . , n and use the fact that A−1 is in a Jordan form:

(λ− λkm)rm,k1j (λ) = ε1j(λ)−
n∑
i=2

piεij(λ) + pj
(
−1 + e−λµ

)
+ pj−1c,

where µ ∈ σ(A−1) and the constant c = 0 if µ is geometrically simple or, otherwise, c = 1. Thus, we obtain

rm,k1j (λkm) = −pje−λ
k
mµ+

(
ε1j(λ)−

n∑
i=2

piεi1(λ)

)′
λ=λkm

and since pi = pi(m, k) → 0 when k → ∞ due to Lemma 3.7, then we conclude that |rm,k1j (λkm)| → 0 when
k →∞. �

Remark 3.10. Direct computations give:

P−1
m,k =


1 p2 . . . pn
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 , Q−1
m,k =


1 0 . . . 0
q2 1 . . . 0
...

...
. . .

...
qn 0 . . . 1

 . (49)
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Lemma 3.11. Let σ1 = {µ1, . . . , µ`1} consist of simple eigenvalues only. There are constants 0 < C1 < C2,
N ∈ Z such that for any λkm ∈ Λ1, |k| ≥ N the following estimate holds:

0 < C1 ≤
∣∣∣∣ 1
λkm
〈∆′(λkm)xkm, y

k
m〉
∣∣∣∣ ≤ C2, (50)

where ∆′(λ) = d
dλ∆(λ); xkm = x(λkm), ykm = y(λ

k

m) are defined by (14), (15) and ‖xkm‖ = ‖ykm‖ = 1.

Proof. First, we prove the estimate (50) for eigenvalues λk1 ∈ Λ1. Since xk1 ∈ Ker∆(λk1), then

0 =
1
λk1
P−1

1,kP1,k∆(λk1)Q1,kQ
−1
1,kx

k
1 = P−1

1,k ∆̂1,k(λk1)Q−1
1,kx

k
1 , (51)

where P1,k, Q1,k, ∆̂1,k(λk1) are defined by (39), (40). Thus, Q−1
1,kx

k
1 ∈ Ker∆̂1,k(λk1) and, taking into account

the form (40) of the matrix ∆̂1,k(λk1), we conclude that Q−1
1,kx

k
1 = (x̂1, 0, . . . , 0)T , x̂1 6= 0. On the other hand,

applying directly Q−1
1,k given by (49) to the vector xk1 = ((xk1)1, . . . , (xk1)n)T , we conclude that x̂1 = (xk1)1 and

(xk1)i = −qi(xk1)1, i = 2, . . . , n.
Due to the relation (41), for any ε > 0 there is N ∈ N such that for all k : |k| ≥ N we have:

1 = ‖xk1‖2 = |(xk1)1|2
(
1 + |q2|2 + . . .+ |qn|2

)
≤ |(xk1)1|2

(
1 + (n− 1)ε2

)
,

which implies |(xk1)1| → 1 when k →∞. Finally, we obtain

Q−1
1,kx

k
1 =

(
(xk1)1, 0, . . . , 0

)T
, 0 < C ≤ |(xk1)1| ≤ 1, |k| ≥ N. (52)

Conjugating (40), we have the relation
0 0 . . . 0
0
...
0

S∗1,k

 =
(

1
λk1
P1,k∆(λk1)Q1,k

)∗
=

1

λk1
Q∗1,k∆∗(λk1)P ∗1,k = ∆̂∗1,k(λk1). (53)

Using the fact that yk1 ∈ Ker∆∗(λk1) we get:

0 =
1

λk1
(Q∗1,k)−1Q∗1,k∆∗(λk1)P ∗1,k(P ∗1,k)−1yk1 = (Q∗1,k)−1∆̂∗1,k(λk1)(P ∗1,k)−1yk1 . (54)

This gives (P ∗1,k)−1yk1 ∈ Ker∆̂∗1,k(λk1) and, taking into account the left-hand side of (53), we conclude that
(P ∗1,k)−1yk1 = (ŷ1, 0, . . . , 0)T , ŷ1 6= 0. Multiplying (P ∗1,k)−1 on yk1 = ((yk1 )1, . . . , (yk1 )1)T we obtain the relations
ŷ1 = (yk1 )1 and (yk1 )i = −pi(yk1 )1, i = 2, . . . , n. Thus, due to (41), any ε > 0 and k : |k| ≥ N we have:

1 = ‖yk1‖2 = |(yk1 )1|2
(
1 + |p2|2 + . . .+ |pn|2

)
≤ |(yk1 )1|2

(
1 + (n− 1)ε2

)
and we conclude that |(yk1 )1| → 1 when k →∞. Finally,

(P ∗1,k)−1yk1 = ((yk1 )1, 0, . . . , 0)T , 0 < C ≤ |(yk1 )1| ≤ 1, |k| ≥ N. (55)
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Differentiating (46) by λ and putting λ = λk1 , we obtain
r1,k
11 (λk1) r1,k

12 (λk1) . . . r1,k
1n (λk1)

r1,k
21 (λk1)

...
r1,k
n1 (λk1)

S′m,k(λk1)

 = ∆̂′1,k(λk1) =
(

1
λ
P1,k∆(λ)Q1,k

)′
λ=λk1

= P1,k

(
1
λk1

∆′(λk1)− 1
(λk1)2

∆(λk1)
)
Q1,k. (56)

Using (56) and the relation xk1 ∈ Ker∆(λk1), we obtain

1
λk1

〈
∆′(λk1)xk1 , y

k
1

〉
=

〈
P−1

1,kP1,k

(
1
λk1

∆′(λk1)− 1
(λk1 )2

∆(λk1)
)
Q1,kQ

−1
1,kx

k
1 , y

k
1

〉
=

〈
P1,k

(
1
λk1

∆′(λk1)− 1
(λk1 )2

∆(λk1)
)
Q1,kQ

−1
1,kx

k
1 , (P−1

1,k )∗yk1
〉

=
〈

∆̂′1,k(λk1)Q−1
1,kx

k
1 , (P−1

1,k )∗yk1
〉
.

(57)

Finally, using the representation (56) of the matrix ∆̂′1,k(λk1) and representations (52), (55) of the vectors Q−1
1,kx

k
1 ,

(P−1
1,k )∗yk1 , we conclude that

1
λk1

〈
∆′(λk1)xk1 , y

k
1

〉
= r1,k

11 (λk1)(xk1)1(yk1 )1. (58)

Moreover, taking into account the estimate (47) of Corollary 3.8 and (52), (55), we obtain the estimate (50),
which proves the lemma for the case of eigenvalues λk1 , i.e. for m = 1.

Let us now prove the estimate (50) for λkm ∈ Λ1, m = 2, . . . , `1. In this case, the idea of the proof remains
the same but the argument appears to be more cumbersome. In the proof, we omit some detailed explanations
that were given above for the case m = 1.

Let us consider the product Rm∆(λkm)Rm. Using the relation xkm ∈ Ker∆(λkm), we have

0 =
1
λkm

RmP
−1
m,kPm,kRm∆(λkm)RmQm,kQ−1

m,kRmx
k
m = RmP

−1
m,k∆̂m,k(λkm)Q−1

m,kRmx
k
m. (59)

Thus, Q−1
m,kRmx

k
m ∈ Ker∆̂m,k(λkm) and, from the explicit form (40) of ∆̂m,k(λkm), we conclude thatQ−1

m,kRmx
k
m =

(x̂1, 0, . . . , 0)T , x̂1 6= 0. Multiplying Q−1
m,k on Rm from the right, we exchange the first and the m-th column of

Q−1
m,k, therefore, we obtain:

(xkm)m = x̂1, (xkm)1 = −qm(xkm)m, (xkm)i = −qi(xkm)m, i = 2, . . . , n, i 6= m.

Thus, taking into account (41), for any ε > 0 there is N ∈ N such that for all k : |k| ≥ N we have:

1 = ‖xkm‖2 ≤ |(xkm)m|2(1 + (n− 1)ε2)

and, thus, |(xkm)m| → 1 when k →∞. Therefore,

Q−1
m,kRmx

k
m =

(
(xkm)m, 0, . . . , 0

)T
, 0 < C ≤ |(xkm)m| ≤ 1, |k| ≥ N. (60)

Similar considerations give

(P−1
m,k)∗Rmykm = ((ykm)m, 0, . . . , 0)T , 0 < C ≤ |(ykm)m| ≤ 1, |k| ≥ N. (61)
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The derivation of (46) by λ at λ = λkm gives
rm,k11 (λkm) rm,k12 (λkm) . . . rm,k1n (λkm)
rm,k21 (λkm)

...
rm,kn1 (λkm)

S′m,k(λkm)

 = ∆̂′m,k(λkm)

= Pm,kRm

(
1
λkm

∆′(λkm)− 1
(λkm)2

∆(λkm)
)
RmQm,k. (62)

Finally, using (60), (61), (62) and the relation xk1 ∈ Ker∆(λk1), we obtain

1
λkm

〈
∆′(λkm)xkm, y

k
m

〉
=

=
〈
RmP

−1
m,kPm,kRm

(
1
λkm

∆′(λkm)− 1
(λkm)2

∆(λkm)
)
RmQm,kQ

−1
m,kRmx

k
m, y

k
m

〉
=
〈

∆̂′m,k(λkm)RmQ−1
m,kx

k
m, (P−1

m,k)∗Rmykm
〉

= rm,k11 (λkm)(xkm)m(ykm)m.

To complete the proof of the lemma, we use the estimates (47), (60) and (61). �

4. Boundedness of the resolvent on invariant subspaces

In this section, we prove the exponential stability of the restriction of the semigroup {etA}t≥0 onto M0
2 (i.e.

the semigroup {etA|M0
2
}t≥0), where the invariant subspace M0

2 is defined in Section 3 by (24). To show this, we
use the following well-known equivalent condition of exponential stability (see e.g. [35, p.119] or [17, p.139]):

Let T (t) be a C0-semigroup on a Hilbert space H with a generator A. Then T (t) is exponentially stable if, and
only if, the following conditions hold:

(1) {λ : Reλ ≥ 0} ⊂ ρ(A);
(2) ‖R(λ,A)‖ ≤M for all {λ : Reλ ≥ 0} and for some constant M > 0.

Our main result in this Section may be formulated as follows.

Theorem 4.1 (On resolvent boundedness). Let σ1 = {µ1, . . . , µ`1} consist of simple eigenvalues only. On the
subspace M0

2 , defined by (24), the restriction of the resolvent R(λ,A)|M0
2

is uniformly bounded for λ : Reλ ≥ 0:

∃C > 0, ‖R(λ,A)x‖ ≤ C‖x‖, ∀x ∈M0
2 .

Let us briefly describe the ideas of the proof. From the explicit form of the resolvent (10), we conclude that the
main difficulty is to prove the uniform boundedness of the term ∆−1(λ)D(z, ξ, λ) in bounded neighborhoods of
the eigenvalues ofA located close to the imaginary axis. Indeed, since det ∆(λkm) = 0 for λkm ∈ Λ1 and Reλkm → 0
when k →∞ then the norm of ∆−1(λ) grows infinitely when Reλ→ 0 and Imλ→∞ simultaneously. However,
the product ∆−1(λ)D(z, ξ, λ) turns out to be bounded for (z, ξ(·)) ∈M0

2 .

Lemma 4.2. The vector-function ∆−1(λ)D(z, ξ, λ) : M0
2 × Cn → Cn is uniformly bounded in bounded neigh-

borhoods Uδ(λkm) of eigenvalues λkm ∈ Λ1 for some fixed δ > 0, i.e.:
(1) For any k : |k| > N and m = 1, . . . , `1 there is a constant Cm,k such that the estimate∥∥∆−1(λ)D(z, ξ, λ)

∥∥ ≤ Cm,k‖(z, ξ(·))‖M2

holds for all λ ∈ Uδ(λkm) and (z, ξ(·)) ∈M0
2 ,

(2) There is a constant C > 0 such that Cm,k ≤ C for all m = 1, . . . , `1, k : |k| > N .
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The proof of this lemma is technically difficult. It essentially uses the following relation.

Lemma 4.3. For any vector g = (z, ξ(·))T ∈M0
2 and for any eigenvalue λkm ∈ Λ1 the following relation holds:

D(z, ξ, λkm) ∈ Im∆(λkm). (63)

The complete proofs of the mentioned propositions are given in the next subsection.

Remark 4.4. Theorem 4.1 also holds for the subspace M0
2 defined by (34) under the assumption Λ2 = ∅. The

proof remains the same.

4.1. The proof of Theorem 4.1

We begin with several auxiliary propositions.

Proposition 4.5. Let L0 ⊂ C be a compact set, f(s) ∈ L2[−1, 0] and we denote by ak(λ) =
0∫
−1

e2πikseλsf(s) ds,

λ ∈ L0, k ∈ Z. Then ak(λ)→ 0 when k →∞ uniformly on the set L0.

Proof. Integrals ak(λ) can be considered as Fourier coefficients of the function eλsf(s), thus, they converge to
zero when k → ∞. We need to prove that they converge uniformly on the set L0. We define the mapping
a : L0 → `2 taking λ ∈ L0 to the sequence a(λ) = (a1(λ), . . . , ak(λ), . . .). Indeed, a(λ) ∈ `2 since ak(λ) are
Fourier coefficients of the function eλsf(s). The mapping a(λ) is continuous, and thus the image of L0 is
compact in `2. This means (see for example [16]) that

∀ε > 0, ∃N ∈ N, ∀n > N, ∀λ ∈ L0,

∞∑
k=n+1

|ak(λ)|2 < ε2.

This implies that the convergence ak(λ)→ 0 when k →∞ is uniform in L0. �

Corollary 4.6. If the sequence {λk} is such that Imλk → ∞ and −∞ < a ≤ Reλk ≤ b < ∞ then for any
f(s) ∈ L2(0, 1; Cn×m) we have:

∫ 0

−1
eλksf(s) ds→ 0 when k →∞.

Lemma 4.7. Let U(0) be a bounded neighborhood of 0, then the following estimates hold:
(1) There is a constant C > 0 such that

∥∥ 1
λ∆(λ)

∥∥ ≤ C for all λ ∈ {λ : Reλ ≥ 0}\U(0), and ‖∆(λ)‖ ≤ C
for all λ ∈ U(0).

(2) There is a constant C > 0 such that
∥∥ 1
λD(z, ξ, λ)

∥∥ ≤ C‖(z, ξ(·))‖M2 for all λ ∈ {λ : Reλ ≥ 0}\U(0),
and ‖D(z, ξ, λ)‖ ≤ C‖(z, ξ(·))‖M2 for all λ ∈ U(0), (z, ξ(·)) ∈M2.

Proof. From the explicit form (11) of ∆(λ) we have the estimate∥∥∥∥ 1
λ

∆(λ)
∥∥∥∥ ≤ 1 + ‖A−1‖+

∥∥∥∥∫ 0

−1

eλsA2(s)ds
∥∥∥∥+

1
|λ|

∥∥∥∥∫ 0

−1

eλsA3(s)ds
∥∥∥∥

for λ ∈ {λ : Reλ ≥ 0}\U(0). To prove the first item, it is sufficient to show that
∥∥∥∫ 0

−1
eλsAi(s)ds

∥∥∥, i = 2, 3
are bounded in the same set. Indeed, if we suppose the contrary, then there is an unbounded sequence {λj}∞j=1

such that
∥∥∥∫ 0

−1
eλjsAi(s)ds

∥∥∥ → ∞ when j → ∞. On the other hand, it is easy to see that for any k ≥ 0:∫ 0

−1
eλsskds → 0 when |λ| → ∞ and λ ∈ {λ : Reλ ≥ 0}. Since the set of polynomials is dense everywhere in

L2(−1, 0), then
∥∥∥∫ 0

−1
eλsAi(s)ds

∥∥∥→ 0 when |λ| → ∞, λ ∈ {λ : Reλ ≥ 0} and we have come to a contradiction.

This implies that
∥∥ 1
λ∆(λ)

∥∥ is bounded in the set {λ : Reλ ≥ 0}\U(0). The boundedness of ‖∆(λ)‖ in U(0)
follows easily from the explicit form (11).
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The estimates for D(z, ξ, λ) may be checked directly, in the same manner, because e−λ
∫ 0

−1
e−λsskds → 0,

when |λ| → ∞ and λ ∈ {λ : Reλ ≥ 0}, k ≥ 0. �

Now we pass to the proofs of the main propositions mentioned at the beginning of the section.

Proof of Lemma 4.2. Let us introduce the following notation:

f(λ)def= ∆−1(λ)D(z, ξ, λ) =
(

1
λ

∆(λ)
)−1( 1

λ
D(z, ξ, λ)

)
, (z, ξ(·)) ∈M0

2 . (64)

We analyze the behavior of the vector-function f(λ) near the imaginary axis. For the points λkm ∈ Λ1, which
are the eigenvalues of the operator A, the inverse of the matrix ∆(λkm) does not exist. These eigenvalues get
closer to the imaginary axis when k → ∞. Our first aim is to prove that f(λ) is bounded in each bounded
neighborhood U(λkm) of λkm ∈ Λ1, i.e. that the limit lim

λ→λkm
∆−1(λ)D(z, ξ, λ) exists for all (z, ξ(·)) ∈M0

2 .

Since ∆(λ) and D(z, ξ, λ) are analytic and since, by construction, all eigenvalues λkm ∈ Λ1 are simple, then
we have that if λkm is a pole of f(λ) then it is a simple pole. In other words, in every bounded neighborhood
U(λkm), the vector-function f(λ) may be represented as follows:

f(λ) =
1

λ− λkm
f−1 +

∞∑
i=0

(λ− λkm)ifi. (65)

Thus, our aim is to prove that for each λkm the coefficient f−1 = lim
λ→λkm

(λ − λkm)f(λ) is equal to zero in the

representation (65), i.e. that f(λ) is analytic. To prove this, we construct a representation of the matrix(
1
λ∆(λ)

)−1 which separates the singularity of this matrix.
According to Lemma 3.5, for each λkm ∈ Λ1 there are matrices Pm,k, Qm,k such that the value of the

matrix-function ∆̂m,k(λ) = 1
λPm,kRm∆(λ)RmQm,k at the point λ = λkm has the form (40), i.e.

∆̂m,k(λkm) =
1
λkm

Pm,kRm∆(λkm)RmQm,k =


0 0 . . . 0
0
...
0

Sm,k

 , detSm,k 6= 0.

We rewrite the representation (64) of the function f(λ) in a bounded neighborhood U(λkm) as follows:

f(λ) =
(

1
λRmP

−1
m,kPm,kRm∆(λ)RmQm,kQ−1

m,kRm

)−1 (
1
λD(z, ξ, λ)

)
= RmQm,k

(
1
λPm,kRm∆(λ)RmQm,k

)−1
Pm,kRm

(
1
λD(z, ξ, λ)

)
= RmQm,k

(
∆̂m,k(λ)

)−1

Pm,kRm
(

1
λD(z, ξ, λ)

)
.

(66)

Let us consider the Taylor expansion of the analytic matrix-function ∆̂m,k(λ) in U(λkm):

∆̂m,k(λ) = ∆̂m,k(λkm) + (λ− λkm)∆̂′m,k(λkm) +
∞∑
i=2

1
i!

(λ− λkm)i∆̂(i)
m,k(λkm). (67)
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Due to Corollary (3.8), ∆̂m,k(λ) allows the representation (46) in some U(λkm), i.e.

∆̂m,k(λ) =


(λ− λkm)rm,k11 (λ) (λ− λkm)rm,k12 (λ) . . . (λ− λkm)rm,k1n (λ)
(λ− λkm)rm,k21 (λ)

...
(λ− λkm)rm,kn1 (λ)

Sm,k(λ)

 ,

where rm,kij (λ) are analytic functions, and we note that Sm,k(λkm) = Sm,k, where Sm,k is defined by (40).
Differentiating the last relation by λ at λ = λkm, we obtain:

∆̂′m,k(λkm) =


rm,k11 (λkm) rm,k12 (λkm) . . . rm,k1n (λkm)
rm,k21 (λkm)

...
rm,kn1 (λkm)

S′m,k(λkm)

 = Γ0
m,k + Γ1

m,k,

Γ0
m,k

def=


rm,k11 (λkm) rm,k12 (λkm) . . . rm,k1n (λkm)

0
...
0

0

 , Γ1
m,k

def=


0 0 . . . 0

rm,k21 (λkm)
...

rm,kn1 (λkm)

S′m,k(λkm)

 .

We introduce the matrix-function Fm,k(λ)def= ∆̂m,k(λkm) + (λ− λkm)Γ0
m,k, which has the following structure:

rm,k11 (λkm)(λ− λkm) rm,k12 (λkm)(λ− λkm) . . . rm,k1n (λkm)(λ− λkm)
0
... Sm,k
0

 .

The matrix Fm,k(λ) is non-singular in a bounded neighborhood U(λkm)\{λkm}. Indeed, due to Lemma 3.5
and Corollary 3.8, we have that detSm,k 6= 0, rm,k11 (λkm) 6= 0, and, thus

detFm,k(λ) = rm,k11 (λkm)(λ− λkm) detSm,k 6= 0, λ ∈ U(λkm)\{λkm}.

Therefore, the inverse matrix F−1
m,k(λ) exists, and is of the following form:

F−1
m,k(λ) =


1

rm,k11 (λkm)(λ−λkm)
Fm,k21 . . . Fm,kn1

0 Fm,k22 . . . Fm,kn2
...

...
. . .

...
0 Fm,k2n . . . Fm,knn

 , (68)

where
Fm,ki1 = 1

rm,k11 (λkm) detSm,k

n∑
j=2

(−1)i+jrm,k1j (λkm)[Sm,k(λkm)]ij , i = 2, . . . , n,

Fm,kij = (−1)i+j [Sm,k(λkm)]ij , i, j = 2, . . . , n,
(69)

and by [Sm,k(λ)]ij we denote the complementary minor of the element sm,kij (λ), i, j = 2, . . . , n of the matrix
Sm,k(λ). Since the matrix-functions Sm,k(λ) are analytic and since Sm,k(λkm)→ S when k →∞, then ‖Sm,k(λ)‖,
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‖[Sm,k(λ)]ij‖ and |sm,kij (λ)| are uniformly bounded for all k and λ ∈ Uδ(λ̃km). Thus, we conclude that |Fm,kij | ≤ C
for all k and i, j = 2, . . . , n. Moreover, since rm,k1j (λkm) → 0 due to Remark 3.9, then Fm,ki1 → 0, i = 2, . . . , n
when k →∞.

Let us rewrite the representation (67) as follows:

∆̂m,k(λ) = Fm,k(λ) + (λ− λkm)Γ1
m,k +

∞∑
i=2

1
i! (λ− λ

k
m)i∆̂(i)

m,k(λkm)

= Fm,k(λ)
(
I + (λ− λkm)F−1

m,k(λ)Γ1
m,k +

∞∑
i=2

1
i! (λ− λ

k
m)iF−1

m,k(λ)∆̂(i)
m,k(λkm)

) (70)

and introduce the notation

Υm,k(λ)def= (λ− λkm)F−1
m,k(λ)Γ1

m,k +
∞∑
i=2

1
i!

(λ− λkm)iF−1
m,k(λ)∆̂(i)

m,k(λkm).

Let us prove that for any ε > 0 there is δ > 0 and N ∈ N such that for any k : |k| > N the following estimate
holds:

‖Υm,k(λ)‖ ≤ ε, λ ∈ Uδ(λ̃km). (71)

From (70) we have that Υm,k(λ) = F−1
m,k(λ)∆̂m,k(λ)−I, and we are proving the estimate ‖F−1

m,k(λ)∆̂m,k(λ)−
I‖ ≤ ε, λ ∈ Uδ(λ̃km). Using the representations (46), (68) and (69), we estimate the elements {γm,kij (λ)}ni,j=1 of
the matrix Υm,k(λ). For the sake of convenience, we divide these elements into several groups and we begin
with the element γm,k11 (λ):

γm,k11 (λ) =
rm,k11 (λ)

rm,k11 (λkm)
+ (λ− λkm)

n∑
i=2

Fm,ki1 rm,ki1 (λ)− 1.

Due to Corollary 3.8 and since rm,k11 (λ) is analytic, there is δ > 0 and N ∈ N such that
∣∣∣ rm,k11 (λ)

rm,k11 (λkm)

∣∣∣ < ε
2n for all

k : |k| > N and λ ∈ Uδ(λ̃km). Besides, since Fm,ki1 → 0, i = 2, . . . , n and rm,ki1 (λkm)→ 0 when k →∞, we obtain

the estimate
∣∣∣γm,k11 (λ)

∣∣∣ < ε
n for all k : |k| > N , λ ∈ Uδ(λ̃km).

Let us consider other diagonal elements of the matrix Υm,k(λ):

γm,kjj (λ) =
n∑
i=2

Fm,kij sm,kij (λ)− 1 =
n∑
i=2

(−1)i+j [Sm,k(λ)]ij(s
m,k
ij (λ)− sm,kij (λkm)), j = 2, . . . , n.

There is δ > 0 such that
∣∣∣γm,kjj (λ)

∣∣∣ < ε
n for all k : |k| > N , λ ∈ Uδ(λ̃km). Further, we consider the elements of

the first row:

γm,k1j (λ) =
rm,k1j (λ)

rm,k11 (λkm)
+

n∑
i=2

Fm,ki1 sm,kij (λ), j = 2, . . . , n.

Since Fm,ki1 → 0, i = 2, . . . , n and rm,k1j (λkm) → 0 when k → ∞, we obtain the estimate
∣∣∣γm,k1j (λ)

∣∣∣ < ε
n for all

k : |k| > N , λ ∈ Uδ(λ̃km).
Next, we consider all other elements:

γm,kij (λ) =
n∑
r=2

Fm,kri sm,krj (λ) =
n∑
r=2

(−1)i+r[Sm,k(λ)]ir(s
m,k
rj (λ)− sm,krj (λkm)), i, j = 2, . . . , n; i 6= j.
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They may be estimated as
∣∣∣γm,kij (λ)

∣∣∣ < ε
n for all k : |k| > N , λ ∈ Uδ(λ̃km) choosing small enough δ > 0.

Finally, we obtain the estimate (71), and then there is δ > 0, N ∈ N such that the matrix I + Υm,k(λ) has
an inverse for any λ ∈ Uδ(λ̃km), k : |k| > N :

(I + Υm,k(λ))−1 = I + (λ− λkm)Γm,k(λ), (72)

where Γm,k(λ) is analytic in a bounded neighborhood Uδ(λkm).
Lastly, from (66), (70) and (72) we obtain:

f(λ) = RmQm,k∆̂−1
m,k(λ)Pm,kRm

(
1
λD(z, ξ, λ)

)
= RmQm,k (Fm,k(λ)(I + Υm,k(λ)))−1

RmPm,k
(

1
λD(z, ξ, λ)

)
= RmQm,k

(
I + (λ− λkm)Γm,k(λ)

)
F−1
m,k(λ)Pm,kRm

(
1
λD(z, ξ, λ)

)
.

(73)

Let us now use the fact that (z, ξ(·)) ∈ M0
2 . In Lemma 4.3 the important relation D(z, ξ, λkm) ∈ Im∆(λkm),

(z, ξ(·)) ∈M0
2 is stated. Since in the definition of ∆̂m,k(λ) the matrices Pm,k, Qm,k, Rm are nonsingular, then

1
λkm

Pm,kRmD(z, ξ, λkm) ∈ Im∆̂m,k(λkm).

Moreover, since the matrix ∆̂m,k(λkm) is of the form (40), we conclude that the first component of the vector
1
λkm
Pm,kRmD(z, ξ, λkm) equals zero:

1
λkm

Pm,kRmD(z, ξ, λkm) def= d̂m,k = (0, c2, . . . , cn)T ,

and since the vector-function 1
λPm,kRmD(z, ξ, λ) is analytic in a bounded neighborhood U(λkm), we conclude

that
1
λ
Pm,kRmD(z, ξ, λ) = d̂m,k + dm,k(λ), dm,k(λkm) = 0. (74)

Finally, we note that F−1
m,k(λ)d̂m,k is a constant vector and the vector-function F−1

m,k(λ)dm,k(λ) is bounded in
U(λkm). Taking into account (73), (68) and (74), we obtain that

lim
λ→λkm

(λ− λkm)f(λ) = RmQm,k lim
λ→λkm

(λ− λkm)F−1
m,k(λ)Pm,kRm

(
1
λD(z, ξ, λ)

)
= RmQm,k lim

λ→λkm
(λ− λkm)F−1

m,k(λ)(d̂m,k + dm,k(λ))

= 0.

Thus, we have proved that f(λ) = ∆−1(λ)D(z, ξ, λ) is an analytic vector-function in Uδ(λkm), k : |k| > N ,
m = 1, . . . , `1 and this gives the estimate

∥∥∆−1(λ)D(z, ξ, λ)
∥∥ ≤ Cm,k, (z, ξ(·)) ∈M0

2 .
We have now to prove that f(λ) is uniformly bounded in the neighborhoods Uδ(λkm) for all k : |k| > N ,

m = 1, . . . , `1. In other words, we must prove that the set of vectors

f0 = fm,k0 = f(λkm) = (∆−1(λ)D(z, ξ, λ))λ=λkm

is bounded. Taking into account the representation (73), we obtain:

fm,k0 =
(
RmQm,kF

−1
m,k(λ)Pm,kRm

(
1
λD(z, ξ, λ)

))
λ=λkm

= RmQm,kF
−1
m,k(λ)(d̂m,k + dm,k(λ))λ=λkm

= RmQm,k

(
d11

rm,k11 (λkm)
+

n∑
i=2

ciF
m,k
i1 ,

n∑
i=2

ciF
m,k
i2 , . . . ,

n∑
i=2

ciF
m,k
in

)T
,



28

where d1
1 = (d′m,k(λkm))1 is the first component of the derivative of dm,k(λ) at the point λkm.

As we have mentioned above, there is a constant C1 > 0 such that ‖Fm,kij ‖ ≤ C1, for all k ∈ N, m = 1, . . . , `1.
The estimates ‖Pm,k‖ ≤ C1 and ‖Qm,k‖ ≤ C1 follow from the estimate (41) of Lemma 3.7. The estimates
|ci| < C1 and |d1

1| < C1 follow immediately from Lemma 4.7. From the relation (47) of Corollary 3.8, it follows
that there is a constant C2 > 0 such that 0 < C2 ≤ |rm,k11 (λkm)| for all k ∈ N, m = 1, . . . , `1 and, thus,

1

|rm,k11 (λkm)|
≤ 1
C2
.

Finally, we conclude that ‖fm,k0 ‖ ≤ C for all m = 1, . . . , `1, k : |k| ≥ N , and this completes the proof of the
lemma. �

Proof of Lemma 4.3. Since g ∈ M0
2 then g ⊥ ψkm = ψ(λkm) for all λkm ∈ Λ1. Therefore, the proposition follows

from Lemma 2.9. �

Proof of Theorem 4.1. Let δ > 0 be such that Lemma 4.2 holds. We divide the closed right half-plane into the
following two sets:

K1(δ) = {λ : Reλ ≥ 0, λ ∈ Uδ(λ̃km), λkm ∈ Λ1}
K2(δ) = {λ : Reλ ≥ 0}\K1.

First, let us estimate ‖R(λ,A)x‖ for any λ ∈ K1(δ) and x ∈M0
2 . Due to Lemma 4.2, we have:

‖∆−1(λ)D(z, ξ, λ)‖ ≤ C1‖x‖, x = (z, ξ(·)) ∈M0
2 .

Due to Corollary 4.6, we have the estimate ‖
∫ 0

−1
e−λsξ(s) ds‖ ≤ C2‖x‖. Thus, for any x = (z, ξ(·)) ∈ M0

2 ,
λ ∈ K1(δ) we obtain:

‖R(λ,A)x‖ =

∥∥∥∥∥e−λA−1

0∫
−1

e−λsξ(s) ds+ (I − e−λA−1)∆−1(λ)D(z, ξ, λ)

∥∥∥∥∥
Cn

+

∥∥∥∥∥ θ∫0 eλ(θ−s)ξ(s) ds+ eλθ∆−1(λ)D(z, ξ, λ)

∥∥∥∥∥
L2

≤ eδ‖A−1‖C2‖x‖+ (1 + eδ‖A−1‖)C1‖x‖

+

 0∫
−1

∥∥∥∥∥ θ∫0 eλ(θ−s)ξ(s) ds+ eλθ∆−1(λ)D(z, ξ, λ)

∥∥∥∥∥
2

Cn
dθ

 1
2

≤
[
eδ‖A−1‖C2 + (1 + eδ‖A−1‖)C1 + (eδC2 + C2

1 )
1
2

]
‖x‖ = C‖x‖.

(75)

Let us consider λ ∈ K2(δ). There is ε > 0 such that
∣∣ 1
λ det ∆(λ)

∣∣ ≥ ε for any λ ∈ K2(δ)\U(0). Indeed, if we

suppose the contrary then there is a sequence {λi}∞i=1 such that
∣∣∣ 1
λi

det ∆(λi)
∣∣∣ → 0, i → ∞. If the sequence

{λi}∞i=1 is bounded, then it contains a converging subsequence: λij → λ̂ and, thus,
∣∣∣ 1

λ̂
det ∆(λ̂)

∣∣∣ = 0. However,
the closure of the set K2(δ)\U(0) does not contain zeros of the function det ∆(λ) and we have obtained a
contradiction.

If the sequence {λi}∞i=1 is unbounded, it contains a subsequence λij such that |λij | → ∞ when j → ∞, but
we also have ∫ 0

−1

eλij sA2(s) ds→ 0,
1
λij

∫ 0

−1

eλij sA3(s) ds→ 0, i→∞.
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Moreover, since
∣∣det(−I + e−λA−1)

∣∣ =
∣∣∏(1 + e−λµm)

∣∣ ≥∏∣∣1 + eδµm
∣∣, we conclude that∣∣∣∣ 1λ det ∆(λi)

∣∣∣∣ = det(−I + e−λiA−1 +
∫ 0

−1

eλisA2(s) ds+
1
λi

∫ 0

−1

eλisA3(s) ds 6→ 0, i→∞.

Thus, we have obtained a contradiction again.
Taking into account the estimates ‖ 1

λ∆(λ)‖ ≤ C1 and
∥∥ 1
λD(z, ξ, λ)

∥∥ ≤ C2‖x‖ from Lemma 4.7, we conclude
that ‖∆−1(λ)D(z, ξ, λ)‖ ≤ C3‖x‖ for all λ ∈ K2(δ)\U(0). It is easy to see that ‖e−λ

∫ 0

−1
e−λsξ(s) ds‖ ≤ C4‖x‖

for all λ ∈ K2(δ)\U(0). Finally, similarly to (75) we obtain the following estimate

‖R(λ,A)x‖ ≤ C‖x‖, λ ∈ K2.

This completes the proof of the theorem. �

5. Stability analysis

Based on the results from Section 3 and Section 4, we prove the main result on stability which does not
assume the condition detA−1 6= 0.

Theorem 5.1. If σ(A) ⊂ {λ : Reλ < 0} and σ1 = σ(A−1) ∩ {µ : |µ| = 1} consists only of simple eigenvalues,
then the system (4) is strongly asymptotically stable.

Proof. Let us show that ‖etAx‖ → 0 when t→ +∞ for any x ∈M2. Due to Theorem 3.3, each x ∈M2 allows
the following representation:

x = x0 + x1, x0 ∈M0
2 , x1 ∈M1

2 ,

where M0
2 and M1

2 are defined by (22)–(24). Moreover, the basis of M1
2 consists of the following eigenvectors:

{ϕkm : (A− λkmI)ϕkm = 0, λkm ∈ Λ1 = Λ1(N)}. (76)

Thus, for any x1 ∈M1
2 we have the representations

x1 =
`1∑
m=1

∑
|k|≥N

ckmϕ
k
m, etAx1 =

`1∑
m=1

∑
|k|≥N

eλ
k
mtckmϕ

k
m,

where
`1∑
m=1

∑
|k|≥N

|ckm|2 < ∞. Let us consider a norm ‖ · ‖1 in which the Riesz basis (76) is orthogonal, then we

have the following estimate:

‖etAx1‖1 =

 `1∑
m=1

∑
|k|≥N

e2Reλkmt‖ckmϕkm‖21

 1
2

≤ ‖x1‖1. (77)

Since the series
`1∑
m=1

∑
|k|≥N

ckmϕ
k
m converges and since ‖ϕkm‖1 ≤ C for all k and m = 1, . . . , `1, then for

any ε > 0 there is N1 ≥ N such that
`1∑
m=1

∑
|k|≥N1

‖ckmϕkm‖21 ≤ ε2

8 . Moreover, since the set {(m, k) : m =
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1, . . . , `1, N ≤ |k| ≤ N1} is finite and since Reλkm < 0, then there is t0 > 0 such that for any t ≥ t0 we have:
`1∑
m=1

∑
N≤|k|≤N1

e2Reλkmt‖ckmϕkm‖21 ≤ ε2

8 . Thus, we obtain

`1∑
m=1

∑
|k|≥N

e2Reλkmt‖ckmϕkm‖21 ≤
`1∑
m=1

∑
N≤|k|≤N1

e2Rekmλt‖ckmϕkm‖21 +
`1∑
m=1

∑
|k|≥N1

‖ckmϕkm‖21 ≤
ε2

4
. (78)

Due to Theorem 4.1, the semigroup etA|M0
2

is exponentially stable, i.e. by definition there are some positive
constants M , ω such that ‖etA|M0

2
‖ ≤Me−ωt. Thus, for any x0 ∈M0

2 , there is t0 > 0 such that for any t ≥ t0
we have an estimate

‖etAx0‖1 ≤Me−ωt‖x0‖1 ≤
ε

2
. (79)

Finally, from the estimates (77), (78) and (79), we conclude that for any x ∈ M2 and for any ε > 0 there is
t0 > 0 such that for any t ≥ t0 the following estimate holds:

‖etAx‖1 ≤ ‖etAx0‖1 + ‖etAx1‖1 ≤ ε.

Therefore, lim
t→+∞

‖etAx‖1 = 0, i.e. the system (5) is strongly asymptotically stable. �

Remark 5.2. One can easily see that under the assumptions of Theorem 5.1 and if the set {µ : |µ| = 1} is
not empty then the index ω0(A) = 0. This, in particular, means (see for example [30]) that the norm of the
semigroup ‖etA‖ ≥ 1, t ≥ 0 and, as a consequence, there are some solutions etAx with an arbitrarily slow rate
of decay. On the other hand, one can prove a uniform estimation of this rate from the above if we consider the
initial data only on some non-closed subspaces of M2, for example, if x belongs to D(A) or D(Aα), α > 0. Such
an approach is considered, for example, in [2,5], where polynomial estimates of the rate of decay of semigroups
are obtained under some assumption concerning the behavior of the resolvent of the generators. In the present
work, we do not consider this problem. However, we can remark that, in our case, the existence of the polynomial
estimates similar to those given in [2, 5] may be described in terms of the rate of deviation of eigenvalues of A
from the imaginary axis. Such problems are under investigation.

5.1. An example of a dilemma: stable and unstable situations

In this subsection, we give an explicit example illustrating the item (iii) of Theorem 1.1. Namely, we construct
two systems having the same spectrum and satisfying the following conditions: σ(A) ⊂ {λ : Reλ < 0} and there
are no Jordan blocks, corresponding to eigenvalues from σ1 = σ(A−1)∩{µ : |µ| = 1}, but there is an eigenvalue
µ ∈ σ1 whose eigenspace is at least two-dimensional. Moreover, one of the constructed systems appears to be
stable while the other is unstable.

We consider the system of the form

ż(t) =
(
−1 0

0 −1

)
ż(t− 1) +

(
−b s

0 −b

)
z(t), z ∈ C2, t ≥ 0, (80)

where b is a real positive number and for the value of s we essentially distinguish two cases: s = 0 and s 6= 0.
The eigenvalues of the operator A are the roots of the equation det ∆A(λ) = 0, which, in our particular case,

has the form:

det(−λI + λe−λA−1 +A0) = det
(
−λ− λe−λ − b s

0 −λ− λe−λ − b

)
= 0.

Thus, all the eigenvalues of the operator A satisfy the equation

λeλ + λ+ beλ = 0
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and the multiplicity of each eigenvalue equals two. To prove that σ(A) ⊂ {λ : Reλ < 0}, we use the results on
transcendental equations obtained by L. Pontryagin [23]. It is easy to show that if s = 0 then the operator A
possesses eigenvectors only, i.e. it possesses no root vectors; if s 6= 0 then, to any eigenvalue λ ∈ σ(A), there
correspond an eigenvector and a root vector of the operator A. This implies that if s = 0 then the system (80)
is stable, and if s 6= 0 it is unstable.

6. Stabilizability by regular feedback

In this section, we prove Theorem 1.2 for control systems (7) with detA−1 = 0. It is convenient to reformulate
this theorem as follows.

Theorem 6.1 (on stabilizability). Let b1, . . . , bp ∈ Cn be the columns of the matrix B. Assume that the
following four conditions are satisfied:

(1) All the eigenvalues of the matrix A−1 satisfy |µ| ≤ 1.
(2) All the eigenvalues µ ∈ σ1 are simple.
(3)

∑p
i=1 |〈bi, y〉Cn 6= 0 for all i = 1, . . . , p and all vectors y satisfying y ∈ Ker∆∗A(λ) for roots λ of the

equation det ∆∗A(λ) = 0, such that Reλ ≥ 0.
(4)

∑p
i=1 |〈bi, ym〉Cn 6= 0 for all vectors ym of the matrix A∗−1, corresponding to eigenvalues µm, µm ∈ σ1

and for all i = 1, . . . , p.
Then there is a regular control u = Fx of the form

u = Fx =
∫ 0

−1

F2(θ)żt(θ) dθ +
∫ 0

−1

F3(θ)zt(θ) dθ, (81)

where x = (y, z(·)) ∈ D(A), F2(·), F3(·) ∈ L2(−1, 0; Cn×p). Moreover, this control stabilizes the system (7), i.e.
D(A) = D(A+ BF) and et(A+BF)x0 → 0 as t→∞ for all x0 ∈M2.

The controllability conditions (3)–(4) of Theorem 6.1 are equivalent to (3)–(4) of Theorem 1.2 (for more
details concerning such conditions see [26]). We also note that regular stabilizability for a particular case of the
control systems (7) had been considered in [24,25]. Before giving the proof, let us discuss the conditions (1) and
(2). Since the regular feedback does not change the matrix A−1 we need the assumption σ(A−1) ⊂ {µ : |µ| ≤ 1}.
Moreover, taking into account the results of Theorem 5.1 on strong stability, we conclude that by means of a
regular feedback it is possible to stabilize the system when the algebraic multiplicity of each eigenvalue µ ∈ σ1

equals 1. In this case, the closed loop system will be asymptotically stable if and only if all the eigenvectors
of A + BF are in the left half-plane. Thus, the problem of regular stabilizability for such systems consists
in assigning the spectrum of the system in the left half-plane. The most intensional problem in the situation
appears when an infinite number of the eigenvalues located “close” to the imaginary axis belong to the right
half-plane. This means, in particular, that σ1 6= ∅.

Proof of Theorem 6.1. Let us construct the decomposition of the spectrum of A introduced in Section 3.2 by
(30):

σ(A) = Λ0(A) ∪ Λ1(A) ∪ Λ2(A), (82)

where the subsets are given by (31). Since Λ0(A) ⊂ {λ : Reλ ≤ −ε}, ε > 0 then our aim is to construct the
feedback which moves the eigenvalues of Λ1(A) and Λ2(A) to the left half-plane.

We begin by moving the spectral set Λ2(A). The spectral decomposition of the state space M2 = M0
2 ⊕M1

2 ⊕
M2

2 (Theorem 3.4), corresponding to (82), allows us to rewrite the system (8) as ẋ0 = A0x0 + B0u, x0 ∈M0
2 = M0

2 (A)
ẋ1 = A1x1 + B1u, x1 ∈M1

2 = M1
2 (A)

ẋ1 = A2x2 + B2u, x1 ∈M1
2 = M2

2 (A),
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where A0 = A|M0
2
, A1 = A|M1

2
, A2 = A|M2

2
and Bi are the projections of B onto subspaces M i

2.
The spectrum Λ2(A) of the operator A2 defined on the finite-dimensional subspace M2

2 belongs to the right
half-plane. Due to the assumption (3) of the theorem all the eigenvalues of A2 are controllable and, thus, they
may be assigned arbitrarily to the half-plane {λ : Reλ ≤ −ε}. Namely, let us consider a feedback u = F2x,
F2 : M2 → Cp which acts as follows:

F2x0 = F2x1 = 0, x0 ∈M0
2 , x1 ∈M1

2 , F2x2 = F̂2x2, x2 ∈M2
2 ,

where F̂ : M2
2 → Cp is a bounded operator. It is easy to see that such a type of feedback allows only eigenvalues

of Λ2(A) to be moved, i.e. the set Λ0(A) ∪ Λ1(A) remains in σ(A + BF2). Thus, we conclude that there is F̂
such that the spectrum of the closed-loop system A+ BF2 is of the form

σ(A+ BF2) = σ(A)\Λ2(A) ∪ Λ̂2, Λ̂2 ⊂ {λ : Reλ ≤ −ε}. (83)

We choose the control in the form u = F2x+ v, denote Â def=A+ BF0 and rewrite the system (8) as

ẋ = Âx+ Bv. (84)

We emphasize, that due to the form of the feedback F2, the infinite-dimensional system (84) corresponds to the
neutral type system (7) with the same matrix A−1.

Let us now construct the decomposition of the spectrum (30) for the operator Â. Due to (83), we obtain
Λ2(Â) = ∅ which gives

σ(Â) = Λ0(Â) ∪ Λ1(Â), Λ1(Â) = Λ1(A).
Applying Theorem 3.4, we construct the spectral decomposition of the state space M2 = M0

2 ⊕M1
2 . The

operator model (84) may be rewritten as follows:{
ẋ0 = Â0x0 + B̂0v, x0 ∈M0

2 = M0
2 (Â)

ẋ1 = Â1x1 + B̂1v, x1 ∈M1
2 = M1

2 (Â),

where Â0 = Â|M0
2
, Â1 = Â|M1

2
and B̂i are the projections of the vectors of B onto subspaces M i

2.
Due to Theorem 4.4, the restriction of the resolvent R(λ, Â)|M0

2
is uniformly bounded on the set {λ : Reλ ≥ 0}

and, therefore, the semigroup {etÂ|M0
2
}t≥0 is exponentially stable.

To stabilize the second equation, we apply the approach introduced in [29] which is based on the abstract
theorem on infinite pole assignment. Below, for the sake of completeness and due to the specific form of the
operator Â1, we give a simplified formulation of the mentioned theorem (Theorem 6.5).

The theorem on infinite pole assignment holds for a single input system. However, as is shown in [29], the
multivariable case may be reduced to the single input case by the following considerations (see [29] and also the
classical result on finite-dimensional control systems in [38]).

Let us consider the vector b given by

b =
(
b
0

)
=
(
c1b1 + . . .+ cpbp

0

)
=
(
B
0

)
c = Bc, c =

 c1
...
cp

 , (85)

where {b1, . . . , bp} ⊂ Cn are the columns of the matrix B. There are numbers ci ∈ C such that the following
relations hold (Lemma 6.6):
(a) 〈b, ym〉Cn 6= 0 for all eigenvectors ym of the matrix A∗−1 corresponding to the eigenvalues µm, where µm ∈ σ1,
m = 1, . . . , `1.
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(b) 〈b, ykm〉Cn 6= 0 for all such ykm which satisfy ykm ∈ Ker∆∗(λkm) and Reλkm ≥ 0.
Let us denote the projection of b onto the subspace M1

2 by b1 and consider the single input system

ẋ1 = Â1x1 + b1û, û ∈ C. (86)

Due to the construction, the eigenvalues of Â1 are simple and each eigenvalue λkm, m = 1, . . . , `1, |k| ≥ N1

belongs to the circle Lkm(r(k)) centered at λ̃km = i(argµm + 2πk). The corresponding eigenvectors ϕkm form a
Riesz basis (Proposition 2.7).

Thus, the single input system (86) satisfies the conditions (H1)–(H4) of Theorem 6.5. According to that
theorem, the spectrum Λ1(A) of the operator Â1 may be moved by the regular feedback (81) as follows.

Let us chose scalars λ̂km such that Reλ̂km < 0 and which are located inside the circles Lkm(r(k)). There is
a feedback û = F̂1x, F̂1 : M2 → C such that λ̂km are eigenvalues of the operator Â1 + b1F̂1. Taking into
account (85), we define the feedback v = F1x, F1 : M2 → Cp as follows

F1x
def= cF̂1x.

Due to the theorem on stability, the semigroup {et(Â+BF1)|M1
2
}t≥0 is asymptotically stable. Thus, the feedback

u = F1x1 + F2x2

transforms the original system into one where all the conditions of Theorem 5.1 on asymptotic stability are
verified. The latter completes the proof of Theorem 6.1. �

Remark 6.2. We would like to emphasize that, in the present paper, to prove the result on stabilizability
for the case detA−1 = 0 we have contributed those ideas which are mainly technical in character: the direct
decomposition of the state space and the proof of the resolvent boundedness on some subspace. However, the
main contribution from the stabilizability point of view is the abstract theorem on infinite pole assignment which
has been proved in [29].

Remark 6.3. The stabilizability of the restriction of the system onto the subspace M2
2 (A) also follows from

some classical results. Let us denote by Γδ a rectifiable, simple, closed curve which surrounds the spectral set
Λ2(A) and Γδ ⊂ {λ : Reλ ≥ ε}. By P2 = 1

2πi

∫
Γδ

R(A, λ) dλ we denote the spectral projector. The subspaces

P2M2 and (I − P2)M2 are A-invariant and the spectrum of the restriction (I − P2)M2 belongs to the half-
plane {λ : Reλ < ε}. According to [34], the spectral set Λ2(A) may be assigned arbitrarily to the half-plane
{λ : Reλ < ε} by means of a finite rank input operator (under some controllability conditions). The development
of this approach was given in [19] and [13] (see e.g. [8] for a review).

Remark 6.4. Let us discuss the assumptions (3)–(4) of Theorem 1.2:
(3) rank(∆(λ), B) = n for all λ : Reλ ≥ 0.
(4) rank(µI −A−1, B) = n for all µ ∈ σ1.

The assumption (3) may include an infinite number of relations (obviously, it should be verified only for λ
which are eigenvalues of A, i.e. det ∆A(λ) = 0; there may be an infinite number of eigenvalues of A belonging
to the right half-plane). However, only a finite number of these relations have to be verified. More precisely,
there is M > 0 such that for any eigenvalue λ such that |Imλ| > M the condition (3) follows from the condition
(4).

Proof. Let A−1 be of the form (13) and we prove the proposition for eigenvalues located inside the circles
Lk1(r(k)), i.e. for λk1 (for all other indices m = 1, . . . , `1 the idea of the proof remains the same). The matrix
A−1 − µ1I = A−1 − e−λ̃

k
1 I is of the form:

A−1 − µ1I =
(

0 0
0 Â

)
, Â ∈ C(n−1)×(n−1), det Â 6= 0.
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Due to the assumption (4), there is i ∈ {1, . . . , p} such that the column b = (b1i, . . . , bni)T of the matrix
B possesses a nonzero first component: b1i 6= 0. Besides, since det Â 6= 0, then there is an unique α =
(α2, . . . , αn)T ∈ Cn−1 such that b̂ = Âα, where b̂ = (b2i, . . . , bni)T ∈ Cn−1.

Let us analyze the structure of ∆(λk1). We rewrite it as follows:

∆(λk1) = λk1e−λ
k
1 (A−1 − µ1I +Dk),

where

Dk = (eλ̃
k
1 − eλ

k
1 )I + eλ

k
1

∫ 0

−1

eλ
k
1θ

(
A2(θ) +

1
λk1
A3(θ)

)
dθ.

From the last formula, we conclude that Dk → 0 when k →∞.
Let us show that there is N ∈ N such that for any k : |k| ≥ N :

rank(∆(λk1), b) = n, (87)

which is equivalent to the statement of the proposition.
Since det ∆(λk1) = 0, then det(A−1 − µ1I +Dk) = 0. Let us denote by D̂k = {(Dk)ij}ni,j=2. Since det Â 6= 0,

then there is N ∈ N such that for any k : |k| ≥ N we have: det(Â + D̂k) 6= 0. Therefore, there is a unique
vector αk ∈ Cn such that b̂ = (Â+ D̂k)αk. From the latter, we conclude

αk = (Â+ D̂k)−1b̂ = (I + Â−1D̂k)−1Â−1b̂ = (I + Â−1D̂k)−1α.

Since (I + Â−1D̂k)−1 → I when k →∞, we conclude that αk → α.
If we suppose that (87) does not hold, then b1 = b1i allows the following representation:

b1i = (αk)2(Dk)12 + (αk)n(Dk)1n.

However, since (Dk)1i → 0, the right-hand side of the last relation tends to zero when k →∞. We have come
to the contrary, which completes the proof of the proposition. �

As mentioned above, for the sake of completeness we give the formulations of the results on the infinite pole
assignment from [29]. We formulate them in a form which takes into account the specific form of the operator
Â1.

Theorem 6.5 (On infinite pole assignment [29]). Let H be a complex Hilbert space, A be an infinitesimal
generator of a C0-semigroup in H, and the control system be given by ẋ = Ax + Bu, x ∈ D(A) ⊂ H. Let
µ1, . . . , µ` be some nonzero complex numbers and we introduce the complex numbers

λ̃km = ln |µm|+ i(argµm + 2πk), m = 1, . . . , `, k ∈ Z,

and the circles Lkm(r(k)) centered at λ̃km with radii r(k) satisfying the relation
∑
k∈Z

(r(k))2 <∞.

Let the following assumptions hold:
(H1) The spectrum of A consists only of eigenvalues which are located in the circles Lkm(r(k)). Moreover, all

the eigenvalues of A are simple (i.e. its algebraic multiplicity equals 1) and there is N1 ∈ N such that
for any k : |k| ≥ N1 the total multiplicity of the eigenvalues contained in the circles Lkm(r(k)) equals 1.

(H2) The corresponding eigenvectors, which we denote by ϕkm, constitute a Riesz basis in H.
(H3) The system ẋ = Ax+Bu is of a single input, i.e. the operator B : C→ H is the operator of multiplication

by b ∈ H.
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(H4) We assume the following controllability condition: b is not orthogonal to eigenvectors ψkm of the operator
A∗: 〈b, ψkm〉 6= 0 and

lim
k→∞

k|〈b, ψkm〉| = cm, 0 < cm < +∞.

Then there is N2 ≥ N1 such that for any family of complex numbers λ̂km ∈ Lkm(r(k)), |k| ≥ N2 there is a linear
control F : D(A)→ C, such that

(1) The complex numbers λ̂km are eigenvalues of the operator A+ BF ,
(2) The operator BF : D(A)→ H is relatively A-bounded.

Lemma 6.6 ( [29]). If the assumptions (3) and (4) of Theorem 6.1 hold, then there is a vector b ∈ ImB, say
b = c1b1 + . . .+ cpbp, ci ∈ C, such that the following relations hold:
(a) 〈b, ym〉Cn 6= 0 for all eigenvectors ym of the matrix A∗−1 corresponding to the eigenvalues µm, where µm ∈ σ1,
m = 1, . . . , `1.
(b) 〈b, ykm〉Cn 6= 0 for all such ykm which satisfy ykm ∈ Ker∆∗(λkm) and Reλkm ≥ 0.

7. Conclusion and perspectives

In the present paper, we have generalized the results on strong asymptotic non-exponential stability and
regular stabilizability for the case of mixed retarded-neutral type systems. The proofs of these generalizations
are technically complicated and require subtle estimates. We combine the Riesz basis technique with the analysis
of the boundedness of the resolvent on some A-invariant subspaces.

As a perspective, we consider systems with the difference operator K given by

Kf =
r∑
i=1

Ahif(hi), hi ∈ [−1, 0].

Besides, the dilemma of item (iii) of Theorem 1.1 on stability may be investigated more precisely.
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