
Extending ATL for Native UML Profile
Support: An Experience Report?

Andrea Randak1, Salvador Mart́ınez2, and Manuel Wimmer1

1 Business Informatics Group
Vienna University of Technology, Austria
{randak,wimmer}@big.tuwien.ac.at

2 AtlanMod
INRIA & École des Mines de Nantes, France

salvador.martinez_perez@inria.fr

Abstract. With the rise of Model-driven Engineering (MDE) the ap-
plication field of model transformations broadens drastically. Current
model transformation languages provide appropriate support for stan-
dard MDE scenarios such as model-to-model transformations specified
between metamodels. However, for other transformation scenarios often
the escape to predefined APIs for handling specific model manipulations
is required such as is the case for supporting UML profiles in transforma-
tions. Thus, the need arises to extend current transformation languages
for natively supporting such additional model manipulations.
In this paper we report on extending ATL for natively supporting UML
profiles in transformations. The extension is realized by providing an
extended ATL syntax comprising keywords for handling UML profiles
which is reduced by a preprocessor based on a Higher-Order Transfor-
mation (HOT) again to the standard ATL syntax. In particular, we elab-
orate on our methodology of extending ATL by presenting the extension
process step-by-step as well as reporting on lessons learned. With this
experience report we aim at providing design guidelines for extending
ATL as well as stimulating the research of providing further extensions
for ATL.

Keywords: ATL, UML profiles, Transformation Language Extensions

1 Introduction

Model transformation languages are an integral part of Model-driven Engineer-
ing (MDE) [1, 12]. Originally, they have been used as the key concept for bridging
design and implementation of software systems. The Atlas Transformation Lan-
guage (ATL) [4] is currently the de-facto standard transformation language in
the Eclipse Modeling Framework3 (EMF). Transformations written in ATL are
specified between Ecore-based metamodels and executed to produce an output

? This work has been partly funded by the FWF under grant P21374-N13.
3 http://www.eclipse.org/modeling/emf/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL Mines Nantes

https://core.ac.uk/display/50616864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model conforming to its corresponding output metamodel from a given input
model conforming to its corresponding input metamodel.

With the rise of MDE, also the application field of model transformations
broadens drastically. Not only transformations between metamodels for bridging
the gap between design and implementation of software systems are needed, but
different model management tasks, model formats, metamodeling techniques,
and model extension techniques have to be supported. Thus, it is inevitable for
transformation languages such as ATL to align to these new challenges. Consider
for example UML profiles [2] for tailoring the modeling concepts of the Unified
Modeling Language (UML) [10] for specific domains and technologies. Although
UML profiles may be used in an ATL transformation by escaping to APIs realized
in Java by using imperative ATL code, their application within transformations
is not a simple task and leads to verbose code. What is needed to make the use of
UML profiles more intuitive and straightforward for the transformation engineer
is a native support of UML profiles as is currently available for metamodels. This
support may be achieved by extending ATL as is conceptually discussed in [17] by
providing an extended ATL syntax. In addition, other transformation scenarios
also require transformation language extensions as has been reported in several
publications (cf. [3, 9, 13] for concrete extension examples and [15] for a survey).

In this paper we report on the possibilities, challenges, and limitations of
extending ATL for natively supporting UML profiles. The extension is called
ATL4pros and is realized by providing an extended ATL syntax comprising
keywords for handling UML profiles which is reduced by a preprocessor based
on a Higher-Order Transformation (HOT) again to the standard ATL syntax.
In particular, we elaborate on our methodology of extending ATL by presenting
the extension process step-by-step as well as reporting on lessons learned. With
this experience report we aim at providing design guidelines for extending ATL
as well as stimulating the research of providing further extensions for ATL.

This paper is structured as follows. Section 2 gives a motivating example
and the arising challenges for extending ATL. In Section 3 the transformation
language extension process is depicted in detail by explaining how to provide the
abstract and concrete syntax extensions as well as how to define the operational
semantics of the extensions in terms of a HOT for ATL4pros. An overview of
lessons learned is given in Section 4. Finally, Section 5 concludes with an outlook
on future work.

2 Motivating Example and Challenges

In this section, we motivate the extension of ATL for natively supporting UML
profiles by showing a short example transformation using an EJB profile for
annotating the output model of the transformation. First the transformation is
illustrated in standard ATL code, and subsequently, we show how this code may
be made more concise by integrating new language constructs into the standard
ATL language. Finally, we elaborate on the challenges one has to face when
extending ATL.

50 MtATL 2011

2.1 Motivating Example

The concept of UML profiles serves as a lightweight extension mechanism for
UML. Arbitrary stereotypes and tagged values can be defined within a UML
profile which can be subsequently applied to UML model elements. Using stereo-
types within an ATL transformation is feasible, but this leads to verbose trans-
formation code. Listing 1.1 presents an exemplary ATL code snippet for trans-
forming EJB archives into UML models. The workaround for using UML profiles
in ATL transformations is based on providing the profile as an additional input
model for the transformation as well as making calls to the Java UML2 API
for assigning profiles and stereotypes as well as setting tagged values in the
imperative ActionBlock (cf. line 10 to 20 in Listing 1.1).

Listing 1.1. ATL code excerpt for using UML profiles in standard ATL

1 helper def: stereo : uml!Stereotype = OclUndefined;
2
3 rule EJBArchive_2_Model {
4 from
5 s : EJB!EJBArchive
6 to
7 t : UML!Model (
8 name <- s.name
9)

10 do {
11 t.applyProfile(profile!Profile.allInstances (). asSequence (). first ());
12 thisModule.stereo <- profile!Stereotype.allInstances ()
13 -> any(e | e.name = ’EJBArchive ’);
14 t.applyStereotype(thisModule.stereo);
15
16 i f (not s.version.oclIsUndefined ()){
17 t.setValue(thisModule.stereo , ’version ’,s.version);
18 }
19 }
20 }

Line 1 of this code example shows the definition of a helper called stereo. As
we will see later, this helper is necessary for reusing the currently applied stereo-
type for setting the different tagged values without retrieving the stereotype from
the additional input model again and again. In lines 3 to 9 the mapping between
the source element EJBArchive and the target element UML Model is specified.
In line 8 it is shown that the name of the EJBArchive can be set directly as the
name of the UML Model. Lines 10 to 20 comprise the imperative ActionBlock
of the presented rule, indicated by the keyword do. In line 11, the UML profile
is applied to the UML Model for enabling stereotype applications. The code in
lines 12 to 13 queries the stereotype with name EJBArchive from the additional
input model and is saved in the previously mentioned helper stereo. Line 14 is
needed for applying the recently saved stereotype on the target element. Set-
ting the tagged value called version of the EJBArchive stereotype is achieved on
lines 16 to 18. As the setValue operation on line 17 is a call to the Java UML2
API which would in the absence of a concrete value result in an exception, it
is necessary to provide an additional check before calling the operation. Please
note that lines 11 and 14 also denote calls to the Java UML2 API using the
operations applyProfile and applyStereotype.

CEUR Workshop Proceedings 51

The things that are striking about this verbose ATL code are the following:
Profile related model manipulation tasks are implicitly established by means
of calling Java operations. In particular, the transformation engineer needs to
have knowledge concerning the Java UML2 API in order to correctly invoke
operations for applying profiles, applying stereotypes, and for setting tagged
values. Furthermore, all the operations have to be defined in the imperative
ActionBlocks. Even though ATL is a hybrid language supporting declarative
and imperative constructs, imperative ATL code should be avoided or at least
be reduced to a minimum. With the help of UML profile specific keywords, e.g., a
keyword for applying stereotypes, the same ATL transformation may be defined
more concisely as shown in Listing 1.2.

In [17] we have outlined three different conceptual approaches how to im-
prove the current UML profile support in ATL. The first approach is based on
merging the UML metamodel and the UML profiles into one unified metamodel
as well as converting the profiled UML models into models conforming to the
unified metamodel. The second approach is using a preprocessor for transforming
model transformations specified with an extended ATL syntax to model trans-
formations specified with the standard ATL syntax. Finally, the third approach
is defined as a direct extension of the standard ATL syntax and ATL compiler.
The pros and cons of these three mentioned approaches have been extensively
discussed in [17].

In this paper, we pick up the second approach of [17] and report on the re-
alization of this approach by implementing the ATL version named ATL4pros.
With ATL4pros, we aim for an ATL extension which is tailored for the usage of
UML profiles within ATL transformations. The benefits of such an extension for
handling UML profiles are evident: The number of lines of code can be reduced
due to the absence of complex statements for querying profile information from
an additional input model representing the UML profile. What helps increasing
the readability of the transformation even more is the fact that the transfor-
mation engineer can apply UML profiles without using imperative code. The
imperative parts that are needed for the transformation to execute are hidden
from the engineer completely. Furthermore, ATL4pros eases the UML2 API han-
dling because the engineer no longer has to know about the intricacies of the
underlying Java UML2 API. All required statements that trigger an API call
are automatically created by the HOT.

Listing 1.2. ATL code excerpt for using UML profiles in ATL4pros

1 rule EJBArchive_2_Model {
2 from
3 s : EJB!EJBArchive
4 to
5 t : UML!Model (
6 name <- x.name
7) apply PRO!EJBArchive (
8 version <- s.version
9)

10 }

52 MtATL 2011

When looking closer at the transformation code shown in Listing 1.2 (which
is equivalent to Listing 1.1), two extensions of the standard ATL syntax have to
be introduced by ATL4pros for allowing for a more concise definition:

1. The keyword apply (cf. line 7 in Listing 1.2) is incorporated into ATL and
can be used for applying a stereotype on a UML model element. Therefore,
a new construct has to be added to the existing ATL metamodel. For this
construct a reasonable container element has to be identified within the
existing ATL language element hierarchy.

2. The tagged values of a stereotype may be set just like normal features (cf.
line 8 in Listing 1.2), for avoiding the explicit writing of imperative code.
This is achieved by simply reusing the existing Binding construct of ATL
and embed it into the new context for applying stereotypes.

2.2 Challenges

There is a number of challenges that have to be met when extending ATL for
supporting new language features.

Abstract syntax. The abstract syntax is defined by an Ecore-based meta-
model which has to be extended with new elements. Since the metamodel is
containing a large number of elements, it is crucial to find an appropriate loca-
tion for the new ones. In addition, existing elements have to be altered in order to
make the newly introduced elements usable within the standard transformation
context.

Concrete Syntax. The extension of the concrete syntax of ATL is the
second challenge. Not only is there the need to define new keywords for newly
introduced elements, but also to revise the concrete syntax definitions for already
existing elements by inserting references from/to the newly introduced ones.

Operational Semantics. The operational semantics determines how to
transform new language features into constructs of the standard ATL language
via a HOT. This means for each newly introduced element, rewriting rules have
to be given to produce standard ATL code and to eliminate the extended syntax
elements.

3 Realizing ATL4pros

This section is dedicated to the ATL extension methodology used for building the
ATL4pros extension and describes how the aforementioned challenges are tack-
led. In particular, we first present the methodology at a glance and subsequently
each step is explained in more detail. To make the methodology description
more concrete, we exemplify each step by elaborating on the main artifacts of
the ATL4pros extension.

CEUR Workshop Proceedings 53

3.1 ATL Extension Methodology at a Glance

The general approach for building the ATL4pros extension is as follows. The
syntactically extended ATL version ATL4pros is transformed into standard ATL
via a HOT. Realizing extensions following this preprocessor approach requires
for three successive steps: (i) the abstract as well as (ii) the concrete syntax of
standard ATL needs to be extended by new elements, and (iii), an operational
semantics needs to be defined for the syntax extensions to determine how the
language constructs of the extended ATL version, e.g., ATL4pros, are translated
into the standard ATL constructs. Please note that this preprocessor approach
is not limited to the presented example but may be applied for other domain-
specific extensions as well [15]. This approach leads to an extension process as
depicted in Figure 1. Extending the abstract syntax is the first activity which
has a direct dependency to the ATL.ecore artifact. As a next step, the concrete
syntax has to be modified to reflect the performed extension of the abstract
syntax. The concrete syntax of ATL is defined in the ATL.tcs artifact which has
to be modified in order to use the new syntax elements in the ATL editor. In
the last step, an operational semantics needs to be defined in terms of a HOT
which has to be developed from scratch. In the following subsections, each step
is explained in more detail.

Extend
Abstract
Syntax

Extend
Concrete

Syntax

Specify
Operational
Semantics

ATL.ecore ATL.tcs HOT

Involved artifacts:

Fig. 1. Extension process and involved artifacts

3.2 Step 1: Extending the abstract syntax

The abstract syntax of the ATL language is provided as an Ecore-based meta-
model. Apart from the essential ATL elements, it also contains a vast number of
OCL model elements that are needed in a transformation. The location of new
elements should fit into the overall structure of ATL transformations to ensure
a smooth integration with already existing language elements.

Before we proceed with explaining the ATL4pros extension, it has to be clar-
ified what the term extension in our context actually means by stating which
actions are valid for producing the extended syntax, i.e., which actions are al-
lowed for modifying the ATL metamodel during the extension process.

54 MtATL 2011

– Insertion of new classes: Inserting new classes into the existing metamodel
is of most importance. These new classes may have arbitrary features and
may inherit from as well as reference to already existing and new classes.

– Extending existing classes: For providing extensions, also existing elements
may be extended by adding additional features. In particular, this is neces-
sary for defining the container of newly introduced elements.

The elements needed for the ATL4pros extension are depicted with blue
colour in Figure 2 while predefined elements are coloured in black. The main
element of the extension is the ApplyPattern class which is associated with the
OutPatternElement class. This assures that each OutPatternElement in the to
block of a transformation rule may have several stereotypes applied, because an
ApplyPattern may have several ApplyPatternElements which stand for the actual
stereotype applications. The classes ApplyPatternElement and SimpleApplyPat-
ternElement are inspired by the hierarchical structure of the classes OutPattern
and InPattern of the standard ATL metamodel. Furthermore, the class Apply-
PatternElement has a containment reference to the standard Binding class. By
this, Bindings may be reused to define assignments for tagged values similar as
assignments for metamodel features are defined. The class LocatedElement has a
significant role in the ATL metamodel as every other class directly or indirectly
inherits from this element. The LocatedElement with its location feature gives
every subclass the opportunity to have a location within the actual transforma-
tion, stating the line number(s) as well as the position within the line(s). All
of our introduced elements also have the LocatedElement as their superclass in
order to maintain the predetermined metamodel structure.

ApplyPattern

ApplyPatternElement
{abstract}

SimpleApplyPatternElementBinding

OutPatternElement
{abstract}

LocatedElement
{abstract}

OutPattern

SimpleOutPatternElement

PatternElement
{abstract}

...

outPattern1

elements1..*

applyPattern

0..1

outPatternElement1

applyBindings0..*

applyPatternElement

1

elements 1..*

applyPattern 1

bindings0..*

outPatternElement

1

Fig. 2. Excerpt of the ATL metamodel extended by new elements

CEUR Workshop Proceedings 55

3.3 Step 2: Extending the concrete syntax

After having introduced the additional abstract syntax elements, the concrete
syntax for these elements has to be defined. The concrete syntax of ATL is
available as a textual representation, also referred to as Textual Concrete Syntax
(TCS) [6]. The TCS builds on the metamodel and consists of templates which
define the textual structure of the transformation. Each template corresponds to
an element of the metamodel, i.e., for each new element in the abstract syntax,
a new template in the concrete syntax has to be inserted. Listing 1.3 shows
the implemented templates for the ATL4pros extension as well as an adapted
predefined template.

Listing 1.3. Excerpt of TCS definition for ATL4pros

1 -- Defining the CS of a new element
2 template ApplyPattern
3 : "apply" [elements{separator = ","}] {endNL = false}
4 ;
5
6 template ApplyPatternElement abstract addToContext;
7
8 template SimpleApplyPatternElement
9 : type{separator = ","}

10 -- Reuse of the existing element Binding
11 (isDefined(applyBindings) ?
12 <space > "(" [
13 applyBindings{separator = ","}
14] ")"
15)
16 ;
17
18 -- Enhancing the SimpleOutPatternElement to comprise ApplyPatterns
19 template SimpleOutPatternElement
20 : varName ":" type
21 ...
22 -- Embedding a new element into an existing element
23 (isDefined(applyPattern) ? applyPattern)
24 ;

The ApplyPattern template on lines 2 to 4 determines that the extension
for applying a stereotype to an OutPatternElement of a transformation rule
has to start with the keyword apply. This keyword may subsequently be fol-
lowed by comma-separated elements, whereby these elements refer to the Apply-
PatternElement of the extended metamodel (cf. Figure 2). The type (see line 9)
of the SimpleApplyPatternElement template is representing the stereotype to be
applied, e.g., EJBArchive in our example. Moreover, on lines 11 to 15 the tem-
plate concerning the SimpleApplyPatternElement states that there may be an
arbitrary amount of Bindings defined for setting the tagged values of the stereo-
type. Please note that we are reusing the abstract and concrete syntax defined
for Bindings for setting tagged values which is simply possible by copy-and-paste
of fragments of standard ATL TCS definition. Finally, the SimpleOutPatternEle-
ment template is extended in order to posses ApplyPatterns (see line 23) so to
say to define the anchor for ApplyPatterns in the textual concrete syntax.

56 MtATL 2011

3.4 Step 3: Defining the Operational Semantics

Overview. A transformation defined using an extended syntax cannot be pro-
cessed by the existing compiler and virtual machine without modifying these
components to support the extended syntax also in the runtime. This would
require for a heavyweight extension impacting practically all ATL runtime com-
ponents which would lead to a separated runtime which has to be separately
maintained from the standard runtime. However, in our case, the desired be-
haviour can be, although in a far more verbose way as shown by the motivating
example (cf. Listing 1.1), addressed using the standard ATL syntax. Therefore,
we can implement a more lightweight extension mechanism just by preprocessing
the transformations defined in the extended syntax to produce standard ATL
code.

As ATL transformations are themselves models, they may be preprocessed
by using HOTs. The requirements of such a HOT for our running example are
as follows:

1. If there is an occurrence of the newly introduced ApplyPattern element in a
given rule, an ActionBlock has to be generated if there is not already one,
and subsequently, inside this ActionBlock, the statements for applying the
stereotype as well as setting the tagged values have to be generated (cf.
Listing 1.4).

2. For the rule matching the UML element Model, generate an ActionBlock if
there is not already one, and add the statement for applying the UML profile
as is shown in Listing 1.5.

3. The ApplyPattern elements have to be removed from the transformation in
order to fulfill the standard ATL grammar.

Listing 1.4. Statements to be added to the ActionBlock

1 thisModule.stereo <- profile!Stereotype.allInstances ()
2 -> any(e | e.name = ’EJBArchive ’);
3 t.applyStereotype(thisModule.stereo);

Listing 1.5. ApplyProfile statement

1
2 t.applyProfile(profile!Profile.allInstances (). asSequence (). first ());

Implementing HOTs with ATL Refining Mode. As we can see in the ex-
ample transformations, most of the model representing our original transforma-
tion will remain without changes. However, in a model-to-model transformation
this won’t be an advantage because we would have to create rules not only to
apply the desired changes but to copy all the unmodified elements. As the meta-
model of ATL is rather complex, the task of creating the copy rules is quite time
consuming and even worse, it is error prone. Instead, this is the typical scenario
where using the ATL refining mode [16] is appealing.

CEUR Workshop Proceedings 57

A transformation in refining mode will be performed in-place. This means
that the changes will be directly applied to the input model for producing the
target model incrementally. Using this mode, we only have to write rules for
the elements that are actually changing. All the model elements not matched
by the transformation rules will be kept as they are without the necessity of
copying them. It is important to note that to avoid rule interaction problems, a
transformation in refining mode is performed in two steps. The changes promoted
by the rules are calculated in a first step without modifying the input model and
applied afterwards as a second step.

ActionBlock
exists?

Create
ActionBlock

Drop
ApplyPattern

Create
imperative

code

[yes]

[no]

Fig. 3. Rewriting process for transformation rules with ApplyPatterns

From ATL4pros to Standard ATL. Due to the mentioned advantages, the
preprocessor HOT has been implemented in refining mode. To simplify this
transformation, we have decided to split it in several steps. In the first step,
all the required ActionBlocks will be created whereas in the second step, these
ActionBlocks will be matched and filled with the proper statements. In the third
and last step, the ApplyPattern elements will be eliminated.

In Figure 3 an overview of the process followed by the preprocessor is illus-
trated and Listing 1.6 shows the rule for creating the applyStereotype statement
(cf. line 3 in Listing 1.4) that is added to the ActionBlock element as well as the
rule for eliminating the ApplyPattern. Please note that deleting the ApplyPattern
also ensures the deletion of all contained elements such as the SimpleApplyPat-
ternElements.

Listing 1.6. Excerpt of the ATL4pros2ATL HOT
1 -- Add stereotype application to ActionBlock
2 rule CreateStereotypeApplication {
3 from
4 s : ATL!SimpleApplyPatternElement
5 to
6 t : ATL!SimpleApplyPatternElement ,
7 ...
8 expressionStat : ATL!ExpressionStat (
9 expression <- applySt

10),
11 applySt : ATL!OperationCallExp (
12 operationName <- ’applyStereotype ’,
13 source <- varExpression ,
14 arguments <- Sequence { navStereo }

58 MtATL 2011

15),
16 varExpression : ATL!VariableExp (
17 appliedProperty <- applySt ,
18 referredVariable <- s.applyPattern.outPatternElement
19),
20 navStereo : ATL!NavigationOrAttributeCallExp (
21 name <- ’stereo ’,
22 parentOperation <- applySt ,
23 source <- variableExp
24),
25 variableExp : ATL!VariableExp (
26 appliedProperty <- navStereo ,
27 referredVariable <- varDecl
28),
29 varDecl : ATL!VariableDeclaration (
30 varName <- ’thisModule ’,
31 variableExp <- variableExp
32)
33 }
34
35 -- drop ApplyPattern
36 rule deleteApply{
37 from
38 s:ATL!ApplyPattern
39 to
40 drop
41 }

4 Lessons Learned

This subsection presents lessons learned from extending ATL for natively sup-
porting UML profiles which may lead to a catalogue of design guidelines for
building ATL extensions in the future.

Extension points in the ATL metamodel. For the new metamodel ele-
ments it is important to find appropriate places in the ATL metamodel. When
investigating the ATL metamodel it becomes clear that the abstract class Locat-
edElement is a natural superclass for all new elements. Thus, every new element
should directly or indirectly inherit from this metamodel class. The immediate
composition relations as well as the directly associated classes depend on the
purpose of the extension and have to be determined by the extension engineer
from case to case.

HOTs as in-place transformations. As mentioned in Section 3.4, the
implemented HOT is designed as an in-place transformation using the ATL re-
fining mode. As every single ATL code fragment that is needed in the standard
ATL language to represent the introduced keywords has to be created by in-
stantiating the corresponding metamodel element this is a quite complex and
time-consuming task. Just to give the reader an idea about the transformation
size, the entire HOT involves approximately 600 lines of code for supporting only
small language extensions. As a consequence, before building the HOT, the aim
should be to out-source as much reusable parts from the standard ATL transfor-
mations as possible into an ATL library which is just included in the standard
ATL transformation. This helps a lot in keeping the HOTs small which has a
major impact on the development and maintainability efforts. Finally, further

CEUR Workshop Proceedings 59

improvements for developing in-place HOTs may be explored similar to what
has been done in [14] for model-to-model HOTs.

Test-driven development. An important feature that needs to be inves-
tigated refers to the correctness of the implemented extension. Therefore, an
appropriate test suite is required for having a test-driven development of ATL
extensions. The workflow for ensuring the correctness of the extension is as fol-
lows. The standard ATL transformations which are used for abstracting the ATL
extension are executed on sample input models. These transformations conse-
quently create corresponding output models. As a starting point for the cor-
rectness test, the transformations expressed in the extended syntax should be
transformed to standard ATL transformations based on the implemented HOT.
Now we can execute the generated ATL transformations with the same sample
input models as before resulting in corresponding output models. Assuming that
the extension and the HOT are working correctly, these output models have to
be equivalent to the afore generated output models by the initial transforma-
tions. This test-driven development also allows for building the extensions in an
incremental and iterative process meaning that the additional language features
are introduced and tested consecutively. For such a framework, previous work
on model transformation testing [7, 8] seems to be an appropriate basis, but
which has to be extended for testing HOTs. One important building block may
form model transformation orchestration languages [11] for modeling the testing
process.

ATL extension framework. While implementing the presented extension
of ATL, it became apparent that an integrated ATL extension framework is
needed. This is merely due to the fact that the tooling is quite time-consuming.
To be more specific, different versions of ATL plugins are required for imple-
menting the extension and a lot of copy-and-paste tasks must be performed. It
turns out that a wizard-driven extension would be more appropriate to keep
the develop/test cycles short which is planned as subject for future work. By
such an extension framework we are sure that more researchers would start
experimenting with introducing new language features in ATL and providing
domain-specific preprocessors for different domains. Such experimental imple-
mentations of new language features would also provide valuable input for the
general evolution of ATL.

5 Conclusion and Future Work

In this paper we have presented our approach for extending ATL for natively
supporting UML profiles as well as elaborated on our experiences. The presented
approach based on a preprocessor implemented as a HOT allows to reuse the
standard ATL editor as well as the complete ATL runtime. However, we have
to admit that the main limitation of the approach is that it is not possible
to enhance the expressivity of standard ATL. Nevertheless, it is possible to ease
the development of ATL transformations which would normally result in verbose
transformation code.

60 MtATL 2011

As future work we plan to provide debugging capabilities for ATL4pros. The
standard ATL already provides a set of such facilities, e.g., including step-by-step
transformation execution, running a transformation to the next breakpoint, and
introspection of variables. Debugging is supported for the preprocessed trans-
formation, but not for the transformation expressed in UML4pros which is the
specification the transformation engineer would prefer to debug. However, the
ATL refining mode builds during its transformation process an internal change
computation model. This model is used to store all the changes promoted by
the matching rules like created elements, deleted elements, and modification on
elements, relating the two versions of the user transformation. Thus, we plan
to explore the possibility of using this change computation model, that may be
serialized after running the HOT as an additional output model by applying
techniques as presented in [5, 18] for model-to-model transformations, to enable
debugging for transformations written in the extended ATL syntax. In particu-
lar, the debugging messages and further state information should be propagated
from the standard ATL transformation specification to the ATL4pros transfor-
mation specification.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions to improve the quality of the paper.

References

1. Bézivin, J.: On the unification power of models. Software and System Modeling
4(2), 171–188 (2005)

2. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An Introduction to UML Profiles.
European Journal for the Informatics Professional 5(2), 5–13 (2004)

3. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: A Domain Specific Language for
Expressing Model Matching. In: Proceedings of the 5ère Journée sur l’Ingénierie
Dirigée par les Modèles (IDM09) (2009)

4. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation
Tool. Science of Computer Programming 72(1-2), 31 – 39 (2008)

5. Jouault, F.: Loosely coupled traceability for ATL. In: Proceedings of ECMDA-
TW’05: European Conference on Model Driven Architecture - Traceability Work-
shop (2005)

6. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering. In: Proceedings of the 5th International
Conference on Generative Programming and Component Engineering (GPCE’06)
(2006)

7. Kolovos, D.S., Paige, R.F., Polack, F.A.: Model comparison: a foundation for model
composition and model transformation testing. In: Proceedings of the International
Workshop on Global Integrated Model Management (GaMMa’06). pp. 13–20. ACM
(2006)

CEUR Workshop Proceedings 61

8. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transfor-
mation Testing and Version Control in Model Driven Software Development. In:
Proceedings of the OOPSLA Workshop on Best Practices for Model-Driven Soft-
ware Development (2004)

9. Muliawan, O.: Extending a model transformation language using higher order
transformations. In: Proceedings of the 15th Working Conference on Reverse En-
gineering (WCRE’08) (2008)

10. Object Management Group (OMG). Unified Modeling Language (UML), Super-
structure Version 2.3: http://www.omg.org/spec/uml/2.3/superstructure/pdf/

11. Rivera, J.E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., Vallecillo, A.:
Orchestrating ATL Model Transformations. In: Proceedings of the 1st International
Workshop on Model Transformation with ATL (MtATL’09) (2009)

12. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)
13. Sijtema, M.: Introducing Variability Rules in ATL for Managing Variability in

MDE-based Product Lines. In: Proceedings of the 2nd International Workshop on
Model Transformation with ATL (MtATL’10) (2010)

14. Tisi, M., Cabot, J., Jouault, F.: Improving Higher-Order Transformations Support
in ATL. In: Proceedings of the Third International Conference on Theory and
Practice of Model Transformations (ICMT’10) (2010)

15. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the Use of Higher-
Order Model Transformations. In: ECMDA-FA. pp. 18–33 (2009)

16. Tisi, M., Mart́ınez, S., Jouaoult, F., Cabot, J.: Refining models with rule-based
model transformations. Tech. rep., AtlanMod, INRIA & École des Mines de Nantes
(2011)

17. Wimmer, M., Seidl, M.: On Using UML Profiles in ATL Transformations. In:
Proceedings of the 1st International Workshop on Model Transformation with ATL
(MtATL’09) (2009)

18. Yie, A., Wagelaar, D.: Advanced Traceability for ATL. In: Proceedings of the 1st
International Workshop on Model Transformation with ATL (MtATL’09) (2009)

62 MtATL 2011

