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Abstract 

Indium–DTPA–tagged liposomes were studied in the present work as carriers of in vivo 
212

Pb 

/ 
212

Bi generator to be used in targeted alpha therapy. The liposomal uptake of 
212

Pb, into 

preformed liposomes, was investigated using different lipophilic chelate (DCP, 2,3-

dimercapto-1-propanol (BAL), sodium acetate, and A23187), as a function of various 

parameters (temperature, concentrations of lipids, Pb, DTPA,…) with 
212

Pb as a tracer. 

Different formulations of liposomes were tested to evaluate the radiolabeling efficiency. No 

complexing agent was necessary for the passage of Pb
2+

 through the membrane. It occurs 

naturally via a partial permeability of the lipid bilayer which increases with the temperature. 

A complexing agent (DTPA) appears necessary to concentrate Pb in the internal compartment 

of the liposomes. Conditions were found (T = 65°C, internal DTPA concentration of 0.025 M, 

pH 7.4, …) yielding a high and rapid uptake of 
212

Pb in liposomes. The protocol established 

provides a novel method for the efficient entrapment of about 2-3 Pb atoms per liposome with 

a yield of 75% in conditions relevant for nuclear medicine. 

mailto:montavon@subatech.in2p3.fr
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Introduction 

212
Bi is a potentially interesting -emitting radionuclide for targeted alpha therapy [1]. The 

principle is based on the stable binding of alpha emitting radionuclides to disease selective 

carrier molecules, such as antibodies or peptides [2]. The challenge is to deliver the 

radioactive atoms to the target with the objective to find the right balance between toxicity 

and anti-tumor effect. 

Considering its short period (t1/2 = 60.6 min), 
212

Bi is limited to situations where the labeled 

carrier molecule rapidly reaches its target. To expand the range of applications, an interesting 

method is to use its parent, 
212

Pb (t1/2 = 10.6 h), which will generate in vivo 
212

Bi. Data in the 

literature show that the classical chelation approach, used to bind the radionuclides to the 

carrier molecules, does not work [3]. Although the chelating agent used (DOTA) is known to 

form strong complexes with both Bi and Pb, a significant part of Bi escapes from the carrier 

molecule as a result of the radioactive transformation 
212

Pb / 
212

Bi and the formation of highly 

ionized daughter atoms after the Auger electrons emission [3]. 

An interesting alternative is to use liposomes [4]. Once 
212

Pb is encapsulated in its internal 

compartment, the phospholipidic membrane prevents Bi release provided that the liposome 

size is large enough (~ 100 nm). This approach is studied in the present paper with liposomes 

designed to treat residual cancer diseases with a two step pretargeting strategy (Affinity 

Enhancement System) [5,6]. These liposomes present at their surface polyethylene glycol 

(PEG) to prevent fast elimination and DTPA chelating agents that are recognized, once 

complexed with indium, by the pretargeted bispecific anti-tumor x anti-indium-DTPA 

antibody.  

Active encapsulation of 
212

Pb was studied as a function of different parameters (pH, nature of 

the chelating agent used for the active encapsulation, temperature, metal ion concentration, 

liposome concentration, concentration of encapsulated DTPA) with the objective to optimize 
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the labeling protocol in terms of time, encapsulation yield and specific activity. To help the 

comprehension of the encapsulation process, different liposome formulations were tested 

(Table 1) 

 

Material and methods 

Reagents 

All reagents were of analytical grade. All solutions were prepared using Milli-Q water and all 

experiments were conducted in air-conditioned laboratories (21 ± 2°C), except otherwise 

indicated. Liposomes of various compositions were used (Table 1). The various constituents 

were mixed in chloroform / methanol (9/1 v/v) mixture in a 10 mL round bottom flask. A 

lipid film was obtained by evaporation of the solvent in a rotary evaporator. The hydration of 

the lipid film was performed by addition of 1 mL of the aqueous phase. After a treatment by 

ultrasounds for 2 min, liposomes were calibrated in size by extrusion on polycarbonate 

membranes to obtain an average diameter of 100 nm [7]. The size was systematically checked 

by dynamic light scattering with the Autosizer 4700 apparatus (Malvern Instrument SA) [8].  

Liposomes prepared in the presence of DTPA were further purified to remove non 

encapsulated DTPA by membrane filtration (Centrisat, 20 kDa). The purification step was 

monitored by UV–spectrophotometry via the analysis of the Bi–DTPA complex ([Bi–

DTPA]
2-

 = 8758 cm
-1

.mol
-1

.L (= 278 nm)). The Bi–DTPA complexation constant (log K = 

30.3, I = 0) is high enough to allow a quantitative complexation of DTPA [9]. The liposomes 

were stored at 4°C and the stock solution was never older than 3 months. The liposome 

concentration is given as the content of lipid in mol/L and was determined using a calibration 

curve of measured organic carbon content as a function of lipid concentration. The number of 

liposomes per unit volume, calculated at about 10
14

 vesicles per mL (0.02 M of lipids), was 

estimated from the formula given in [10]. 
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450 kBq of 
228

Th was provided by AREVA in 2006. A
 228

Th / 
212

Pb generator was prepared 

according to Narbutt & Bilewicz [11] using DOWEX-50x8 cation exchanger. 
228

Th was 

adsorbed on the resin in 0.01 M HCl, while 
212

Pb was stripped from the column using 1 M 

HCl. With time, some problems of purity were observed, probably due to radiation damage of 

the resin. Another purification step was then necessary and was performed using Chelex–100 

[12]. Pb sorption was done at pH 5 in an acetate pH buffer solution [13]. After washing (about 

30 times the void volume), 
212

Pb was desorbed from the column with 5 M HNO3. The 

solution was then evaporated to dryness and the residue dissolved with 5 mM HCl to obtain a 

stock solution of 20 kBq/mL. 

 

Experimental methodologies 

Encapsulation studies. Experiments were performed in 1.5 mL glass tubes. A holder in 

aluminium controlled by a heater was specifically designed to allow working at different 

temperature (25 – 150°C). Liposomes were first equilibrated in the labeling medium for 1 h 

before the lead addition (
212

Pb ~600 Bq (10
-13

 M) and 10
-9

 M of natural Pb in 0.4 mL). 
212

Pb 

was only use as a tracer. For some experiments, natural Pb was added to reproduce conditions 

relevant in nuclear medicine (~100 MBq/L or 10
-7

 mol/L). Preliminary experiments (lipid 

concentration of 1 mM, pH 7.4, 0.1 M NaCl, 0.025 M of encapsulated DTPA, T=65°C) 

showed that the encapsulation kinetic was rapid, a stable encapsulation yield being obtained 

after about 1 hour. This time was fixed for all the experiments. 

 

Complexation studies between In and the liposomes. They were performed in dialysis bags 

(Microcon Millipore, 3 kDa) composed of two compartments of 0.5 mL (compartment 1) and 

1 mL (compartment 2). Once the compartments filled with the indium solution, liposomes 

(10
-4

 M) were added in compartment 1. The tubes were then shaken and kinetic studies 



 5 

showed that 24 hours of contact were necessary to reach equilibrium conditions. Preliminary 

results showed a strong adsorption of liposomes at the surface of the dialysis tubes. The 

concentration of indium in compartment 1 at equilibrium was thus calculated according to the 

relation: 

0.5

1x[In]1.5x[In]
[In]

2total

1


  

Where [In]total, [In]1 and [In]2 are the total concentration of indium added in the system and the 

indium concentrations in compartments 1 and 2, respectively. 

 

Chelex–100. It was used to monitor 
212

Pb encapsulation, to purify 
212

Pb solution and to label 

the liposomes with indium. Chelex–100 was first washed according to Biesuz et al [13] with 5 

M HNO3. About 7 g of Chelex–100 was loaded on 1.5x8 cm polypropylene columns and pre-

equilibrated with the medium of interest. 0.5 mL of the solution was then injected at the top of 

the column and the elution was made at a speed of 2 mL/min. It was checked that the 

liposomes were stripped from the column without significant retention (< 2 %). 

 

Water / octanol extraction: 2 mL of the organic phase was pre-equilibrated with the aqueous 

medium (2 mL) before 
212

Pb addition. After 12 hours of stirring, both phases were separated 

and samples were withdrawn for activity measurements. 

 

Analytical tools 

UV-spectra were recorded on a UV–visible UV–2401 PC spectrophotometer from Shimadzu. 

Organic carbon analyses were done on a TOC–VCSH apparatus supplied by Shimadzu. 
212

Pb 

purity was verified by gamma ray spectroscopy with a high purity germanium (HPGe) 

detector from Canberra. 
212

Pb activities in the encapsulation experiments were measured by 

liquid scintillation counting using a Packard 2550 TR/AB Liquid Scintillation analyzer with 
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the Ultima Gold AB scintillation liquid. Indium analysis was performed by ICP–MS using a 

PQ Excell apparatus provided by VG Elemental (sensibility limit of 0.1 ppb). 

 

Quantitative analysis 

The PHREEQC program [14] was used to simulate the reactions occurring in the studied 

systems. An input file describing the experimental conditions (medium composition, pH, E 

and temperature) is created and the species distribution at equilibrium was calculated using 

the thermodynamic database Llnl (Lawrence Livermore National Laboratory). All the 

equilibrium constants in the database were extrapolated at zero ionic strength using the 

Truncated Davies equation [15].  

 

Results and discussion 

Pre–labeling of DTPA by In 

The objective was to complex indium with DTPA–tagged liposomes, the indium–DTPA 

complex being the bispecific antibody recognition site for pretargeting. This step was 

performed prior to 
212

Pb encapsulation to avoid any complexation between 
212

Pb and DTPA 

ligands which would limit the encapsulation yield. The complexation isotherm measured as a 

function of indium concentration is reported in figure 1. Under the studied experimental 

conditions, the DTPA–tagged liposome saturation starts in the presence of indium 

concentrations above 10
-4

 M. This is translated by a decrease in indium complexation. The 

calculation of data by a Langmuir–type model [16] gives a number of interacting sites of 

2.5.10
-4

 M (dashed line in figure 1), whereas a value of 10
-6

 M was predicted based on the 

liposome composition (solid line in figure 1). This result indicates the presence of other 

binding sites at the liposome surface. These sites may be attributed to deprotonated 

phospholipides P-OH (about 47 for 1 DTPA) and neutral NH2 or C=O functional groups. In 
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the following, these latter sites and DTPA–tagged liposomes will be designed as non–specific 

and specific sites, respectively. It was necessary to find a method to remove non–specifically 

bound indium (while leaving indium bound to specific sites) as it could compete with 
212

Pb 

encapsulation or may be toxic in vivo. The method was defined in conditions where indium 

was in excess (100 for 1 DTPA) and is based on the well–known strong kinetic stability of 

DTPA complexes with trivalent metal ions [17], i.e. once complexed, the kinetic of de-

complexation is very slow. The solution  ([lipids] =10
-2

 M, [In] = 1.5.10
-2

 M in 0.1 M NaCl), 

after 20h equilibrium, was passed through a Chelex–100 column at a flow rate of 2 mL/min 

allowing an efficient retention of free indium and indium bound to the non–specific sites 

while indium complexed with DTPA–tagged liposomes was eluted from the column. 

Conditions were obtained where indium concentration measured in the eluted solution 

corresponded, within experimental errors, to the concentration of DTPA in the DTPA–tagged 

liposome preparation. We showed as well that another passage of the “purified” solution 

through the Chelex–100 column did not lead to any significant further indium release. The 

two experimental observations indicate that the purification process is optimum and lead to 

indium–DTPA labeled liposomes. 

 

Active encapsulation 

According to literature data [4], active encapsulation of metal ions should be obtained by the 

formation of a lipophilic complex which crosses the membrane of the liposome and by 

trapping them in the aqueous internal liposome compartment by forming a charged complex 

with strong chelating agent (figure 2). 
212

Pb presenting an affinity for the non-specific sites, it 

was necessary to define a methodology allowing us to distinguish the encapsulated lead with 

the one adsorbed at the external surface of the liposomes. The same method as that used to 

prepare indium–labeled liposomes was used. In a dynamic system, we make the hypothesis 
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that the lead adsorbed at the liposome surface is quickly adsorbed by the sites of Chelex–100, 

while the incorporated Pb is eluted with the liposomes. This is indirectly shown in Table 1 

where 97% of Pb is not eluted in conditions where the encapsulation is supposed negligible 

(liposome A, ambient temperature). The method must also retain lead in the solution and 

complexed to the ligand used for the encapsulation. This was checked for two temperatures in 

labeling solution containing no liposomes (Table 2): if one excepts the system containing 

A23187, Pb is retained by Chelex–100. For A23187, about 12 % passed through the column 

showing the presence of a relatively kinetically-stable Pb–A23187 complex. In the presence 

of liposomes, this amount was systematically subtracted from the content of 
212

Pb eluted to 

get the percentage of encapsulated lead. 

 

Method optimization 

Several parameters can affect the encapsulation [21, 22, 23]: the pH of the external and 

internal compartments, the nature and concentration of the ligands used for the encapsulation, 

and the temperature of the experiment. DTPA was selected as the encapsulated ligand used to 

trap 
212

Pb in the internal compartment of the liposome [21]. The labeling pH was fixed by 

default to 7.4 based on the work of Tilcok et al [21]. All other parameters were varied to 

optimize the labeling protocol in terms of time, yield and specific activity. 

 

Temperature effect. The temperature plays a crucial role in the encapsulation of radionuclides 

in liposomes [22]. This is illustrated in figure 3. Below 55°C, the encapsulation yield is weak 

with less than 10% of lead encapsulated. It increases above 55°C to reach a maximum value 

of 35 % for T = 70°C. This is related to the phase transition temperature (Tm) of the lipids 

which occurs at 74°C for our liposomes [24]. This results in a decrease of the phospholipidic 

thickness and the membrane permeability which facilitate the encapsulation of 
212

Pb. The 
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more the temperature is close to the phase transition temperature, the more the encapsulation 

is facilitated. However a decrease of encapsulation is observed above 80°C. At 85°C, the 

temperature is well above the Tm of the lipids; the bilayer becomes disorganized (rotation, 

flip-flop …) and much more fluid [8]. As a result, the molecules to encapsulate enter in the 

inner compartment of the liposomes, and come out just as easily. This may explain the 

decrease of encapsulation. 

 

DTPA Effect. According to Tilcock et al [21], DTPA has a crucial role to play, i.e. due to its 

high complexation constant for Pb, it complexes Pb and form an anionic complex which 

remains in the internal compartment. The question raised here is whether the internal DTPA 

moieties of the DTPA–tagged liposomes could play this role without encapsulation of free 

DTPA. To assess this possibility, the encapsulation was studied for different composition of 

liposomes and the results are reported in Table 1. 

Without encapsulated DTPA (liposome A), a significant encapsulation was observed at 65°C 

(24.6 %) while no encapsulation occurs at ambient temperature. This result indicates that the 

encapsulation is done naturally because of the dynamic of the surface which makes the 

organic phospholipidic bilayer temporary permeable. However, a higher encapsulation was 

observed in the presence of internal free DTPA (liposome B). DTPA is therefore an important 

driving force. This is notably confirmed at ambient temperature with a significant 

encapsulation (69.7 %) whereas no encapsulation was observed without internal DTPA. The 

presence of surface DTPA in addition to free internal DTPA does not improve the yield at 

65°C. This is coherent with the fact that surface DTPA (about 700 par liposome) is much 

lower than internal free DTPA (about 12000 per liposome). However, a significant difference 

is observed at ambient temperature between liposomes B and D (69.7 vs 12.9). We can 

imagine that bound DTPA hampers the encapsulation at ambient temperature for sterical 
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reasons. Finally, in agreement with the above considerations, the presence of surface DTPA 

(liposome C) allows a higher encapsulation at 65°C than liposome A. The encapsulation yield 

is however increased in the presence of internal free DTPA. In the following, internal DTPA 

(0.025 M) was systematically added. A higher value was shown to induce a precipitation 

during liposome preparation. 

 

Nature of X. The encapsulation is for a part linked to the lipophilicity of the ligand used for 

the encapsulation [23]. Different compounds were tested at ambient and 65°C (figure 2). An 

experiment was done without ligand, for comparison. When the equilibrium constants are 

known, Pb speciation in solution was calculated at 25°C to help the understanding of the 

experimental data. The results are given in Table 2. A23187 was chosen because it is used for 

the efficient encapsulation of trivalent metal ions [19]. However, the percentage of 
212

Pb 

encapsulated is weak and amount to nearly 15%. This may be explained by the strong 

complexation (Table I) allowing DTPA not to compete with A23187 for Pb
2+

 in the internal 

volume. This observation may also be explained by the kinetic stability of the Pb–A23187 

complex formed (log K = 6.49) [20], as already discussed in the part ”active encapsulation” 

which does not allow DTPA to trap 
212

Pb in the internal compartment. Thus, it cannot be 

concentrated in the internal compartment and its concentration should not be higher than the 

one in the external compartment; considering the ratio between internal and external 

compartments of 0.06, an encapsulation yield around 6 % is expected, in agreement with the 

weak value experimentally measured. Finally, a last possibility may be related to the charge + 

of the complex which is predicted based on literature data [20]. The yield of encapsulation 

appears much higher and similar for BAL, acetate and DCP, the two later forming neutral 

complex with Pb
2+

. Surprisingly, it equals, within experimental errors, with the one obtained 

without ligand. This result indicates that the ligand has no effect and that the passage of 
212

Pb 

across the membrane does not occur via the diffusion of the neutral complex PbX. 
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To assess the latter assumption, the system containing acetate was better studied in the model 

water / octanol system where octanol simulate the liposome membrane [25]. If a diffusion 

process occurs, the complex must be partially soluble in octanol. The acetate concentration 

was varied to change the concentration of PbAc2 in the aqueous solution from 0% ([Ac]tot = 

10
-6

 M) to 9.3% ([Ac]tot = 0.1 M). We then expect an increase in lead extraction in the organic 

phase when acetate concentration increases. However, the result showed that about 2% of lead 

was extracted in the presence or absence of acetate, and irrespective of acetate concentration. 

A similar study was performed in the presence of liposomes for different acetate 

concentrations. Here also, a constant encapsulation was observed, i.e. 65 ± 5 (lipid 

concentration of 2.5.10
-3

 M, lead concentration of 10
-9

 M, T = 65°C, pH = 7.4), for all acetate 

concentration studied (10
-5

 – 0.1 M). The result, in complement to those got from the DTPA 

study, confirm that the ligand has no role in the encapsulation. This latter may be explained 

by a physical encapsulation arising from the dynamic of the membrane, which makes it 

partially permeable, and notably at 65°C. In the following, no ligand was used for 
212

Pb 

encapsulation. 

 

Specific activity. Both the number of lead encapsulated (and specific activity) and the 

encapsulation yield are key parameters for the definition of the labeling protocol. In the 

optimized conditions (pH = 7.4, internal DTPA concentration of 2.5.10
-2

 M, T = 65°C), the 

encapsulation was studied as a function of liposome and lead concentrations. The results are 

reported in figure 4. On the one hand, for one given lead concentration, the more the lipid 

concentration, the more the encapsulation yield, the less the number of lead in the internal 

compartment. On the other hand, for one given liposome concentration, the more the lead 

concentration, the more the number of lead encapsulated while no effect on the encapsulation 

yield was observed. For a typical application in targeted radionuclide therapy, activities of 

several hundred MBq are necessary corresponding to concentration of 
212

Pb around 10
-7

 M. 
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Under such conditions, by fixing the lipid concentration to 2.5.10
-3

 M, a concentration 

typically got from the production protocol, an encapsulation yield of about 75 % can be 

obtained using the optimized protocol with a mean value of 2–3 lead atoms per liposome. 

 

Encapsulation in the In–labeled–PEG–liposomes 

The methodology previously optimized was tested on PEG–liposomes using the two steps 

approach. Preliminary experiments showed that lead interaction with PEG chains, if it occurs, 

does not interfere with the determination of the encapsulation yield, i.e. lead mixed with PEG 

chains is retained in the Chelex–100 column. Encapsulation yields of 52 and 78.5 % were 

obtained for a lipid concentration of 10
-3

 M at ambient temperature and 65°C, respectively. 

These values appear higher than those obtained with the non–PEG–liposomes, i.e. 5 and 44 

%. This shows that the PEG chains, in addition to make the liposomes stealth, facilitate 
212

Pb 

encapsulation. The value at 65°C appears in close agreement with the one reported by 

Henriksen et al [4] obtained for related PEG–liposomes under similar conditions (80 %). This 

result indicates that the indium–DTPA complexes at the liposome surface do not hamper the 

labeling efficiency. 

Conclusions 

A two–step preparation process is proposed for indium–tagged liposomes loaded with 
212

Pb: 

the first step involves the labeling of surface–DTPA liposomes with indium while the other 

one corresponds to 
212

Pb encapsulation. Several parameters were tested to optimize the 

encapsulation (temperature, concentrations of lipids, Pb, and DTPA, and different lipophilic 

chelate…). The results indicate that the origin of the encapsulation is related to the dynamics 

of the surface, which makes the membrane partially permeable. The process is optimum at 

65°C. No ligand was then necessary to allow the passage of 
212

Pb from the external to the 

liposome internal compartment: a similar yield was observed for all chelating agents tested 
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and close to the one measured without chelating agent. This indicates that a significant 

improvement is observed when DTPA is present in the internal compartment. By forming a 

strong complex with Pb, it allows a concentration of the metal ion. The optimized conditions 

allow the encapsulation of 2–3 lead ions with a yield of 85 % under conditions relevant for 

nuclear medicine application. Comparison with literature data shows that the pre–labeling 

with indium does not affect the encapsulation yield. Further studies are on going to check that 

the results are still valid in the presence of several MBq of 
212

Pb, and that the encapsulation is 

stable in biological media will also be studied. 
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Table 1: Composition of liposomes and 
212

Pb encapsulation yield.  

Experimental conditions: [BAL] = 10
-4

 M, lipid concentration of 2.5.10
-3

 M, Pb concentration 

of 10
-7

 M; external medium: 0.1 M NaCl, 2.10
-3

 M HEPES (pH = 7.4). 

  

 

 

Footnotes: BAL = 2,3–dimercapto–1–propanol; HEPES = 2–[4–(2–Hydroxyethyl)–1–

piperazine]ethanesulfonic acid; DSPC = 1,2–Distearoyl–sn–glycero–3–phosphocholine ; 

DSPE-DTPA = 1,2–Distearoyl–sn–glycero–3–phosphoethanol amine–diethylenetriamine 

pentaacetic acid 

 

 

 

 

 

 

 

 

liposome 

number 

liposome 

composition 
internal volume 

lead encapsulated 

(%); T=65 ± 1°C 

lead encapsulated 

(%); T=21 ± 2°C 

A 

DSPC (68%), 

cholesterol (30.5%), 

DSPE (1.5%) 

0.1 M NaCl, 2.10
-3

 M 

HEPES (pH=7.4) 
24.6 ± 8.5 3.0 ± 1.2  

B 

DSPC (68%), 

cholesterol (30.5%), 

DSPE (1.5%) 

0.025 M DTPA, 0.1 M 

NaCl, 2.10
-3

 M 

HEPES (pH=7.4) 

74.9 ± 7.6 69.7 ± 9.5  

C 

DSPC (68%), 

cholesterol (30.5%), 

DSPE–DTPA (1.5%) 

0.1 M NaCl, 2.10
-3

 M 

HEPES (pH=7.4) 
56.3 ± 5.3  5.6 ± 0.9  

D 

DSPC (68%), 

cholesterol (30.5%), 

DSPE–DTPA (1.5%) 

0.025 M DTPA, 0.1 M 

NaCl, 2.10
-3

 M 

HEPES (pH=7.4) 

72.7 ± 3.2  12.9 ± 1.1  

E 

DSPC (64%), 

cholesterol (29.5%), 

DSPE–DTPA (1.5%), 

PEG (5%) 

0.025 M DTPA, 0.1 M 

NaCl, 2.10
-3

 M 

HEPES (pH=7.4) 

78.5 ± 2.5  52.0 ± 3.1  
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Table 2: Effect of the ligand X on the encapsulation; experiments realized with liposome D 

for X = acetate, DCP (1,10–phenantroline–2,9–dicarboxylic acid), BAL (2,3–dimercapto–1–

propanol), and A23187 (see Table 1 and figure 2).  

composition  

of external 

medium 

T(°C) 
lead distribution 

 in solution 
a
                                      

% of lead eluted; 

no liposome 

present 
b
 

Encapsulation 

yield (%) 
c
 

Pb 
21 ± 2 81% Pb

2+
; 18% 

Pb(OH)
+
; 1% Pb(OH)2 

[18] 
0.9 ± 0.2 9.1 ± 0.7 

65 ± 1 1.1 ± 0.2 45.7 ± 1.8 

Pb-acetate 
21 ± 2 99% Pb(Ac)3

-  
; 

1% Pb(Ac)2 
[18] 

0.7 ± 0.2 5.3 ± 0.6 

65 ± 1 0.5 ± 0.2 46.7 ± 1.9 

Pb-DCP 
21 ± 2 

100% Pb(DCP) [19] 
0.6 ± 0.2 3.9 ± 0.6 

65 ± 1 0.5 ± 0.2 36.5 ± 1.7 

Pb-BAL 
21 ± 2 

no data available 
1.2 ± 0.2 5.1 ± 0.7 

65 ± 1 0.5 ± 0.3 36.5 ± 1.6 

Pb-A23187 65 ± 1 96% Pb(A23187)
+
 [20] 12.0 ± 0.1 15.0 ± 1.1 

 

a
 calculated at 25°C, 

b, c
 [Pb] = 10

-9
 M, [X] = 10

-5
 M; 

c
 [Lipid] = 10

-3
 M 
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Figure 1: Complexation of indium by DTPA–tagged liposomes. 

 Lipid concentration = 6.10
-5

 M, pH = 7.4 (2.10
-3 

M, HEPES), 0.1 M NaCl. Squares are 

experimental data. The lines give the number of interacting sites 10
-6

 M and 2.5.10
-4

 M for the 

solid and dashed lines respectively.                                                                       
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Figure 2: Scheme of the encapsulation; X 
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Figure 3: Effect of the temperature on 
212

Pb encapsulation in liposomes. [Lipid] = 10
-3

 M, pH 

= 7.4 (2.10
-3 

M, HEPES), 0.1 M NaCl, 10
-5

 M CH3COO
-
.  
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Figure 4: Study of the encapsulation as a function of liposome ([Pb] = 10
-7

 M) (A) and Pb 

([lipids] = 7.5.10
-3

 M) concentrations (B). Experimental conditions: pH = 7.4 (2.10
-3

 M 

HEPES), 0.1 M NaCl, T = 65°C, [DTPA]in = 25.10
-3

 M. The lines are tendency curves. 
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