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Abstract

This scientific report summarizes the results of a literature review on dynamic
vehicle routing problems. After a brief description of vehicle routing problems in
general, a classification is introduced to distinguish between static and dynamic
problems. Then a more precise definition of dynamism is presented, supported by
example of real-world applications of such problems. Finally, a detailed study of
the current state of the art in dynamic vehicle routing optimization is drawn.

Résumé

Ce rapport scientifique a été rédigé comme synthèse de travaux de recherche
bibliographique sur les tournées de véhicules dynamiques. Après une brêve de-
scription des problèmes de tournées en général, nous proposons une classification
permettant de distinguer les problèmes statiques et dynamiques. Par la suite, une
description plus détaillée de ces derniers est présentée, se basant sur des exemples
tirés d’applications réelles. Enfin, une étude de l’état de l’art sur les problèmes de
tournées dynamiques est développée, puis complétée par une analyse des thématiques
n’ayant reçu à ce jour qu’un faible intérêt de la part de la communauté scientifique,
et suceptibles de constituer des pistes intéressantes de recherche.

Resumen

Este reporte cientı́fico fue escrito como sı́ntesis de una investigación bibliográfica
sobre los problemas de ruteo de vehı́culo dinámicos. Después de una breve de-
scripción general de los problemas de ruteo, se propone una clasificación permi-
tiendo una distinción entre problemas staticos y dinámicos, los últimos siendo el
objeto de una definición mas detallada, basada en ejemplos de aplicaciones reales.
Por fin, se presenta un estudio del estado del arte sobre los problemas de ruteo
dinámico, completada por una análisis de las temáticas que podrı́an constituir di-
recciones interesantes de investigación.
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INTRODUCTION

Introduction

The Vehicle Routing Problem (VRP) formulation was first introduced by Dantzig and
Ramser (1959), as a generalization of the Travelling Salesman Problem (TSP) presented
by Flood (1956). The VRP is generally defined on a graph G = (V,E,C), with V =

{v0, ..., vn} being the set of vertices, E = {(vi, vj)|(i, j) ∈ V2, i 6= j} the arc set and C =
(

cij
)

(i,j)∈E
a cost matrix defined on E, representing distances, travel times or travel

costs. Traditionally, vertex v0 is called depot, while the remaining vertices represent
clients that need to be serviced. The VRP consists in finding a set of routes for K vehicles
of identical capacity based at the depot, such that each of the vertices is visited exactly
once, while minimizing the overall routing cost.

Beyond this classical formulation, a number of variants have been identified and
studied. Among the most commonly cited are the VRP with Time Windows (VRP-TW),
requiring the customers to be visited during a specific time interval; the VRP with Pick-
up and Delivery (VRP-PD or PDP), where goods have to be either picked-up or deliv-
ered in specific amounts in each of the vertices, and its variation with time windows
(PDP-TW). Other variations include the Heterogeneous fleet Vehicle Routing Problem
(HVRP) and its variants with time windows or pickup and delivery, in which the vehi-
cles have different capacities. When transportation of people between two locations is
considered, the problem is referred to as Dial A Ride Problem (DARP) for land transport;
or Dial A Flight Problem (DAFP) for air transport.

In contrast with the canonical definition of the vehicle routing problem, real-world
applications often include two important dimensions: evolution and quality of informa-
tion (Psaraftis, 1980). Evolution of information is related to the fact that in some prob-
lems the information available to the planner may change during the execution of the
routing, for instance with the arrival of new client requests or changes in the travel-
ling times. Quality of information reflects possible uncertainty on the available data,
for example when the demand of a client is only known as an estimation of its real
demand. From this two dimensions, four categories of problems can be identified, as
summarized in Table 1.

Information quality

Deterministic knowledge

of input data

Stochastic knowledge

of input data

Information

evolution

Input is known

beforehand
Static Deterministic Static Stochastic

Input changes

over time
Dynamic Deterministic Dynamic Stochastic

Table 1: Taxonomy of vehicle routing problems by information evolution and quality.

In static and deterministic problems, all input is known beforehand and no change can
be applied to the routing plan. This is the historical class of problem, and it includes
the classical vehicle routing problem and its variations discussed earlier.

Static and stochastic problems are characterized by input partially known as random
variables, of which the realization is only revealed to the planner during the execution
of the routing. Additionally, only minor changes on the routing are allowed: generally
a vehicle can only plan a trip to the depot, or skip a client. Applications falling in this
category do not require any technological support: the planning is done before-hand
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INTRODUCTION

and subsequent decisions are taken autonomously by vehicles.
In dynamic and deterministic problems, part or all of the input is unknown and re-

vealed dynamically during the design or execution of the routing (Psaraftis, 1995),
while no stochastic data is available regarding the dynamically revealed information
(Flatberg et al., 2007). In this case, the routing plan can be completely redefined in an
on-going fashion. Applications in this class of problem require technological support,
allowing in particular real time communication between the vehicles and the decision
maker, for instance with the use of mobile phones, personal digital assistants (PDA) or
smart-phones, possibly coupled with global positioning systems (GPS).

Similarly, dynamic and stochastic problems have part or all of their input unknown
and revealed dynamically during the determination or execution of the plan (Psaraftis,
1995), but in this case, exploitable stochastic knowledge is available on the dynami-
cally revealed information (Flatberg et al., 2007). As before, the routing plan can be
completely redefined in an on-going fashion, and technological support is required.

It is important to note that some variations exist among author on the classification
of vehicle routing problems (Flatberg et al., 2007, Ghiani et al., 2003, Psaraftis, 1988,
1995), nevertheless the above definitions will be used as a reference in the remainder of
this document.

Static and deterministic problems have been extensively studied in the literature. We
refer the interested reader to the recent reviews of exact and approximated approaches
by Baldacci et al. (2007), Cordeau et al. (2007b) and Toth and Vigo (2002).

As stated before, a problem is said to be static and stochastic if part of the input is
uncertain but can be modelled as random variables of known distribution. Uncertainty
may affect any of the input data. Nonetheless, as identified by Cordeau et al. (2007b),
the three most studied cases are stochastic customers, when each customer i is present
in the instance with probability pi and absent with probability 1 − pi (Bertsimas, 1988,
Waters, 1989); stochastic times, in which case the time si needed to serve customer i, or
the travel time tij on the edge (i, j) are random variables (Kenyon and Morton, 2003,
Laporte et al., 1992, Verweij et al., 2003); and finally stochastic demands, with the demand
ξi of a customer i being defined as a random variable (Christiansen and Lysgaard, 2007,
Dror et al., 1989, Laporte et al., 2002, Mendoza et al., 2009, Secomandi, 2000, Secomandi
and Margot, 2009).

In most cases, the realization of random variables is revealed only at operation time.
For instance the actual demand of a client may only become known when it is actually
visited. However, internal or external factors prohibit the enforcement of decisions
in a real-time manner. Thus the objective in static and stochastic routing problems is
to build a robust plan beforehand, that will undergo only limited changes during its
execution. Therefore, in this context, the qualifier static does not mean that the avail-
able information or the actual routing are not subject to changes, but instead that these
changes are not directly considered.

Uncertainty in the stochastic VRPs input has been addressed by various solution
frameworks, of which the two most studied are the Chance Constrained Programming
(CCP) and the Stochastic Programming with Recourse (SPR). Both frameworks are based
on a two-stage approach: the first phase is performed before the start of the planning
horizon and aims to design a robust routing plan; while the second phase takes place
during its execution, and consists in taking recourse or corrective actions as the realiza-
tions of the random variables are disclosed. The conceptual difference between the two
approaches lies in the objective of the first-stage optimization: in CCP, the goal is to
ensure an upper bound on the probability of a failure, regardless of the expected cost
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1 DYNAMIC ROUTING

of the second phase; while SPR seeks the minimization of the expected cost of recourse
actions. Recourse actions, on the other hand, are common to most approaches and de-
pend on the application. For instance, for the commonly studied VRP with Stochastic
Demands (VRPSD), a route failure may occur any time a customer demand exceeds the
associated vehicle remaining capacity. In this case, an intuitive recourse action is for the
vehicle to go back to the depot to restore its initial capacity and then resume its route
(Mendoza et al., 2009), or to allow the service of additional customers before returning
to the depot (Novoa et al., 2006). As mentioned by Secomandi and Margot (2009), a
distinction must be made between reactive actions, which are only taken when a failure
occurs, and proactive actions, that are decided by anticipating the likeliness of a failure.

Further details on the static stochastic vehicle routing can be found in the reviews
by Bertsimas and Simchi-Levi (1996), Cordeau et al. (2007b) and Gendreau et al. (1996).

The remainder of this document focuses on dynamic routing and is organised as
follows. Section 1 introduces a general description of such problems. This section also
presents the degree of dynamism and detail indicators to measure it, then reviews dif-
ferent applications related to dynamic routing. Section 3 provides a comprehensive
survey of solution approaches, for both deterministic and stochastic dynamic routing.
Finally directions for further research will be drawn, with an emphasis on the problem
that we tackle in the future.

1 Dynamic routing

1.1 A general definition

To the best of our knowledge, the first reference to a dynamic vehicle routing prob-
lem is due to Wilson and Colvin (1977). They studied a dial-a-ride problem (DARP)
with a single vehicle, in which customers requests are trip from an origin to a desti-
nation that appear dynamically. Their approach uses insertion heuristics able to per-
form well with low computational requirement. Later work by Psaraftis (1980) intro-
duced the concept of immediate request: a customer requesting service always wants to
be served as early as possible, requiring the immediate re-planning of the current vehi-
cle route. They propose a dynamic-programming algorithm for the static case, as well
as an adaptation to the dynamic context tested on a ten-customer instance.

Since then, a number of technological advances have increased the importance of
online or real-time applications. With the introduction of the Global Positioning System
(GPS) in 1996, the development and widespread use of cell-phones and smart-phones,
combined with accurate Geographic Information Systems (GIS), companies are now able
to track and manage their fleet in real-time and cost effectively. While traditionally a
two-step process, vehicle routing can now be done dynamically, introducing greater
opportunities to reduce operation costs, improve customer service, and reduce envi-
ronmental impact.

The most common source of dynamism in vehicle routing is the online arrival of
customer requests during the operation. More specifically, a request is generally com-
posed of a location and a demand (Attanasio et al., 2004, Goel and Gruhn, 2008, Ichoua
et al., 2006, Mes et al., 2007, Mitrovic-Minic and Laporte, 2004), although in some cases,
the only relevant information is the location (Beaudry et al., 2008, Bent and Hentenryck,
2005, Bertsimas and Van Ryzin, 1991, Gendreau et al., 1999, Larsen et al., 2004), or the
demand (Secomandi, 2000, Secomandi and Margot, 2009, Thomas, 2007, van Hemert
and Poutré, 2004). Travel time, a dynamic component of most real-world applications,
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1 DYNAMIC ROUTING 1.2 Differences with static routing

has been recently taken into account (Attanasio et al., 2007, Barcelo et al., 2007, Chen
et al., 2006, Fleischmann et al., 2004, Haghani and Jung, 2005, Haghani and Yang, 2007),
while service time, that is, the time spent at the location of a client, has not been ex-
plicitly studied but remains considered in most approaches. Finally, some recent work
considers vehicle availability (Li et al., 2009a,b), with the source of dynamism being the
possible breakdown of vehicles.

1.2 Differences with static routing

By their nature, dynamic routing problems differ from their static equivalent by
adding more degrees of freedom for the decision making, and introducing new metrics
for the objective function.

In some contexts, such as the pick-up of express courier studied in (Gendreau et al.,Degrees of

freedom 1999), the transport company does not have the obligation to service a customer re-
quest. As a consequence, it can reject a request, either because it is simply impossible
to serve it, or because the cost of serving it is too high compared with the company
objectives. This process of acceptance/denial has been used in many approaches (At-
tanasio et al., 2004, Fagerholt et al., 2009, Gendreau et al., 1999, Ichoua et al., 2000, 2003,
2006, Li et al., 2009a), and is sometimes referred to as service guarantee (Van Hentenryck
and Bent, 2006). In some cases, the knowledge of stochastic information on customer
can be used to refine the acceptance criteria. For instance in scenario-based approach
(Bent and Hentenryck, 2005, Bent and Van Hentenryck, 2004a,b, 2007, Hvattum et al.,
2006), artificial clients are generated to create scenarios, allowing the acceptance of a
request to be conditioned on the fact that a minimum proportion of scenarios can ac-
commodate the new request, possibly by removing up to a certain number of sampled
customers. Therefore, a request is accepted or rejected not only based on the currently
known requests, but also on the expected requests. A consequence is that highly restric-
tive requests, located for instance in remote areas, are likely to be rejected to preserve
more promising expected ones.

In most of the literature, a vehicle cannot be diverted while moving toward its next
destination. However, being able to redirect a moving vehicle to a new request near
its current position could allow additional savings. Nevertheless, it requires real-time
knowledge of the vehicle positions and to be able to communicate rapidly with drivers
to assign them new destinations. Thus, this strategy has received limited interest, with
the main contributions being the early work by Regan et al. (1998), the study of diver-
sion issues by Ichoua et al. (2000), and the work by Branchini et al. (2009). However, it is
worth noting that diversion has been more widely applied in the context of emergency
services operations (Gendreau et al., 2001, Haghani and Yang, 2007).

Aside from the difference in the way input is revealed, dynamic problems also fre-Objective

functions quently differ from their static counterparts in their objective function (Psaraftis, 1995).
In particular, while a common objective in static context is to minimize a routing cost,
dynamic routing may introduce other notions such as service level, throughout or rev-
enue maximization.

Having to answer dynamic customer requests introduce the notion of response
time: a customer might request to be served as soon as possible, in which case the
main objective may become to minimize the time between a request and its service.

Another difference is that in static planning, if not specified, all requests have the
same priority. By contrast, in a dynamic context, nearer term events are generally more
important (Psaraftis, 1995). In fact, mobilizing resources for future requests may reveal
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1 DYNAMIC ROUTING 1.3 Measuring the dynamism

to be suboptimal if intermediate requests are to appear in the meantime. Therefore
and as stated before, the decision maker might have the possibility to delay or reject
customer requests. Resulting objectives could be the maximization of the number of
served clients (referred to as throughout), or the total expected revenue, which may
include both the routing costs and the revenue generated by the served customers.

Finally, other objectives could be introduced, for instance a pragmatic approach
could be to mitigate changes in the routes when a new client request is accepted.

1.3 Measuring the dynamism

Before presenting the different applications of dynamic vehicle routing, it is im-
portant to introduce a notion that has been widely used to characterize the degree of
dynamism of a problem. In fact, it appears that the level of dynamism can greatly vary
between problems or even instances of a same problem. For instance, an on-demand
transportation company may request their customers to book their trip in advance to
only face limited requests for the same day. In contrast, emergency services will have
to respond quickly to purely dynamic requests (Haghani and Yang, 2007).

Two dimensions can be identified to characterize the dynamism of a problem (Ichoua
et al., 2006): the frequency of changes, which is the rate at which new information be-
comes available, and the urgencies of requests, defined as the time available between
the arrival of a request and its expected service date.

Lund et al. (1996) proposed a first metric to measure the dynamism of a problem.Degree of

dynamism The degree of dynamism δ is defined as the ratio between the number of dynamic requests
nd and the total number of requests ntot :

δ =
nd

ntot

Based on the fact that the arrival time of requests is also important, as stressed byEffective

degree of

dynamism
Psaraftis (1988, 1995), Larsen (2001) proposed another indicator, namely, the effective
degree of dynamism δe. This metric can be interpreted as the normalized average of the
arrival times. Let T be the length of the planning horizon, R the set of requests, and
ti the arrival time – or disclosure date (Jaillet and Wagner, 2006) – of request i ∈ R.
Considering that requests known beforehand have a disclosure date equal to 0, δe can
be expressed as:

δe =
1

ntot

∑

i∈R

ti

T

Larsen (2001) also extended the effective degree of dynamism to problems with timeTime

windows windows, in order to reflect the level of urgencies of requests. He defines the reaction
time ri as the difference between the arrival date ti and the end of the corresponding
time window li, highlighting that greater reaction times mean more flexibility to insert
the request into the current routes. Thus the effective degree of dynamism measure is
extended as follows:

δeTW =
1

ntot

∑

i∈R

(

1 −
ri

T

)

It is worth noting that these three metrics only take values in the interval [0, 1] and
increase with the level of dynamism of a problem. Larsen et al. (2002, 2007) use the ef-
fective degree of dynamism to define a framework classifying DVRPs among weakly,
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2 A REVIEW OF APPLICATIONS

moderately and strongly dynamic problems, with values of δe being respectively lower
than 30%, comprised between 30% and 80%, or higher than 80%.

Although the effective degree of dynamism and its variations have proven to capture
well the time-related aspects of dynamism, it could be argued that they do not take
into account the other possible sources of dynamism listed previously. In particular, the
geographical distribution of requests, or similarly the traveling times between requests,
are also of great importance in applications aiming at the minimization of response
time. In addition, the frequency of changes mentioned earlier is not directly reflected,
although it can have dramatical impact on the time available for optimization between
the arrival of two events.

2 A review of applications

As it has been stated before, recent advances in technology allowed the emergenceITS

of a wide new range of applications for vehicle routing. In particular, the last decade
has seen the development of Intelligent Transport Systems (ITS), based on the combi-
nation of geolocation technologies, with precise geographic information systems, and
increasingly efficient hardware and software for data processing and operations plan-
ning. We refer the interested reader to the study by Crainic et al. (2009) for more details
on ITS and the contribution of operations research to this relatively new domain.

Among the ITS, the Advanced Fleet Management Systems (AFMS) are specificallyAFMS

dedicated to the management of a corporate vehicle fleet. The problem faced is gen-
erally to deliver (pickup) goods or persons to (from) locations distributed in a specific
area. Customer requests can be either known in advance or appear dynamically dur-
ing the day, and the vehicles have therefore to be dispatched and routed in real-time,
potentially by taking into account other factors such as traffic conditions. On top of the
technological requirements, an important component of such systems is the optimiza-
tion of the decision process. Traditionally, vehicle routing relied on teams of human
dispatchers, meaning that the performance of the organisation as a whole was highly
related to the competence and experience of the people in charge, but also that manage-
ment costs were directly linked to the size of the fleet (Attanasio et al., 2007). Advances
in computer science allowed the transfer of techniques from operational research to
such systems, as presented in the studies by Attanasio et al. (2007), Godfrey and Powell
(2002), Powell and Topaloglu (2005), Simao et al. (2009) and Slater (2002).

The remainder of this section presents more details on some of the applications
where dynamic routing has been – or can be – implemented.

2.1 Visiting of clients

Applications in this category do not include the transport aspect of other routing
problems: a request is only composed by a customer location and a possible time win-
dow, thus the routing plan has to ensure that each customer is visited, without consid-
ering capacity constraints.

A common application of dynamic routing can be found in the technical mainte-Equipment

maintenance nance operations, for instance for copying machines, heating systems, elevators or even
water meters. Companies offering such services are bound by contract to their clients,
which can specify periodical, or planned maintenance visits, but may as well define a
maximum delay before an intervention in the case of an equipment failure. As a con-
sequence, at the beginning of the day, the planner or dispatcher has a set of customer
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2 A REVIEW OF APPLICATIONS 2.2 Transport of goods

requests, either from contractual visits or emergencies from the day before. Each techni-
cian is assigned a set of requests, and a routing plan is produced. However, new urgent
requests appearing during the day, or changing traffic conditions in urban areas require
to dynamically re-evaluate the routing of the technician fleet to ensure the best level of
service. An important feature often present in such companies is the qualification of
technicians for specific equipments or their assignation to geographic zones, increasing
the complexity of the routing.

Another interesting application of dynamic routing is provided by the problemTraveling

physician faced by a french organization: SOS Médecins. This non-profit organization was created
to match a gap between proximity physicians who only provide limited service outside
business hours, and emergency services operating 24/7 but with limited capacity for
lesser urgent concerns. It operates with a fleet of physicians, in contact with a call
center coordinated with other emergency services. When a person calls, the priority of
the situation is evaluated, and a visit by a practitioner is planned accordingly. As for
other emergency services, having an efficient dispatching system can allow a reduction
in the response time, improving the level of service for the society. It requires to be able
to decide the routing of the practitioner fleet in real-time, depending on the current
emergencies, but also to ensure a proper coverage of the considered area, in order to
have practitioners available where emergencies are likely to come up.

2.2 Transport of goods

Due to the fact that urban areas are often characterized by travelling times vary-City Logistics

ing greatly depending on the time of the day, transport of goods in such areas have
led to the definition of a specific category of applications: city logistics. Taniguchi and
Thompson (2002) defined city logistics as the process for totally optimising the logistics and
transport activities by private companies in urban areas while considering the traffic environ-
ment, the traffic congestion and energy consumption within the framework of a market economy.
Barcelo et al. (2007) developed a general framework for these applications, presenting
the different modules required, from the modelling of the city road network, to the ac-
quiring of real-time traffic data, and the dynamic routing of a fleet of vehicles in this
environment.

An example of application in city logistics is the courier service present in ma-Courier

jor urban areas. A case study by Attanasio et al. (2007) outlines the benefits of us-
ing computer-based techniques over human-based dispatching. They studied the case
of eCourier Ltd, a London based company offering courier services. Their clients are
mainly law firms, financial institutions and advertising agencies, and other entities re-
quiring fast delivery of items or original signatures on documents. When a customer
request is being known and accepted, a courier is sent to the client location to pick-up
the item, that will then be delivered at its destination, in exchange of a signature. De-
pending on the level of service asked by the customer, the courier may consolidate or
not its pick-up and deliveries, meaning that he may pick-up from various clients be-
fore delivering an item, or provide an exclusive expedited service. Companies offering
courier services often have an heterogeneous fleet, composed in the case of eCourier of
bicycles, motorbikes, cars and small vans. The problem is then to dynamically affect
requests to couriers, depending on the type of request and its pick-up and delivery lo-
cation and possible time windows, but also taking into account traffic conditions and
varying travel times. This study showed that the use of an AFMS, including optimiza-
tion algorithms, was highly profitable for courier companies. In fact, aside from the
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2 A REVIEW OF APPLICATIONS 2.3 Transport of persons

improvements in service quality, response time, and courier efficiency, the use of an
automated system allows to increase the fleet size without the need of additional su-
pervisors. A direct consequence is that the growth of the fleet does not require more
supervisors, therefore company growth also increases the margin on each delivery, pro-
viding a strong competitive advantage.

The delivery of newspapers and magazines, as studied by Bieding et al. (2009),Newspaper

delivery constitutes another highly competitive market where the satisfaction of subscribers is
considered as extremely important. When a magazine or newspaper is not delivered,
a subscriber can contact a call center and is offered to choose between a voucher or a
subsequent delivery. In the latter case, the request is then forwarded to the delivering
company, and finally transmitted to a driver that will do the proper delivery. Tradition-
ally, this process relies on different medias, with phone calls, faxes and printed doc-
uments, and the subsequent delivery requests are not transmitted to the drivers until
they come back to the depot. In response to this problem, their study proposes a cen-
tralized application, that makes use of mobile phones to communicate with drivers and
intelligently perform the routing in real-time, to accommodate subsequent deliveries in
shorter delays, reducing costs, and improving customer satisfaction.

Apart from classical routing problems on a road network, similar problematic canOther

applications also be found in the internal operation of organisations. The review by Stahlbock and
Voss (2008) on operations research applications in container terminals gives an inter-
esting example of such problem, in particular with the dynamic stacker crane problem
(Balev et al., 2009, Berbeglia et al., 2010), which considers the scheduling and routing
of container carriers operating the loading and unloading of ships in a terminal. Other
applications include transport of goods inside warehouse (Smolic-Rocak et al., 2010),
factories, or even hospitals where documents or equipments have to be transferred ef-
ficiently between services (Fiegl and Pontow, 2009).

2.3 Transport of persons

The transport of persons is in general – and by many aspects – similar to the trans-
port of goods. However, it is characterized by additional constraints, in particular re-
garding waiting times and travel times for the passengers that generally have to respect
maximal values.

Taxi services are the most common on-demand individual transport system. Re-Taxi services

quests from customers are composed of a pick-up location and time, possibly coupled
with a destination. They can be either known in advance, for instance when a client
book a cab for the next day, or arrive dynamically, in which case a taxi must be dis-
patched in the shortest time. When clients cannot share a same vehicle, there is only
limited space for optimization, and the closest free taxi is generally the one which takes
the ride. The study by Caramia et al. (2002), generalized by Fabri and Recht (2006),
focuses on a multi-cab metropolitan transportation system, where a taxi can transport
more than one client at the same time. In this case the online algorithms aim at mini-
mizing the total travel distance while assigning requests to vehicles and computing the
cabs routes.

The above mentioned multi-cab transportation systems can be generalized to otherOn-demand

transport on-demand or door-to-door services. Main applications include transport of children,
elderly or disabled people, or patients, for instance from their home to schools, place
of work or medical centers (Lehuede et al., 2008). An extensive review of this class of
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problems can be found in Cordeau et al. (2007a).

A singular application of on-demand person transportation can be found in ma-Patient

transport jor hospitals, with services possibly spread across various buildings on one or more
campuses. Depending on the results of a consultation or surgery, or the arrival of an
emergency, a patient may need to be transferred on short notice from one service to an-
other, possibly requiring trained staff or specific equipment for its care. This application
as been for instance studied by Beaudry et al. (2008).

Air taxis services developed as a response to limitations of traditional air transportAir taxi

systems. Firstly, with the increase of operating costs and the constant pressure on re-
ducing expenses, companies are increasingly reluctant to invest in private aircraft, pre-
ferring to pay for this service only when needed. Secondly, major airlines only operate
from a limited number of airports, to reduce their costs first, but also because technical
restrictions do not allow them to land their aircraft on smaller airports. Besides, hub
airports often suffer from high congestion, either on the runways or inside the airport
itself, thus increasing travel times. Finally, airline flight schedules are fixed and there-
fore do not offer a convenient alternative to the use of private jets when flexibility is
needed. In contrast, air taxi companies offer an on-demand service: customers book
a flight at most a few days in advance, specifying whether they are willing to share
the aircraft, stop at an intermediate airport, or have flexible traveling hours. Then the
company accommodates these requests, trying to consolidate flights whenever possi-
ble. Passengers can travel through smaller airports, avoiding waiting times at check-in
and security checks. Between the years 2001 and 2006, the NASA conducted a study
on a Small Aircraft Transportation System (SATS), aiming at providing an efficient al-
ternative to classical air transport, by making use of a new generation of cheap small
aircraft (Abbott et al., 2004, Holmes et al., 2004) and relying on smaller air taxi com-
panies. To our knowledge, the related optimisation problems have not been subject
to much attention, except in the studies by Chavan (2003), Cordeau et al. (2007a), Es-
pinoza et al. (2008a,b) and Fagerholt et al. (2009). A similar problematic can be found in
the helicopter transportation systems, for instance for the transport of persons between
offshore petroleum platforms (Romero et al., 2007).

Emergency services, such as ambulances, police or fire services, constitute a do-Emergency

services main where strong dynamism is present. Although their operation might differ, the
efficiency of such services is directly linked to their response time. In other words the
system has to provide guarantees between the call and arrival time. For instance, the
United States Emergency Medical Services Act of 1973, requires 95% of the medical
emergency calls to be treated in less than 10 minutes. The operation of emergency ser-
vices is traditionally decomposed into three main aspects: the deployment of the fleet to
predefined sites, to provide adequate coverage of the service area; the assignment of ve-
hicle to emergencies, possibly by diverting an on-route vehicle; and finally, the proper
routing of vehicles, possibly depending on traffic information. The survey of ambu-
lance deployment by Brotcorne et al. (2003) reveals that this aspect has mainly been
considered at the strategic level, with static approaches, but that dynamic approaches
such as the one proposed by Gendreau et al. (2001) with their case study of the Mon-
treal ambulance system, or the later work by Haghani and Yang (2007), who proposed
an integrated management of emergency services, including ambulance, police and fire
services, would lead to major improvements in emergency services performance.

In a context of increasing concern on the environmental footprint of human activi-Car pooling

ties, in addition to traffic issues in major urban areas, car-pooling has been a subject of in-
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creasing interest. Currently most systems rely on an open market place, where drivers
and passengers meet and match their offer and demand for trips. An enhanced sys-
tem could include a suggestion process that will find the best matches between drivers
and passengers. However, the drawback most commonly cited about car-pooling is
that passengers are bound to their driver and might therefore have due to unexpected
delays. One could therefore imagine a dynamic car-pooling framework, where both
drivers and passengers could modify their travel date at any time, with an assignment
or recommendation system being in charge of finding the best matches.

3 State of the art

Few research was conducted on dynamic routing between the work of Psaraftis
(1980) and the late 1990s. However, the last decade has seen an important increase in
the interest for this class of problems (Eksioglu et al., 2009), with the introduction of a
variety of methods ranging from linear programming to metaheuristics. The interested
reader is referred to the work by Ghiani et al. (2003), Ichoua (2001), Ichoua et al. (2006),
Jaillet and Wagner (2008), Larsen et al. (2008) and Psaraftis (1995) to complement our
review.

3.1 Dynamic and deterministic routing

In the context of dynamic problems, critical information is revealed over time, mean-
ing that the complete definition of an instance of a given problem is only known at the
end of the planning horizon. As a consequence, an optimal solution can only be found
a-posteriori. Therefore, most approaches use fast approximation methods that give a
good solution in a relatively low computational time, rather than exact methods that
would only provide an optimal solution for the current state, providing no guarantee
that the solution will be optimal once new data becomes available.

The following paragraphs will present some approaches that have been successfully
applied to dynamic routing, when no stochastic information is considered.

3.1.1 Dynamic programming

The first application of an optimization technique to dynamic routing is due to
Psaraftis (1980), with the development of a dynamic programming approach. His re-
search focuses on a dynamic program formulation to solve the static version of the
dial-a-ride problem, which is then adapted to the dynamic context by running it to find
the new optimal route each time a new request is made known.

It has been long known that the main drawback of dynamic programming is its
computational complexity, namely the curse of dimensionality (see Powell, 2007, Chap. 1),
therefore it has not been applied to large instances.

3.1.2 Linear programming

Yang et al. (2004) addressed the real-time Multivehicle Truckload Pickup and Deliv-Rolling

horizon ery Problem by introducing two reoptimization strategies: MYOPT and OPTUN. Their
studied problem is based on a company with a fleet of K trucks that has to serve point
to point transport requests arriving dynamically. Important assumptions are that each
truck can only carry one request at a time, with no possible pre-emption, and moves at
the same constant speed. Both reoptimization strategies are based on a Linear Program
(LP) that is solved whenever a new request arrives. However, while MYOPT only uses
deterministic costs, OPTUN introduces an additional opportunity cost on each of the arcs
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that is directly linked to the spatial distribution of customer requests. Consequently, the
optimization will tend to reject isolated jobs, and avoid arcs that are far from potential
requests.

Exploring a new area of linear programming, Chen and Xu (2006) designed a dy-Dynamic

column

generation
namic column generation algorithm (DYCOL) for the dynamic version of the classical
Vehicle Routing Problem with Time Windows (D-VRPTW). The authors define K deci-
sion epochs over the planning horizon, corresponding to the dates when the solution is
re-evaluated along with the newly available requests. The innovation consists in dy-
namically generating columns for the linear model, by iterating over a four step algo-
rithm at each decision epoch. The initialization of the algorithm is done by generating a
set of routes Π0 covering all the currently accepted requests and based on the columns
used at the previous decision epoch. During the first step, a set-partitioning model is
build up and its linear relaxation solved to retrieve the optimal dual values that will be
used to calculate the reduced costs in the next steps. In the second and third steps, a
predetermined number of new columns are generated by applying a two-phase local
search to the elements of Π0. The last step consists in generating columns for the newly
arrived requests, before updating the formulation of the first step and starting a new
iteration. The authors compared this new approach to a traditional column generation
with no time limit (COL), solved to termination with the data available at each epoch.
Computational results based on the Solomon benchmark (Solomon, 1987) demonstrate
that the DYCOL procedure yields comparable results in terms of objective function, but
with running times limited to 10 seconds, against up to various hours for COL.

3.1.3 Meta-heuristics

As it was stated earlier, the optimal solution at a time t is biased by the knowledge
of the input at this same period. Therefore, enforcing a decision that is optimal at time
t may reveal to be sub-optimal at time t+ 1. Hence exact methods are not necessarily
best fitted in the context of dynamic routing, given that approximated solution could
reveal to be better when new data becomes available.

As a consequence, most of the research in the field of dynamic vehicle routing prob-
lem is based on heuristics in the general sense, including local search procedures, tabu
search and evolutionary algorithms, as they will be presented in the following para-
graphs.

To the best of our knowledge, the first application of a tabu search procedure to aTabu search

dynamic routing problem is due to the study by Gendreau et al. (1999). It was moti-
vated by the local operation of long distance express courier services, which can be seen
as a vehicle routing problem with time windows (VRP-TW). Their approach consisted
in the adaptation of the framework introduced by Taillard et al. (1997) to a dynamic
context. The general idea is to maintain a pool of good routing plans – the adaptive
memory – which is used to generate initial solutions for a parallel tabu search. The par-
allelization of the search is done by partitioning the routes of the current solution, each
subset being optimized by an independent thread. Whenever a new customer request
arrives, it is checked against all the solutions from the adaptive memory with rapid
insertion heuristics to decide whether it should be accepted or rejected. Once accepted,
the tabu search is resumed including the new request. It is worth noting that because
the current routing is subject to change at any time, vehicles do not know their next
destination until they finish the service of a request. This framework was also imple-
mented for the D-VRP (Ichoua et al., 2003) and for the PDP (Ichoua et al., 2000), while
other variations of tabu searches have been applied to the D-PDP (Barcelo et al., 2007,
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Chang et al., 2003), or to the the DARP (Attanasio et al., 2004, Beaudry et al., 2008).

The main idea behind Variable Neighborhood Search (VNS) is to iteratively im-VNS

prove a solution by considering different neighborhoods successively. An overview of
the approach is given by Algorithm 1. The algorithm starts with an initial solution X

and generates a neighbor X
t from the current neighborhood (shake line 6), which is

then improved by a local search procedure (ls line 7). If the new solution is accepted
(accept line 8), it replaces the current solution and a new iteration is performed with the
first neighborhood (line 10); otherwise, the next neighborhood is selected (line 12) and
a new iteration is done with the unchanged current solution. As for other heuristics,
iterations are performed until a stop criterion is met, usually a maximum time or num-
ber of iterations. VNS was originally developed to tackle static combinatorial problems
(Hansen and Mladenovic, 2001, Mladenovic and Hansen, 1997), yet its low computa-
tional times has allowed applications in dynamic contexts, with for instance the work
of Goel and Gruhn (2008) on a Generalized Vehicle Routing Problem (GVRP).

Algorithm 1 The Variable Neighbourhood Search generic algorithm

Input: X a valid solution, z an evaluation function and N = {N1, ..,NK} a set of neigh-
borhood structures

Output: X
∗ the best solution found

1: function VNS(X)
2: X

∗ ← X;
3: repeat

4: k← 1; ⊲ Select first neighborhood
5: repeat

6: X
t ← shake(Nk, X); ⊲ Generate a neighbour from neighbourhood Nk

7: X
t ← ls(Xt); ⊲ Local search to improve X

t

8: if accept(Xt, X) then ⊲ X
t is accepted as current solution

9: X ← X
t; ⊲ Update current solution

10: k← 1; ⊲ Restart from first neighbourhood
11: else

12: k← k+ 1; ⊲ Go to next neighbourhood
13: end if

14: if z(Xt) < z(X∗) then ⊲ An improvement has been found
15: X

∗ ← X
t; ⊲ Update best solution

16: end if

17: until k = K;
18: until stopCriterion();
19: return X

∗;
20: end function

Large Neighborhood Search (LNS) was first introduced by Shaw (1998) and can beLNS

seen as a special case of VNS (Bent and Hentenryck, 2006). Algorithm 2 presents the
general structure of LNS. The exploration is done by firstly destroying the current solu-
tion (destroy line 6) and then repairing it (repair line 6). The resulting neighbour X

n

is then accepted or rejected depending on an implementation specific criterion (accept
line 7). In the original implementation by Shaw (1998), the destroy method removes
a subset of clients from the routes, while the repair function reinserts them by using
heuristics and constraint propagation. On the other hand, it uses a simple acceptance
criterion, accepting only improving solutions. The main idea behind LNS is to effi-
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ciently explore an exponential neighborhood. In fact, with n clients, there are 2n candi-
date subsets to be removed and reinserted. In the implementation by Shaw (1998), this
is achieved by the destroy function that considers subsets of iteratively incremented
cardinality, increasing the neighborhood size each time a given number of consecutive
non-improving neighbors are found1. After being successfully applied to static rout-
ing problems (Bent and Hentenryck, 2006, Bent and Van Hentenryck, 2004c, Pisinger
and Ropke, 2007, Ropke and Pisinger, 2006, Rousseau et al., 2002), large neighborhood
search was adapted to dynamic routing, either directly as in the study by Goel and
Gruhn (2005) on the D-PDP, or as an optimization subroutine of other algorithms such
as the MSA (Van Hentenryck and Bent, 2006).

Algorithm 2 The Large Neighbourhood Search generic algorithm

Input: X a valid solution, z an evaluation function
Output: X

∗ the best solution found
1: function LNS(X)
2: X

∗ ← X;
3: i← 0 ⊲ Number of iterations
4: k← 0 ⊲ Number of non-improving iterations
5: repeat

6: X
t ← repair(destroy(X, i, k)); ⊲ Generate a neighbor

7: if accept(Xt, X) then ⊲ X
t is accepted as current solution

8: X ← X
t; ⊲ Update current solution

9: end if

10: if z(Xt) < z(X∗) then ⊲ An improvement has been found
11: X

∗ ← X
t; ⊲ Update best solution

12: k← 0; ⊲ Reset the number of non-improving iterations
13: else

14: k← k+ 1; ⊲ Update the number of non-improving iterations
15: end if

16: i← i+ 1;
17: until stopCriterion(i, k);
18: return X

∗;
19: end function

Multiple Plan Approach (MPA) was introduced by Bent and Van Hentenryck (2004b)MPA

to tackle the D-VRPTW, and is presented as a generalization of the tabu search with
adaptive memory developed by Gendreau et al. (1999). As illustrated in Figure 1,
the general idea is to populate and maintain a pool of routing plans that are used to
generate a distinguished plan2. Time between events is used to continuously improve
the plans of the pool. Whenever a new request arrives, a procedure is called to check
whether it can be serviced or not, for instance by checking if at least one plan can ac-
commodate it. If the answer is positive, the request is inserted in the plans of the pool,
while incompatible plans are discarded. Pool updates are performed periodically, or
whenever a vehicle finishes the service of a customer. This phase is crucial and en-
sures that all plans are coherent with the current state of both vehicles and customers
requests. The pool can be seen as an adaptive memory (Taillard et al., 2001) and allows

1Therefore LNS can be interpreted as a special case of VNS, considering that each cardinality defines a
neighborhood.

2The distinguished plan is not necessarily the best plan of the pool (Bent and Van Hentenryck, 2004b)
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the maintaining of a variety of solutions, the goal being to have a variety of plans to
choose from when a new requests arrives.

Plan optimization
and selection

Plan optimization
and selection

Plan generationPlan generation

OutputsOutputs

Pool updatePool update

EventsEvents

Multiple Plan Approach (MPA)

Find a solution to the
routing problem

Periodic update

Remove incompatible
plans

Add plan to pool

Distinguished
plan

New request

Insert request in 
compatible plans

Reject request
Can be

serviced?

YES

NO

Start

End of service

Reoptimize plans

Pool is full?
NO

YES

Evaluate plans

Figure 1: An overview of the Multiple Plan Approach (MPA) framework. Plan generation, reoptimiza-
tion and selection can be interrupted by incoming events, and are then resumed.

Evolutionary algorithms have not received much interest in the field of dynamicEvolutionary

algorithms routing until recently. In an early work, Benyahia and Potvin (1998) studied the D-PDP
and proposed a Genetic Algorithm (GA) modeling the decision process of a human
dispatcher. More recently, GA were also used for the same problem (Cheung et al.,
2008, Haghani and Jung, 2005), and for the D-VRP (van Hemert and Poutré, 2004).
Genetic Algorithms in dynamic contexts are very similar to those designed for static
problems: a population of individuals representing routing plans is maintained, and
subject to crossovers, mutations and selection. The main difference is that the GA is
generally running throughout the planning horizon, and the solutions are constantly
adapting to the changes made to the input.

Montemanni et al. (2005) developed an Ant Colony System (ACS) to solve the dy-Ant colonny

namic vehicle routing problem. Their approach makes use of the time slices, as intro-
duced by Kilby et al. (1998), that divide the day in nts periods of equal duration T

nts
.

The processing of a request arriving during a time slice is postponed until the end of
it, thus the problem solved during a time slice only considers the requests known at
its beginning. Hence the optimization is run independently during each of the time
slice, resolving a static problem. The main advantage of this partition of time is that
similar computational effort are allowed for each time slice, while if optimization was
performed on the arrival of each new request there will be no guarantee on the time
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available for computation. It is made possible by the nature of requests that are never
urgent, and which processing can therefore be postponed, in contrast with other studies
(Gendreau et al., 1999).

3.2 Dynamic and stochastic routing

As presented before, stochastic and dynamic routing problems can be seen as an
extension of their deterministic counterparts, where additional knowledge is available
on the dynamically revealed input, under the form of stochastic information.

From this observation, two main strategies can be identified in the stochastic andSampling v.s.

pricing dynamic routing literature, that will be referred to as either based on sampling or pricing.
As their name suggests, sampling strategies incorporate the stochastic knowledge

by producing various scenarios or simulations resulting from the sampling of the input
variable distributions, the goal being to capture the likeliness of an event and create a
routing plan that will be able to accommodate it. Generally speaking, such a method
will generate sampled requests and find a route servicing them with a method from
deterministic routing. This is for instance the case of the Mutliple Scenario Approach
(MSA) (Van Hentenryck and Bent, 2006).

On the other hand, approaches based on pricing integrate stochastic knowledge by
evaluating expected values, for instance the expected traveled distance when servic-
ing a customer with a given vehicle, knowing the probability of seeing the arrival of a
new request in the meantime requiring a deviation from the initial plan. Markov Deci-
sion Process (MDP) based approaches (Novoa and Storer, 2009, Secomandi and Margot,
2009) or Approximate Dynamic Programming (ADP) (Powell, 1988, 1996) are examples
of such strategies.

Generally speaking, the advantage of sampling is its simplicity of implementation,
while its drawback is that a large number of samples is required to effectively reflect
the reality. Alternatively, pricing strategies are often more complex in their formulation
and require to compute efficiently possibly complex expected values, but they capture
more formally the stochastic nature of the problem.

Examples of these two strategies, as well as other variations, will be given in the
following paragraphs.

3.2.1 Markov processes

Early research by Powell et al. (1988) on dynamic routing formulated the problem
as a Markov process. Unfortunately, the state and action space tends to grow exponen-
tially as the dimension of the problem increases, inducing prohibitive computational
times. Besides such modeling requires simplification assumptions that are incompat-
ible with real world applications. Nonetheless, it allowed new insights in the field of
dynamic programming, as it will be presented in the next paragraph.

Markov decision process was for instance used by Novoa and Storer (2009), Seco-
mandi and Margot (2009) to model and solve a Vehicle Routing Problem with Stochastic
Demands (VRP-SD), where the set of customers is known but with random demands.
Although the authors do not explicitly state it, the use of a reoptimization policy classifies
the problem as dynamic in our taxonomy.

3.2.2 Approximate dynamic programming

The work by Powell (1988, 1996) opened a new branch in the area of dynamic ve-
hicle routing by introducing the notion of predictive algorithms, which take advantage
of the stochastic knowledge of the future to take predictive or preventive actions. In
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his early work, Powell (1988) addressed the issue of anticipatory relocation of vehicles
based on prediction of future demands. His approach considered a time-space graph,
with nodes for known and forecasted requests. At each period, the problem is solved by
minimizing the deterministic cost of the current period, and the expected cost of future
periods. Powell (1996) later furthered this research by considering the driver-request
assignment aspect. The problem is modelled as a dynamic-stochastic network com-
posed of an assignment and a forecast component, with the cost of possible recourse
actions being included in the arc costs. Consequently the initial problem is approxi-
mated as a transportation problem in the resulting network, which is then efficiently
solved by a network algorithm.

Since then, different research has been led on this field, in particular by Powell andADP

the CASTLE laboratory who developed a new optimization framework now known as
Approximate Dynamic Programming (ADP). In dynamic programming, one defines a
value function at each decision step, and then generally uses a backward induction to
determine the optimal actions at each decision time. However, this method suffers from
the curse of dimensionality, making it useless when the state or action spaces are too vast.
The general idea of ADP is to work in a forward fashion, avoiding the evaluation of all
possible states by approximating the value function. We refer the interested reader to
Powell (2009, 2007) for a more detailed description of the framework.

During the last decade, ADP has been successfully applied to fleet management
problems (Godfrey and Powell, 2002, Powell and Topaloglu, 2005, Simao et al., 2009),
freight transport (Powell et al., 2007, Powell and Topaloglu, 2003), with in particular
an application to the VRPSD (Novoa and Storer, 2009), but also dynamic assignment
problem, which extend the fleet management (Powell, 1996, Spivey and Powell, 2004),
or other dynamic flow problems (Topaloglu and Powell, 2006). As in Powell (1996),
ADP proceeds by defining the problem at each decision time using a state-action graph
representation, adding the information given by the approximated value function as
costs on specific arcs, and using a graph algorithm to solve the resulting flow problem.

3.2.3 Online stochastic combinatorial optimization

The other main branch in predictive approaches for the online VRP is the work done
by Bent and Van Hentenryck (Bent and Hentenryck, 2005, Bent and Van Hentenryck,
2004a,b,c,d, Hentenryck et al., 2010, Van Hentenryck and Bent, 2006) who developed
generic frameworks and algorithms for the D-VRP under the name Online Stochastic
Combinatorial Optimization (OSCO) with contributions and adaptations from the area
of online scheduling. Figure 2 presents an overview of the research done in this area.

Multiple Scenario Approach (MSA), of which an overview is given in Figure 3, wasMSA

first presented as a predictive adaptation of the MPA framework discussed earlier (Bent
and Van Hentenryck, 2004b). The main idea is to include stochastic knowledge of the
problem by considering possible future requests and by maintaining a pool of scenarios,
each one composed by a tour visiting all actual nodes and a set of virtual requests.
Scenarios are build in three steps, as illustrated in Figure 4. Firstly virtual requests
are generated by sampling the clients distributions; then an optimization procedure
finds a good tour that serves both real and sampled requests; finally, sampled requests
are removed from the tour. This process introduces room in the resulting scenarios
that could then be used to accommodate future requests, improving the robustness of
the routing, as illustrated in Figure 4. While the optimal tour for the currently known
requests would start by areas where customers are likely to appear in the afternoon, the
generated scenario guides the routing toward regions with early clients first, leaving for
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Figure 2: Online Stochastic Combinatorial Optimization (OSCO) research overview for the VRP.

instance room to accommodate potential mid-day requests between clients C and D.

Another idea behind the MSA scheme is to take advantage of the time between de-Immediate

decision

making
cisions to continuously improve the current pool of scenarios. During the initialization
of the algorithm, a first set of scenarios is created based on the requests known before-
hand, that will then be re-optimized and completed with new scenarios during the idle
time of the dispatcher. When a decision is required (Decision event in Figure 3), the
scenario optimization procedure is suspended, and the scenario pool is used to find the
best routing plan. Scenarios present in the pool that are incompatible with the resulting
routing are discarded, and the continuous improvement algorithm is resumed.

Computational experimentations on instances adapted from the Solomon bench-
mark (Solomon, 1987) showed that MSA outperforms MPA both in terms of served cus-
tomers and traveled distances, especially for instances with high degrees of dynamism.

We will now briefly present three predictive algorithms, which were originally de-
signed for an online job scheduling where the goal is to select a job – or request – r∗

to be scheduled at the current time t, from the set of feasible requests R (Hentenryck
et al., 2010, Van Hentenryck and Bent, 2006). Let O be an optimization algorithm for
the considered problem, for instance an implementation of VNS (Van Hentenryck and
Bent, 2006), z(γ) a function evaluating the profit of a solution – or plan – γ defined as a
permutation of the n pending requests (γ0, ...,γn−1), and f·(r) an evaluation function
for the benefit of scheduling request r first. The selected request r∗ is formally defined
as:

r∗ = arg max
r∈R

f·(r)

Chang et al. (2000) designed a first selection process for online scheduling basedExpectation

on sampling, referred to as expectation algorithm (Bent and Van Hentenryck, 2004a,d,
Hentenryck et al., 2010, Van Hentenryck and Bent, 2006). The evaluation of the expected
profit for r is done by solving the scheduling problem defined by the combination of
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pending and sampled requests from the set of scenarios S, imposing that r is scheduled
first:

fE(r) =
∑

s∈S

z (O(r, s))

The main drawback of this method is that the optimization needs to be performed |R×

S| times, for each pair request-scenario, which can be restrictive when the set of feasible
requests grows and the computational time is limited, as it is the case for online vehicle
routing (Van Hentenryck and Bent, 2006).

In the consensus algorithm (Bent and Van Hentenryck, 2004b,d), optimization is onlyConsensus

performed once for each of the generated scenarios. Consensus is obtained as follows:
a request r is granted a profit of 1 each time r is scheduled first on a plan γs resulting
from the optimization O(s) of scenario s :

fC(r) =
∑

s∈S

yr,s

Where yr,s ≡ (r = γs0), with γs0 being the first request of plan γs. It is important
to notice that only |S| calls to the optimization procedure are required to calculate all
the γs. Therefore, the main advantage in comparison with the expectation algorithm
is that more scenarios can be evaluated in the same computational time. On the other
hand, one of its flaws is the elitism of the selection process, which exclusively considers
the first scheduled request, while ignoring requests that might be scheduled later in all
scenarios, but still be robuster overall.

In (Bent and Van Hentenryck, 2004a), the authors propose an approach combining
the advantages of both expectation and consensus algorithms: the consensus is used to
identify a subset of promising requests, which are then compared against all scenarios
in the expectation algorithm.

In further work, Bent and Van Hentenryck (2004a) proposed another predictiveRegret

approach combining the strengths of expectation and consensus: the regret algorithm
(Bent and Van Hentenryck, 2004a, Hentenryck et al., 2010, Van Hentenryck and Bent,
2006). The general idea is to firstly perform an optimization for each scenario, yielding
the γs, to then estimate for each scenario the degradation of the profit function incurred
if a suboptimal request r is scheduled in place of γs0. This lost of profit is called regret,
and it is used to approximate the benefit z(O(r, s) of the expectation algorithm, which
exact calculation has been shown to have a prohibitive computational time.

Let Regret(r, s,γs) by the previously mentioned regret value associated with the
scheduling of request r in place of γs0 for scenario s. It is important to note that, in our
notation, Regret(γs0,S,γs) = 0. The overall profit of request r is defined as:

fR(r) =
∑

s∈S

[z(γs) − Regret(r, s,γs)]

As for the consensus algorithm, the optimization is only performed on |S| scenarios,
which is a guarantee of performance if optimization is the most time consuming task.
Nevertheless, an important requirement is that the evaluation of the Regret(r, s,γs)

function has to be efficient, otherwise the flaw of the expectation algorithm will reap-
pear. A possible definition of the Regret(r, s,γs) function would be to return the value
0 is there is a feasible swap between r and γs0, and a value 1 otherwise (Van Hentenryck
and Bent, 2006).
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These three algorithms have been described for the case of online scheduling. TheMultiple

vehicles generalization to multiple vehicle routing raises a number of issues (Van Hentenryck
and Bent, 2006). In particular the routing has to be performed whenever at least one
vehicle is available, and decisions for a single vehicle influence and are influenced by
decisions for the rest of the fleet. Another characteristic is that decisions are now tuples
of K requests (r1, ..., rK) corresponding to the next request to be assign to each of the K

vehicles. As a consequence, a routing plan γs for scenario s is now defined as a tuple of
routes (γs1, ...,γsK), where each γsk is a route (γsk0, ...,γskn) associated with vehicle k.

Van Hentenryck and Bent (2006) extended the consensus and regret algorithms toMultiple

pointwise

decisions
multiple vehicle problems by introducing a two step procedure named multiple point-
wise decisions. The first step consists in the evaluation of each decision across all plans,
similarly to the previous versions, and independently of the associated vehicle. In the
second step, each plan is evaluated according to its own decisions, and the best plan
is selected. More formally, the first produces values for f(r) for all requests r ∈ R, and
each plan γs is evaluated by the function g defined as follows:

g(γs) =

K∑

k=1

f(γsk0)

Where γsk0 is the first request served by vehicle k in plan γs. Finally, the best plan γ∗ =

arg maxs∈S g(γs) is selected and each vehicle k that is currently available is affected to
request γ∗

k0. It is important to note that the distinguished plan is in this case directly
selected from the pool, for a plan composed by the best requests for each vehicle might
not respect problem specific constraints, while the plan γ∗ does by construction.

We refer the interested reader to the book by Hentenryck et al. (2010) for an in-depth
presentation of the OSCO framework.

3.2.4 Other work

Aside from ADP and OSCO, other research has been carried on stochastic dynamic
problems, mainly by adapting deterministic methods by introducing sampling or pricing.

Another approach similar to the consensus algorithm for VRP was proposed byDSHH

Hvattum et al. (2006) under the name of Dynamic Sample Scenario Hedge Heuristic (DSHH).
This method is based on the division of the planning horizon into time intervals, at the
beginning of which the routing is revised. Routing optimization is done as follows:
firstly, a set of scenarios is generated by sampling the customer distributions. In a
second step, a subset P of promising requests is identified by iteratively solving the
scenarios, imposing that all requests from P, initially empty, have to be served during
upcoming time interval. When all scenarios have been solved, the request that is the
most frequently visited during upcoming time interval is added to P, and a new itera-
tion is performed, unless a stop criterion has been matched. The final step performs the
actual planning of requests from P, thanks to another iterative process, by successively
adding them to vehicle routes, depending on the frequency of this assignment over all
the scenarios.

Various local search approaches have been developed for the stochastic and dy-Local search

namic problems. Ghiani et al. (2009), developed a sampling-based algorithm for the
D-PDP where sampling is done only for the near future in order to reduce the compu-
tational effort. The main difference with MSA is that no scenario pool is used, and the
selection of the distinguished plan is based on the expected penalty of accommodating
requests in the near future.
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Tabu search as also been adapted to dynamic and stochastic problems, with forTabu search

instance the research of Ichoua et al. (2006) for the D-VRPTW or Attanasio et al. (2007)
for an application of the D-PDP, both adaptations being based on the sampling of the
requests distributions.

As presented in paragraph 3.1, Yang et al. (2004) proposed a LP formulation for theLinear

programming PDP that adds opportunity costs to the valuation of arcs, in order to reflect the expected
cost of going on isolated areas. In later work, Yang et al. (2005) studied the emergency
vehicle dispatching and routing and proposed a mathematical formulation later used by
Haghani and Yang (2007) on a similar problem.

3.2.5 Additional strategies

In addition to the general frameworks described in the previous paragraphs, the
introduction of probabilistic knowledge of the future allows the design and implemen-
tation of new strategies, that aim at producing a more adequate response to possible
upcoming events.

Waiting strategy consists in deciding the period of time a vehicle will wait afterWaiting

strategy servicing a request before heading toward its next customer, or planing a waiting period
on a strategic location. This strategy is particularly important in problem with time
windows, where lag can appear between the servicing of two requests. Mitrovic-Minic
et al. (2004) proved that in all cases it is better to wait after servicing a customer than to
drive directly, but that more refined strategy can lead to further improvements in terms
of travelled distances and serviced customers. The problem is in general to evaluate the
probability of a new request in the neighbourhood of a serviced request, and to plan
a waiting period accordingly. It has been implemented in various frameworks for the
D-VRP (Branke et al., 2005, Thomas, 2007) and D-VRPTW (Bent and Van Hentenryck,
2007, Branchini et al., 2009, Ichoua et al., 2006, Van Hentenryck and Bent, 2006), the D-
PDP (Ghiani et al., 2009, Mitrovic-Minic et al., 2004) or the Resource Allocation Problem
(RAP) (Godfrey and Powell, 2002), and have shown to bring significant improvements,
especially in the case of a limited fleet facing high new request rate.

In addition to the waiting after or before servicing a client, a vehicle can be movedRelocating

strategies to a strategic location, in the neighborhood of which new requests are likely to arrive.
This strategy is the keystone of emergency fleet deployment, also known as Emergency
Vehicle Dispatching – or Redeployment – Problem, with for instances the studies by Gen-
dreau et al. (2001) and Haghani and Yang (2007). It has also been applied to other
vehicle routing problems, such as the D-VRP (Larsen, 2001) and D-VRPTW (Bent and
Van Hentenryck, 2007, Branchini et al., 2009, Ichoua et al., 2006, Van Hentenryck and
Bent, 2006), the D-TSPTW (Larsen et al., 2004), the D-PDP (Ghiani et al., 2009), or the
Resource Allocation Problem (RAP) (Godfrey and Powell, 2002).

Request buffering was introduced by Pureza and Laporte (2008). It consists in dif-Request

buffering fering the assignment to vehicles of some requests, by storing them in a buffer, allowing
more urgent requests to be treated first. It introduces more flexibility in the service guar-
antee by postponing the assignment decision.

3.3 Performance evaluation

In contrast with static problems where measuring the performance of an algorithm
is straightforward and consists in comparing running times or results, dynamic con-
texts require the introduction of new metrics to prove analytical properties or compare
empirical results, and assess the performance of a particular method or algorithm.
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Sleator and Tarjan (1985) were the first to introduce a now commonly used metric,Competitive

ratio at least as far as theoretical performance is concerned: the competitive analysis (Jaillet
and Wagner, 2008, Larsen et al., 2007). Consider a minimization problem P and I the
corresponding set of possible instances. Let z∗(Iof) be the optimal cost for the offline
instance Iof corresponding to I ∈ I. By offline instance we mean that in Iof all the input
data from instance I, either static or dynamic, is available when building the solution.
In contrast, the data of the online version is revealed in a real-time fashion, thus an
algorithm A has to take into account new information on-the-go, and produce a solution
relevant to the current state of knowledge. Let zA(I) = z(xA(I)) be the cost of the final
solution xA(I) found by the on-line algorithm A. Algorithm A is said to be c-competitive,
or equivalently to have a competitive ratio of c, if there is a constant α such that

zA(I) 6 c · z∗ (Iof) +α , ∀ I ∈ I

In the case where α = 0, the algorithm is said to be strictly-c-competitive, meaning that
in all cases the objective value of the solution found by A will be at most of c times the
optimal value. The competitive ratio metric allows a worst-case absolute measure of an
algorithm performance in terms of objective value. We refer the reader to Borodin and
El-Yaniv (2005) for an in-depth analysis of this measure.

The main drawback of the competitive analysis is that it requires to prove the pre-Value of

information viously stated inequality for all instances of a given problem, which can reveal to be a
complex task for real-world applications. The value of information proposed by Mitrovic-
Minic and Laporte (2004) constitutes a more flexible metric. We will denote by zA(Iof)

the value of the objective function returned by algorithm A for the offline instance Iof.
The value of information VA for algorithm A and instance I is then defined as

VA(I) =
zA(Iof) − zA(I)

zA(Iof)

Therefore the value of information can be interpreted as the gap between the solution
returned by an algorithm A on a instance I and the solution returned by the same algo-
rithm when all information from I is known beforehand.

In contrast with the competitive ratio, the value of information gives information on
the performance of an algorithm based on empirical experience, without requiring op-
timal solutions for the offline instances. It captures the impact of the dynamism on the
solution yield by the considered algorithm.

3.4 Benchmarks

To the best of our knowledge, there is presently no reference benchmark for dynamic
routing problems. It appears that a great proportion of authors create their own in-
stances to test their algorithms. It is worth noting though that various have based
their benchmarks on the one designed by Solomon (1987) for static routing (Bent and
Van Hentenryck, 2004a,b, Chen et al., 2006, Chen and Xu, 2006, Gendreau et al., 1999). A
description of how the original benchmark can be adapted is given in Van Hentenryck
and Bent (2006, Chap. 10).

The interested reader is referred to the web page of Dr. G. Pankratz and V. Krypczyk3

for an updated list of publicly available instances sets for dynamic vehicle routing prob-
lems.

3url: http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm
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CONCLUSIONS

Conclusions

Recent technological advances provided the tools for companies to manage their
fleet in a real-time fashion. Nonetheless, these new technologies also caused a dramat-
ical increase in the complexity of the fleet management tasks, reinforcing the need for
decision support systems adapted to dynamic contexts. Consequently, during the last
decade the research community have demonstrated a growing interest for the resulting
optimization problem, leading to the creation of a new family of approaches specifically
designed to efficiently address dynamism and uncertainty. Analyzing the current state
of the art, some directions can be drawn for future research in this relatively new field.

Firstly further work should aim at creating a taxonomy of dynamic vehicle rout-
ing problem, possibly by extending existing research on static routing (Eksioglu et al.,
2009). This would allow a more precise classification of approaches, quantify similari-
ties between problems, and foster the development of generic frameworks.

Secondly, there is currently no reference benchmark for dynamic vehicle routing
problems, and most papers on the subject use custom made instances that do not allow
accurate comparison between methods. There is therefore a strong need for the devel-
opment and publication of benchmarks for the most common dynamic vehicle routing
problems, that could be used to make an objective comparative analysis of the solution
frameworks available in the literature.

With the advent of multi-core processors on any desktop computer, parallel com-
puting is now made affordable. Specifically tailored algorithms should be developed
making use of this technique to reduce the time needed for optimization and provide
decision makers with highly reactive tools.

Our review of the existing literature revealed that approximately the two thirds of
the work done in the area of dynamic routing ignored the stochastic nature of the prob-
lem. As we have seen, it can be due to the unavailability or irrelevance of stochastic
data. However, we sense that developing algorithms that make use of this valuable in-
formation would improve the fleet performance and reduce operating costs, and should
therefore be a priority.

Finally, researchers have mainly focused on the routing aspect of the dynamic fleet
management. However, in some applications there is more that can be done to improve
performance and user satisfaction. For instance in equipment maintenance services, the
call center has a certain degree of freedom in setting an appointment. In other words,
it means that the client time windows can be defined, or influenced, by the service
company. As a consequence, a system which on top of giving a yes/no answer to a client
request would be able to suggest convenient times for the company would be of higher
interest in such contexts.
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A. L., and Velasco, N. (2009). A memetic algo-
rithm for the multi-compartment vehicle routing
problem with stochastic demands. Computers &
Operations Research, In Press.

Mes, M., van der Heijden, M., and van Harten, A.
(2007). Comparison of agent-based scheduling
to look-ahead heuristics for real-time transporta-
tion problems. European Journal of Operational Re-
search, 181(1):59–75.

Mitrovic-Minic, S., Krishnamurti, R., and Laporte,
G. (2004). Double-horizon based heuristics for
the dynamic pickup and delivery problem with
time windows. Transportation Research Part B:
Methodological, 38(8):669 – 685.

Mitrovic-Minic, S. and Laporte, G. (2004). Waiting
strategies for the dynamic pickup and delivery
problem with time windows. Transportation Re-
search Part B: Methodological, 38(7):635–655.

Mladenovic, N. and Hansen, P. (1997). Variable
neighborhood search. Computers & Operations Re-
search, 24(11):1097 – 1100.

Montemanni, R., Gambardella, L. M., Rizzoli, A. E.,
and Donati, A. V. (2005). Ant colony system for a
dynamic vehicle routing problem. Journal of Com-
binatorial Optimization, 10(4):327–343.

Novoa, C., Berger, R., Linderoth, J., and Storer, R.
(2006). A set-partitioning-based model for the
stochastic vehicle routing problem. Technical Re-
port 06T-008, Texas State University, 601 Univer-
sity Drive San Marcos, TX 78666.

Novoa, C. and Storer, R. (2009). An approximate
dynamic programming approach for the vehicle
routing problem with stochastic demands. Eu-
ropean Journal of Operational Research, 196(2):509–
515.

Pisinger, D. and Ropke, S. (2007). A general heuris-
tic for vehicle routing problems. Computers & Op-
erations Research, 34(8):2403 – 2435.

Powell, W. (1988). A comparative review of al-
ternative algorithms for the dynamic vehicle al-
location problem. In Golden, B. and Assad,
A., editors, Vehicle Routing: Methods and Studies,
pages 249–291. North Holland, Amsterdam, The
Netehrlands.

Powell, W. (1996). A stochastic formulation of the
dynamic assignment problem, with an applica-
tion to truckload motor carriers. Transportation
Science, 30(3):195–219.

Powell, W. (2009). What you should know about
approximate dynamic programming. Naval Re-
search Logistics, 56(3):239–249.

Powell, W., Bouzaiene-Ayari, B., and Simao, H.
(2007). Dynamic models for freight transporta-
tion. In Barnhart, C. and Laporte, G., editors,
Transportation, volume 14 of Handbooks in Opera-
tions Research and Management Science, chapter 5,
pages 285–365. North-Holland.

Powell, W., Sheffi, Y., Nickerson, K., Butterbaugh,
K., and Atherton, S. (1988). Maximizing profits
for north american van lines’ truckload division:
A new framework for pricing and operation. In-
terfaces, 18(1):21–41.

Powell, W. and Topaloglu, H. (2003). Stochastic pro-
gramming in transportation and logistics. Hand-
books in Operations Research and Management Sci-
ence, 10:555–636.

Powell, W. and Topaloglu, H. (2005). Fleet manage-
ment. In Wallace, S. and Ziemba, W., editors,
Applications of Stochastic Programming, volume 5
of MPS-SIAM series on Optimization, chapter 12,
pages 185–215. SIAM.

31/33



REFERENCES

Powell, W. B. (2007). Approximate dynamic program-
ming: solving the curses of dimensionality, volume
703 of Wiley Series in Probability and Statistics.
Wiley-Interscience, Hoboken, New Jersey.

Psaraftis, H. (1980). A dynamic-programming so-
lution to the single vehicle many-to-many imme-
diate request dial-a-ride problem. Transportation
Science, 14(2):130–154.

Psaraftis, H. (1988). Dynamic vehicle routing prob-
lems. In Golden, B. and Assas, A., editors, Vehicle
Routing: Methods and Studies, pages 223–248. El-
sevier Science Publishers B.V.

Psaraftis, H. N. (1995). Dynamic vehicle routing:
Status and prospects. Annals of Operations Re-
search, 61(1):143–164.

Pureza, V. and Laporte, G. (2008). Waiting and
buffering strategies for the dynamic pickup and
delivery problem with time windows. INFOR,
46(3):165–175.

Regan, A., Mahmassani, H., and Jaillet, P. (1998).
Evaluation of dynamic fleet management sys-
tems - simulation framework. In Forecasting,
Travel Behavior, And Network Modeling, num-
ber 1645 in Transportation Research Record,
pages 176–184. 77th Annual Meeting of
the Transportation-Research-Board, WASHING-
TON, D.C., JAN, 1998.

Romero, M., Sheremetov, L., and Soriano, A. (2007).
A genetic algorithm for the pickup and deliv-
ery problem: An application to the helicopter
offshore transportation. In Theoretical Advances
and Applications of Fuzzy Logic and Soft Computing,
volume 42 of Advances in Soft Computing, pages
435–444. Springer Berlin / Heidelberg.

Ropke, S. and Pisinger, D. (2006). An adaptive large
neighborhood search heuristic for the pickup
and delivery problem with time windows. Trans-
portation Science, 40(4):455–472.

Rousseau, L.-M., Gendreau, M., and Pesant, G.
(2002). Using constraint-based operators to solve
the vehicle routing problem with time windows.
Journal of Heuristics, 8(1):43–58.

Secomandi, N. (2000). Comparing neuro-dynamic
programming algorithms for the vehicle routing
problem with stochastic demands. Computers &
Operations Research, 27(11-12):1201 – 1225.

Secomandi, N. and Margot, F. (2009). Reoptimiza-
tion approaches for the vehicle-routing problem
with stochastic demands. Operations Research,
57(1):214–230.

Shaw, P. (1998). Using constraint programming
and local search methods to solve vehicle rout-
ing problems. In Principles and Practice of Con-
straint Programming – CP98, volume 1520 of Lec-
ture Notes in Computer Science, pages 417–431.
Springer Berlin / Heidelberg.

Simao, H., Day, J., George, A., Gifford, T., Nienow,
J., and Powell, W. (2009). An approximate dy-
namic programming algorithm for large-scale
fleet management: A case application. Trans-
portation Science, 43(2):178–197.

Slater, A. (2002). Specification for a dynamic vehi-
cle routing and scheduling system. International
Journal of Transport Management, 1(1):29 – 40.

Sleator, D. and Tarjan, R. (1985). Amortized effi-
ciency of list update and paging rules. Commu-
nications of the ACM, 28(2):202–208.

Smolic-Rocak, N., Bogdan, S., Kovacic, Z., and
Petrovic, T. (2010). Time windows based dy-
namic routing in multi-agv systems. IEEE Trans-
actions on Automation Science and Engineering,
7(1):151–155.

Solomon, M. (1987). Algorithms for the vehicle-
routing and scheduling problems with time win-
dow constraints. Operations Research, 35(2):254–
265.

Spivey, M. and Powell, W. (2004). The dy-
namic assignment problem. Transportation Sci-
ence, 38(4):399–419.

Stahlbock, R. and Voss, S. (2008). Operations re-
search at container terminals: a literature update.
Or Spectrum, 30(1):1–52.

Taillard, E., Badeau, P., Gendreau, M., Guertin, F.,
and Potvin, J. (1997). A tabu search heuristic for
the vehicle routing problem with soft time win-
dows. Transportation Science, 31(2):170–186.

Taillard, E. D., Gambardella, L. M., Gendreau, M.,
and Potvin, J.-Y. (2001). Adaptive memory pro-
gramming: A unified view of metaheuristics. Eu-
ropean Journal of Operational Research, 135(1):1 –
16.

Taniguchi, E. and Thompson, R. (2002). Mod-
eling city logistics. Transportation Research
Record: Journal of the Transportation Research Board,
1790(1):45–51.

Thomas, B. W. (2007). Waiting strategies for antici-
pating service requests from known customer lo-
cations. Transportation Science, 41(3):319–331.

Topaloglu, H. and Powell, W. (2006). Dynamic-
programming approximations for stochastic
time-staged integer multicommodity-flow
problems. INFORMS Journal on Computing,
18(1):31–42.

32/33



REFERENCES

Toth, P. and Vigo, D., editors (2002). The vehicle
routing problem, volume 9 of SIAM Monographs on
Discrete Mathematics. SIAM Philadelphia.

van Hemert, J. I. and Poutré, J. L. (2004). Dy-
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