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A study of the assault frequency and preformation factor of the α decay description is performed
from the experimental α decay constant and the penetration probabilities calculated from the GLDM
potential barriers. To determine the assault frequency a quantum mechanical method using an
harmonic oscillator is introduced and lead to values of around 1021s−1 similar to the ones calculated
within the classical method. The preformation probability is around 10−1 − 10−2. The results for
even-even Po isotopes are discussed for illustration. While the assault frequency presents only a
shallow minimum in the vinicity of the magic neutron number 126 the preformation factor and
mainly the penetrability probability diminish strongly around N = 126.

The α decay theory was firstly developed in 1928 [1, 2].
It describes the α radioactivity as a quantum tunnel-
ing through the potential barrier separating the mother
nucleus energy and the total energy of the separated α
particle and daughter nucleus. Later on, cluster-like [3–
8] and fission-like [9–14] theories have been used to ex-
plain the α emission process. The decay constant λ is the
product of three terms : the assault frequency ν, the bar-
rier penetrability P and the α preformation probability
Pα. Often the assault frequency is calculated supposing
that the α particle moves classically back and forth inside
the nucleus and is even sometimes taken as a constant.
The cluster preformation probability corresponds rather
to the penetrability of the part of the barrier before reach-
ing the separation point while the barrier penetrability
is rather associated with the external part of the barrier
when the fragments are separated.

Firstly, the potential barrier governing the α particle
emission has been determined within the generalized liq-
uid drop model (GLDM) taking into account the mass
and charge asymmetry [10, 14, 15]. The total energy is
the sum of the volume, surface, Coulomb and proximity
energies. When the nuclei are separated:
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EC = 0.6e2Z2
1/R1 + 0.6e2Z2

2/R2 + e2Z1Z2/r, (3)

where Ai, Zi, Ri and Ii are the mass numbers, charge
numbers, radii and relative neutron excesses of the two
nuclei. r is the distance between the mass centres.

For one-body shapes, the surface and Coulomb ener-
gies are defined as:

ES = 17.9439(1− 2.6I2)A2/3(S/4πR2
0) MeV, (4)

EC = 0.6e2(Z2/R0)×0.5
∫

(V (θ)/V0)(R(θ)/R0)3 sin θdθ.

(5)
S is the surface of the one-body deformed nucleus. V (θ)
is the electrostatic potential at the surface and V0 the
surface potential of the sphere.

When there are nucleons in regard in a neck or a gap
between separated fragments a proximity energy must
be added to take into account the effects of the nuclear
forces between the close surfaces,

EProx(r) = 2γ
∫ hmax

hmin

Φ [D(r, h)/b] 2πhdh. (6)

h is the distance varying from the neck radius or zero to
the height of the neck border. D is the distance between
the surfaces in regard and b = 0.99 fm the surface width.
Φ is the proximity function. The surface parameter γ
is the geometric mean between the surface parameters
of the two fragments. This term is essential to describe
smoothly the one-body to two-body transition and to
obtain reasonable potential barrier heights. It moves the
barrier top to an external position and strongly decreases
the pure Coulomb barrier. The experimental Qα is taken
into account. It has been previously shown that the com-
bination of this GLDM and of a quasi-molecular shape
sequence allows to reproduce the fusion barrier heights
and radii, the fission, the α decay and the proton and
cluster radioactivity data [10, 15–18].

The barrier penetrability P has been calculated within
the action integral :

P = exp[−2
�

∫ Rout

Rin

√
2B(r)(E(r) − E(sphere)) dr] .

(7)
Then the knowledge of the experimental decay con-

stant λ and of the calculated barrier penetrability P al-
lows to determine the behaviour of the product Pαν via
the relation :
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FIG. 1: The upper panel (lower panel) shows the deviations
between calculated [10] and experimental α decay half lives
for 131 even-even nuclei as a function of the proton number
(neutron number).

λ = Pαν P. (8)

Let us first recall that in a previous study [10] the
ratio λ/P has been fixed as 1020 s−1. In Fig. 1, the de-
viation between the values of log10[T1/2(s)] within this
approximation and the experimental ones is shown as
functions of proton number (upper panel) and neutron
number (lower panel). For the subset of the 131 even-
even nuclei the root-mean-square deviation is 0.35. The
theoretical data are slightly higher than the experimen-
tal ones for the lighter nuclei and systematically lower
for the heaviest systems. When the proton number is
under 74 (upper panel) or the neutron number is under
94 (lower panel), the calculations are higher than the ex-
perimental data, but for nuclei where the proton number
is beyond 100 or the neutron number beyond 158 these
theoretical predictions are lower than the experimental
data. In addition, the deviations are larger when the
proton number is about 82 and the neutron number is
about 126. Some details on nuclear structure are missing
when a fixed ratio λ/P is assumed.

In the present work, the empirical values of λ/P are
extracted for 154 even-even nuclei. The experimental α
decay half-lives are given in [19–22]. Fig. 2 displays a
plot of log10 λ/P as a function of the neutron number.
The values present a sharp decrease around the neutron
magic number N=126 reconfirming this neutron closure

shell structure. For a neutron number beyond about 155,
the decreased trend appears again giving us some signals
for an island of stability of superheavy nuclei. So this
ratio is in reality slightly sensitive to the nuclear structure
and can at least be used to detect shell effects.

As an example the extracted λ/P values are shown in
the sixth column of the Tab. I for even-even Po isotopes.
The range span from 1019 s−1 to more than 1020 s−1.

FIG. 2: log10 λ/P for 154 even-even nuclei versus the neutron
number.

One way to determine the assault frequency is to imag-
ine the α particle moving back and forth classically inside

the nucleus with a velocity v =
√

2Eα

M . Then it presents
itself at the barrier with a frequency :

νC =

(
1

2R

√
2Eα

M

)
, (9)

R being the radius of the parent nucleus, Eα the kinetic
energy of the alpha particle, corrected for recoil and M
its mass.

Then the preformation factor Pα of an α cluster inside
the mother nucleus can be estimated using Eq.(8).

As an example, the calculated assault frequency ν from
Eq.(9) as well as the preformation factor deduced from
Eq.(8) and from the experimental constant decay are
shown in the seventh and ninth columns of Tab. I re-
spectively for the Po isotopes. The order of magnitude
of ν is 1021 s−1. Consequently, the preformation proba-
bility is of the order of 10−2−10−1. Both the penetration
and preformation probabilities are reduced in the vicin-
ity of the magic neutron number 126 but the penetration
probability range is very large compared to that of the
preformation factor. The penetration probability which
is strongly connected to the Qα value determines mainly
the α decay half-life.

A new approach to deal with the assault frequency is
proposed within a microscopic method deriving from the
viewpoint of quantum mechanics. It assumes that the α
particle which will be emitted vibrates nearby the surface
of the parent nucleus in an harmonic oscillator potential
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V (r) = −V0 + 1
2μω

2r2 with classical frequency ω and
reduced mass μ. The virial theorem leads to

μω2r2 = (2nr + 	+
3
2
)�ω, (10)

where nr and 	 are the radial quantum number (corre-
sponding to number of nodes) and angular momentum
quantum number, respectively.

√
r2 =< ψ|r2|ψ >1/2 is

the rms radius of outermost α distributions in quantum
mechanics. It equals the rms radius Rn of the parent
nucleus. The assault frequency νM is related to the os-
cillation frequency ω by :

νM =
ω

2π
=

(2nr + 	+ 3
2 )�

2πμR2
n

=
(G+ 3

2 )�
1.2πμR2

. (11)

The relationship R2
n = 3

5R
2 is used. The global quantum

number G = 2nr + 	 of a cluster state is estimated by the
Wildermuth rule [23] as

G = 2n+ 	 =
4∑

i=1

gi , (12)

where n is the number of nodes of the α-core wave func-
tion; 	 is the orbital angular momentum of the cluster
motion; and gi is the oscillator quantum number of a
cluster nucleon. gi equals 4 for nuclei with (Z,N) ≤ 82,
gi = 5 for 82 < (Z,N) ≤ 126, and gi = 6 for (Z,N)> 126,
corresponding to the 4�ω, 5�ω, and 6�ω oscillator shells,
respectively, where N and Z are the proton and neutron
numbers of the parent nucleus (see also Ref. [24]). How-
ever, since a heavy nucleus involves usually mixed oscil-
lator shells, the determination of the G value with the
Wildermuth rule can be ambiguous to some extent, usu-
ally with an uncertainty of 2 or 4 in even-even heavy
nuclei [25].

The estimated microscopic assault frequency from
Eq.(11) is shown in the eighth column of the Tab.I and
Fig. 3 for even-even Po isotopes. The order of magnitude
of νM is 1021 s−1 same as that of νC which proves that
the two calculations are consistent.

To study the correlation between the assault frequency
and the structure properties, the values of ν/1021s−1

for the even-even Po isotopes used within the classical
approach and estimated by the microscopic method are
shown as a function of the neutron number in the Fig. 4
respectively using triangles and black circles. The shapes
of the two curves are similar and the values of νM from
the microscopic calculations are always larger than νC

used classically but never beyond two times implying
again that the two different methods can be used. The
assault frequency of the isotopes generally decreases with
increasing neutron number up to the spherical shell clo-
sure N=126, where the minimum of the assault frequency
occurs, and then they increase quickly with the neutron
number. It is clear that the α assault frequencies against
the potential barrier are sensitive to the nuclear shell clo-
sure effects.

FIG. 3: log10 ν for the even-even Po isotopes.

FIG. 4: ν/1021 for the even-even Po isotopes.

In conclusion, a study of the assault frequency and pre-
formation factor of the α decay is performed from the ex-
perimental α decay constant and the penetration proba-
bilities calculated from the WKB approximation and the
GLDM potential barriers. The approximation of a con-
stant value of λ/P is relatively rough. To determine the
assault frequency a quantum mechanical method using
an harmonic oscillator is introduced and lead to values of
around 1021s−1 similar to the ones calculated within the
classical method using the picture of a particle moving
back and forth inside the nucleus. Then the preforma-
tion probability is around 10−1 − 10−2. The results for
even-even Po isotopes from ground-state to ground-state
α emissions are discussed for illustration. While the as-
sault frequency presents only a shallow minimum in the
vinicity of the magic neutron number 126 the preforma-
tion factor and mainly the penetrability probability di-
minish strongly around N = 126. The small value of the
preformation factor suggests that the α decay is rather
a radioactive emission process of a cluster formed on the
surface of the nucleus but before the potential barrier
penetration.
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TABLE I: Characteristics of the α decay for the even-even Po isotopes. The four first columns correspond respectively to the
mother nucleus, the experimental Qα, log10[T1/2(s)] and the experimental decay constant λ. The fifth column is the penetration
probability. The three following columns give respectively the ratio λ/P the assault frequency obtained within the classical
approach and using a quantum mechanical approach. The last column displays the preformation probability.

Nuclei Qα [MeV] log10[Tα(s)] λ[s−1] P λ/P [s−1] νC [s−1] νM [s−1] Pα
188
84 Po 8.087 -3.40 1.733 ×103 8.129 ×10−17 2.133 ×1019 1.451×1021 2.055×1021 0.0147
190
84 Po 7.693 -2.60 2.772 ×102 5.907 ×10−18 4.698 ×1019 1.411×1021 2.039×1021 0.0333
192
84 Po 7.319 -1.54 2.392 ×101 3.909 ×10−19 6.119 ×1019 1.371×1021 2.023×1021 0.0446
194
84 Po 6.990 -0.41 1.782 ×100 3.249 ×10−20 5.485 ×1019 1.335×1021 2.008×1021 0.0410
196
84 Po 6.660 0.76 1.205 ×10−1 2.041 ×10−21 5.904 ×1019 1.299×1021 1.993×1021 0.0455
198
84 Po 6.310 2.18 4.580 ×10−3 8.283 ×10−23 5.529 ×1019 1.259×1021 1.978×1021 0.0439
200
84 Po 5.980 3.79 1.124 ×10−4 3.066 ×10−24 3.666 ×1019 1.222×1021 1.963×1021 0.0300
202
84 Po 5.700 5.13 5.138 ×10−6 1.721 ×10−25 2.985 ×1019 1.188×1021 1.949×1021 0.0251
204
84 Po 5.480 6.28 3.638 ×10−7 1.376 ×10−26 2.644 ×1019 1.161×1021 1.935×1021 0.0228
206
84 Po 5.330 7.15 4.907 ×10−8 2.254 ×10−27 2.177 ×1019 1.141×1021 1.921×1021 0.0191
208
84 Po 5.220 7.97 7.427 ×10−9 5.727 ×10−28 1.297 ×1019 1.126×1021 1.908×1021 0.0115
210
84 Po 5.407 7.08 5.765 ×10−8 7.615 ×10−27 0.757 ×1019 1.142×1021 1.895×1021 0.0065
212
84 Po 8.950 -6.52 2.295 ×106 4.598 ×10−14 4.991 ×1019 1.466×1021 2.056×1021 0.0341
214
84 Po 7.830 -3.87 5.138 ×103 4.309 ×10−17 1.187 ×1020 1.366×1021 2.042×1021 0.0873
216
84 Po 6.900 -0.82 4.580 ×100 3.670 ×10−20 1.248 ×1020 1.278×1021 2.028×1021 0.0976
218
84 Po 6.110 2.27 3.722 ×10−3 2.844 ×10−23 1.309 ×1020 1.199×1021 2.015×1021 0.1092
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