HAL

archives-ouvertes

Revisiting the tree Constraint

Xavier Lorca, Jean-Guillaume Fages

» To cite this version:

Xavier Lorca, Jean-Guillaume Fages. Revisiting the tree Constraint. Lee, Jimmy. Principles
and Practice of Constraint Programming, 2011, Perugia, Italy. Springer Berlin / Heidelberg,
6876, pp.271-285, 2011, Lecture Notes in Computer Science. <10.1007/978-3-642-23786-7_22>.
<hal-00644787>

HAL Id: hal-00644787
https://hal.archives-ouvertes.fr /hal-00644787

Submitted on 25 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00644787

Revisiting the tree Constraint

Jean-Guillaume Fages and Xavier Lorca

Ecole des Mines de Nantes, INRIA, LINA UMR CNRS 6241,
FR-44307 Nantes Cedex 3, France
{Jean-guillaume.Fages,Xavier.Lorca}@mines-nantes.fr

Abstract. This paper revisits the tree constraint introduced in [2]
which partitions the nodes of a n-nodes, m-arcs directed graph into a
set of node-disjoint anti-arborescences for which only certain nodes can
be tree roots. We introduce a new filtering algorithm that enforces gen-
eralized arc-consistency in O(n + m) time while the original filtering
algorithm reaches O(nm) time. This result allows to tackle larger scale
problems involving graph partitioning.

1 Introduction

In the recent history of constraint programming, global constraints constitute a
powerful tool for both modeling and resolution. Today still, the most commonly
used global constraints are based on an intensive use of concepts stemming from
graph theory. Of these, the most important are cardinality constraints [12,13]
and automaton based constraints [8, 9, 7]. More generally, the reader should refer
to the catalogue of constraints [1] to gain a more complete idea of the graph
properties used in global constraints. In the same way, difficult problems modeled
and solved thanks to graph theory have been successfully tackled in constraint
programming and, more particularly, thanks to global constraints. This mainly
consists of constraints around graph and subgraph isomorphism [17,19], search
paths in graphs [11,10, 16], even minimum cost spanning trees [14] and graph
partitioning constraints like the tree constraint [2] Such a constraint is mainly
involved in practical applications like vehicle routing, mission planning, DNA
sequencing, or phylogeny.

The tree constraint enforces the partitioning of a directed graph G = (V, E)
into a set of L node-disjoint anti-arborescences, where |V | =n, |E| = m and L is
an integer variable. In [2], it is shown that Generalized Arc-Consistency (GAC)
can be enforced in O(nm) time, while feasibility can be checked in O(n + m)
time. The bottleneck of the filtering algorithm relies on the computation of
strong articulation points which, at this moment, could not be performed in
linear time. However, based on the works of [15,3], Italiano et. al. [5] solved
this open problem by giving an O(n + m) time algorithm for computing strong
articulation points of a directed graph G. Their main contribution is the link
they made between the concept of strong articulation point in a directed graph
and the concept of dominator in a directed flow graph. This recent improvement



in graph theory made us revisit the tree constraint to see whether the complete
filtering algorithm could now be computed in linear time or not.

In this paper, Section 2 first recalls some basic notions of graph theory as
well as the integration of graph theory in a classical constraint programming
framework. Next, Section 3 proposes a short survey about the tree constraint.
First, a decomposition of the constraint is discussed in Section 3.1. Next, Sec-
tion 3.2 shows that dominator nodes were already used in a different way to
enforce reachability between nodes. Finally, Section 3.3 proposes a brief sum
up of the original tree constraint filtering algorithm. This leads us to discuss
the relevance of the approach showing that strong articulation points is a much
too strong notion for this problem whereas the notion of dominators in a flow
graph perfectly fits our needs. Thus, Section 4 presents a new complete filtering
algorithm, closer to the definition of a tree, that runs in O(n + m) worst-case
time complexity. Finally, Section 5 concludes the paper with a short evaluation
of the algorithm to illustrate how large scale problems can be tackled thanks to
this new filtering algorithm.

2 Graph Theory Definitions

A graph G = (V,E) is the association of a set of nodes V' and a set of edges
E C V2. (2,y) € F means that x and y are connected. A directed graph (digraph)
is a graph where edges are directed from one node to another, it is generally noted
G = (V,A). (z,y) € A means that an arc goes from z to y but does not provide
information about whether an arc from y to x exists or not.

A connected component (CC) of a digraph G = (V, A) is a maximal subgraph
Gee = (Vee, Acce) of G such that a chain exists between each pair of nodes. A
strongly connected component of a digraph G = (V, A) is a maximal subgraph
Gsce = (Vseoo, Asce) of G such that a directed path exists between each pair of
nodes. A graph is said (strongly) connected if it consists in one single (strongly)
connected component.

A strong articulation point (SAP) of a digraph G = (V, A) is a node s € V
such that the number of strongly connected components of G\ {s} is greater than
the one of G. In other words s € V is a SAP of G if there exists two nodes x
and y in V, x # s, y # s, such that each path from z to y goes through s and a
path from y to = exists.

A flow graph G(r) of a directed graph G = (V,E) is a graph rooted in
the node r € V which maintains the following property: for each node v € V
a directed path from r to v exists. A dominator of a flow graph G(r) where
G = (V,A) is anode d € V, d # r such that there exists at least one node
v € V., v # d, for which all paths from the root r to v go through d. We extend
this notion to arcs as following: an arc-dominator of a flow graph G(r) where
G = (V,A) is an arc (z,y) € A, © # y, such that there exists at least one node
v € V, for which all paths from the root r to v go through (z,y). This definition
can easily be simplified into: an arc (x,y) € A is an arc-dominator of G(r) if
and only if 2 # y and all paths from the root r to y go through (z,y).



A tree T = (V, E) is an acyclic, connected and undirected graph. One of its
directed variants is the anti-arborescence, a directed graph T' = (V, A) such that
every node v € V has exactly one successor w € V and with one root r € V,
such that (r,r) € A and for each node v € V, a directed path from v to r exists.
It can be seen that an anti-arborescence can be transformed into a tree easily.
In the paper we study the case of an anti-arborescence but use for simplicity the
term tree rather than anti-arborescence. Thus the following definitions will be
used as references:

Definition 1. Atree T = (X,Y) is a connected digraph where every node v € X
has exactly one successor w € X and with one root r € X such that (r,r) € Y
and for each node v € X, a directed path from v to r exists.

Definition 2. Given a digraph G = (V, A), a tree partition of G is a subgraph
P = (V,Ay), Ay C A, such that each connected component is a tree.

Then, the two previous definitions directly provide the proposition:

Proposition 1. Given a digraph P = (V, As), subgraph of a digraph G = (V, A),
and a set R ={r|r € V,(r,r) € As}, then P is a tree partition of G if and only
if each mode in 'V has exactly one successor in P and for each node v € V there
exists a node r € R such that a directed path from v to r exists in P.

In a constraint programming context a solution to the tree constraint is a
tree partition of an input graph G = (V, A). A Graph Variable is used to model
the partitioning of G. It is composed of two graphs: the envelope, Gg = (V, Ag),
contains all arcs that potentially occur in at least one solution (Figure 1(a))
whereas the kernel, Gx = (V, Ak ), contains all arcs that occur in every solution
(Figure 1(b)). It has to be noticed that Ax C Ap C A. During the resolution,
filtering rules will remove arcs from Ag and decisions that add arcs to Ag
will be applied until the Graph Variable is instantiated, i.e. when Ap = Ak
(Figure 1(c)). The problem has no solution when |[Ag| < |V].

LD Jo Lo db Lo

a) Envelope Gg = (V, Ag) (b) Kernel Gk = (V, Ak) ) A solution (Ag = Ak)

Fig. 1. A graph variable associated with a directed graph G = (V, A)

Definition 3. An instantiated Graph Variable is a tree partition of a digraph
G, if and only if its kernel Gk is a tree partition of G. A partially instantiated
Graph Variable can lead to a tree partition of a digraph G, if and only if there
exists at least one tree partition of its envelope Gg.



In the following, a node r € V' is a root if and only if (r,7) € Ak. It is called a
potential oot if (r,r) € Ap.t

3 The tree Constraint: A survey

This section introduces first a decomposed constraint programming model for
the tree constraint. Such a model does not ensure any consistency level for the
constraint. Next, we show how the DomReachability constraint can be used as
a propagator for the tree constraint. Finally, we recall the initial GAC filtering
algorithm of the constraint.

3.1 A Basic Decomposition

Our objective in this section is to convince the reader of the importance in
proposing a global constraint for directed tree partitioning. In order to do so, we
will introduce a broken down model for this problem. It is necessary to define an
integer variable L characterizing the number of trees admitted in the partition.
Next, taking G = (V, E) a graph of order n, we link to each node 4 an integer
variable v; of enumerated domain [1; n] defining the successor of ¢ in G, an integer
variable r; of bounded domain [0; n — 1] defining the height of ¢ in a solution and
a boolean variable b; characterizing the root property for node i. Note that the
set of decision variables (to be used for branching) is v and that r is introduced
to prevent from the creation of circuits. As such, the problem can be defined in
the following way:

Ui:j/\i#jé7’1'>7'j, Vie[l;n] (1)
b & v, =1, Vie[l;n] (2)

L= i:bi (3)

The correctness of the model is proved when we consider the following cases:
(1) the model does not accept a solution containing more than L well-formed
trees, (2) the model does not admit a solution containing fewer than L well-
formed trees, (3) the model does not accept a solution containing a circuit and
(4) the model does not accept a solution containing a single node without a loop.
Given G = (V, E), a directed graph of order n and F' a partition of G into «
well-formed trees:

— case (1), let us suppose that a > L so that if & > > " | b; this means that
there are more well-formed trees in F' than nodes which are potential roots,
which is impossible according to constraint (2);

— case (2), let us suppose that o < L so that if @ < Y., b; this means that
F' contains more loops than trees so that some contain more than one loop.
However, since each node has exactly one successor, it is a contradiction;

! Notice that in this definition, a root is also a potential root.



— case (3), if there is f € F such that f contains a cycle, then, there are two
nodes ¢ and j in f such that we have an elementary path from ¢ to j and an
elementary path from j to ¢ and, consequently, according to the constraint(1)
we have r; < r; and r; < r;: it is a contradiction;

— case (4) is obvious because each variable must be fixed to a value, which is
equivalent to saying that each node must have exactly one successor.

3.2 The DomReachability Constraint

Luis Quesada et. al. introduced the DomReachability constraint [11, 10, 16] for
solving path partitioning problems. It uses a similar graph variable description
[4] .Their constraint maintains structural relationships between a flow graph,
its dominator tree and its transitive closure. In particular, it can ensure that
all nodes are reachable from a given source node, which is very close to the
concept of a tree. Plus, and as it will be shown in the next subsection, dominance
relationships are very useful information in that context. Thus one could think
that it could be a good propagator for solving tree partitioning problems. We
will show that the use of such a constraint is not appropriate.

DomReachability runs in O(nm) worst case time complexity. This cost is
due to the algorithm used for maintaining the transitive closure, which is not
necessary for tree partitioning. The first algorithm [11] consisted in performing
one DFS per node whereas the current algorithm [16] works on a reduced graph.

DomReachability does not enable to build a tree partition directly. As it
needs a single source node it can only compute a single tree. To get a tree
partition of cardinality k, then a trick would consist in adding a fictive source
node s to the input graph and declare that each of its successors is a root node
of a tree and add a propagator which would ensure that the outdegree of s is k.
In the same way, even if one single tree is expected, when the root node is not
known in advance then it is necessary to use the previous trick with k£ = 1.

DomReachability does not ensure GAC over tree partitioning. This is pretty
obvious because the reachability property does not exclude cycles whereas tree
properties do. Nevertheless they use DomReachability for path partitioning
through the global constraint Simple Path with Mandatory Nodes (SPMN) [11,
10,16]. As tree partitioning is a polynomial relaxation of path partitioning, a
complete filtering over tree partitioning could be expected. However, to the best
of our knowledge, SPMN does not reap the benefit of dominators by missing the
following major pruning rule: if ¢ dominates j then the arc (j,7) does not belong
to any solution which, regarding their notation, can be expressed as:

(i,7) € Edges(Min(EDQ))
Edges(Max(FG)) := Edges(Max(FG)) \ {{(4,1)}

(4)

For a better understanding of this rule, it has to be considered that they work
on arborescences instead of anti-arborescences.



3.3 The original tree Constraint

This part is a fast sum up of the tree constraint described in [2]. The constraint
is composed of two main algorithms. The first one enables to check whether a
partially instantiated Graph Variable can lead to at least one solution or not.
This algorithm can be run in O(n + m) worst case time complexity. The second
algorithm enables to prune every arc that does not belong to any solution in
O(nm) worst case time complexity. It is the focus of this paper.

Feasibility Condition. The original paper defines an integer variable L =
[6;0] that represents the cardinality of the tree partition and two bounds: £*,
the number of sink components?, and Z*, the number of potential roots. Those
two bounds can easily be evaluated in linear time: all the strongly connected
components of Gg can be computed in O(n 4+ m) using Tarjan’s algorithm [18].
Thus, the sink components can be detected in O(m) time, which provides £*.
Moreover a simple breadth first search exploration of G enables to compute 7.

The feasibility condition can be decomposed into two parts. The first one
is directly related to the number of trees allowed into the partition, while the
second one is related to the definitions of directed tree: dom(L)N[£*; 7] # 0, and
all sink components of Gg must contain at least one potential root. The original
paper provides the proof of sufficiency of those conditions which can obviously
be checked in linear time.

Complete Filtering Algorithm. The complete filtering algorithm can be split
into two propagators: bound filtering and structural filtering. The bound filter-
ing focuses on the cardinality of the expected partition whereas the structural
filtering ensures the generalized arc-consistency over tree partitioning proper-
ties. Both algorithms are complementary and form together a complete filtering
algorithm for tree constraint.

The bound filtering is pretty simple. First of all, it consists in ensuring that
dom(L)N [g*;?*] # () by removing the values of L that are out of range. Secondly,
it consists in pruning infeasible arcs when L is instantiated to one of its extrema:
If dom(L) = {£"} then any potential root in a non sink component is infeasible
and thus removed from the envelope; If dom(L) = {Z*} then any potential root
must be instantiated as a root thus all their outgoing arc that are not a loop are
removed from the envelope.

The structural filtering detects all arcs that belong to no tree partition. For
this purpose, several notations are required: A door is a vertex v € V such that
there exists (v, w) € Ag where w does not belong to the same strongly connected
component as v. A winner is a vertex v € V which is a potential root or a door.
Let’s consider S, a strongly connected component of Gg, and p a strong artic-
ulation point in S; AP is the set of the new strongly connected components ob-
tained by the removal of p from S: AP = {S;|S; strongly connected component of

2 the number of strongly connected components with no outgoing arcs



S\ {p}}. A? is the subset of AP such that all paths from each of its strongly
connected component to any winner of S go through p. A? , is the subset of
AP such that a path exists from each of its strongly connected component to a
winner of S without going through p. Remark, A? @ A , = AP. Pruning is
then performed according to three following rules:

1. If a sink component of Gg contains one single potential root r, then all the
outgoing arc of r except the loop (r,r) are infeasible.

2. If a strongly connected component C' C G contains no potential root but
one single door d, then all arcs (d,v),v € C are infeasible.

3. An outgoing arc (p,v) of a strong articulation point p of Gg that reaches a
vertex v of a strongly connected component of AL is infeasible.

Rules 1 and 2 are obvious. Rule 3 basically means that enforcing such an arc
would lead to some strongly connected components with no winners, thus sinks
with no potential roots which is a contradiction.

About time complexity, pruning among rules 1 and 2 can easily be per-
formed in linear time but when the paper was published, computing efficiently
the strong articulation points of a digraph remained an open problem and the
worst case time of the pruning procedure was thus O(nm). In response to that
claim, Italiano et. al. [5] recently showed an O(m+n) worst case time complexity
algorithm for computing strong articulation points of a digraph. This work en-
abled to fasten the pruning in practice. However, the theoretic time complexity
remains O(nm): rule 3 needs to withdraw strong articulation points one by one
and compute new strongly connected components each time. The strongly con-
nected components can be computed in O(n+m) time using Tarjan’s algorithm
but there can be up to n strong articulation points, thus the total processing
has a O(n? + nm) = O(nm) worst case time complexity.

We will now show that the concept of strong articulation point is not well
appropriate and propose a new formulation of the pruning conditions based on
dominance relationship.

4 Linear Time Algorithm for the tree Constraint

The contribution of this paper relies on a new formulation of the filtering rule
related to the strong articulation points. The first point to notice is that, given
a strong articulation point p of a strongly connected component SCC; C G,
AP “may be empty (Figure 2(a)), thus the initial algorithm may perform sev-
eral expensive and useless computations. The second important point is that
the initial filtering algorithm does not require the concepts of doors, winners,
strong articulation points and strongly connected components. Actually, their
use, which implies paths in two directions, is not natural in our context because
only a one way path from each node to a root is required. For instance, given
three nodes u, v and w in V such that w is the unique potential root reachable
from w. If every path from u to w requires v, then any path from v to u has to
be forbidden (Figure 2(b)).



OSNOM0

(a) A strong articulation (b) Main pruning rule
point C such that AS, = 0

Fig. 2. Structural pruning observations

The filtering rule proposed by the initial algorithm can be reformulated by:
Any arc (z,y) € SCC; C G, x # y is infeasible if and only if all paths from y to
any winner of SCC; go through x. However, as a winner in a strongly connected
component is either a potential root, or a door that can thus lead to a potential
root (each sink has at least one potential root), it can be rephrased: Any arc
(x,y) € SCC; C Gg,xz # y is infeasible if and only if all paths from y to any
potential root of Gg go through x. Moreover, assume (z,y) is an arc of the
digraph G g and there exists a path from y to x then x and y belong to the same
strongly connected component, so the condition can be simplified in the following
way: Any arc (z,y) € G,z # y is infeasible if and only if all paths from y to any
potential root of Gg go through x. This condition is much closer to definition 1,
it can be noted that it is also quite similar with the dominance definition: Let
R be the set of potential roots, i.e. R = {v|v € V, (v,v) € Ag}. Let us consider
the graph Gps = (VUs,Ag US) where s ¢ V and S = {J,cp((r,s) U (s,7)).
Let the digraph GEIS be the inverse graph of Ggs (obtained by reversing the
orientation of arcs of Ggg). The previous definition can be transposed into:
(x,y) € Gg,x # vy, is infeasible if and only if x is a dominator of y in the flow
graph G;Jls(s) The main interest is that algorithms do exist to find dominators
of a flow graph in linear time [15, 3].

4.1 Feasibility and filtering conditions

We now consider a partially instantiated graph variable GV = (Gg, Gk) that
represents a subgraph of an input directed graph G = (V, A). We have Gg =
(V,Ag), Gx = (V,Ak) and Ax C Ap C A (Section 2).

Proposition 2. Given a partially instantiated graph variable GV of a digraph
G, there exists a tree partition of G if and only if for each node v € V the two
following conditions hold:

1. {(v,w)|(v,w) € Ag}| > 1 and |{(v,w)|(v,w) € A} <1
2. there exists a potential root r € V' such that a directed path from v to r exists



Proof. If there exists a node v € V such that [{(v,w) | (v,w) € Ax}| > 1 then
v has more than one successor in all solutions, if [{(v,w) | (v,w) € Ag}| < 1
then v has no successors in Ar and thus in all solutions because Axg C Apg.
Both cases are in contradiction with Proposition 1 thus cannot lead to any tree
partitioning. If there exists a node v € V such that v can reach no potential root
with a directed path in Gg then, as Ax C Ag, v cannot reach any root in any
solution which is in contradiction with Proposition 1 and thus cannot lead to
any tree partitioning.

Let us now suppose that conditions 1 and 2 are respected. Let us instantiate
all potential roots r € V', i.e. add all arcs (r,7) € Ag to Ax and delete all other
outgoing arcs of r from Ag. At this step condition 2 still holds so for each node
v € V there exists a potential root » € V such that a path from v to r exists in
Gg. Let’s add that path in Gi (by adding its arcs to Ag). The result of this
procedure is an instantiated Graph Variable that is a tree partition of G. a

Remark 1. Condition 1 did not appear in previous models because they used
integer variables which immediately ensured that property.

Proposition 3. Given a partially instantiated graph variable GV of a digraph
G, if there exists a tree partition of G then, an arc (z,y) € Ag, x # y, does not
belong to any solution if and only if one of the following conditions holds:

1. there exists a node w € V,w # y, such that (x,w) € Ak,
2. all directed paths in Gg from y to any potential root r € V' go through x.

Proof. Let x and w be two nodes in V' such that (z,w) € Ax then w is a successor
of x in every solution. Definition 1 implies that w is the unique successor of =z,
thus any arc (x,y) € Ag such that y # w belongs to no solution. Let x and
y be two distinct nodes of V' such that all directed paths in G from y to any
potential root r € V' go through z and that (x,y) € Ag. Then Proposition 1
implies that there will be a directed path from y to = in every solution. Using arc
(x,y) € Ag would thus create a cycle which is in contradiction with definition 1
so (x,y) belong to no solution.

Let now suppose that there exists an arc (x,y) € Ag which belongs to no
solution and such that conditions 1 and 2 are both false. Condition 1 is false if
and only if (z,y) € Ak or no outgoing arc of x belongs to Ax. If (x,y) € Ak then
all solutions contains arc (z,y) which is a contradiction so it can be supposed
that no outgoing arc of x belongs to Ax. As condition 2 is false then at least one
directed path exists in G from y to any potential root without going through x.
If (x,y) is added to Ak then the two conditions of Proposition 2 hold, thus the
graph variable GV still lead to at least one solution which is a contradiction. O

Proposition 4. Given a partially instantiated graph variable GV of a digraph
G, if each infeasible arc has been removed from GV, then an arc (x,y) € Ag,
x # y, belongs to all solutions if and only if all paths in Gg from x to any
potential root go through the arc (z,y).



Proof. Given an arc (z,y) € Ag, if all paths from x to any potential root go
through (z,y), as a path should exist from z to a potential root in each solution,
(z,y) belongs to all solutions. Given an arc (z,y) € Ak, then x has only one
single successor y in Gg, otherwise all infeasible arcs have not been pruned
(because each node should have exactly one successor). Thus all outgoing paths
of z go through (x,y) and as the problem is feasible at least one path from z to
any potential root exists. ad

4.2 Filtering Algorithm

Keeping the previous notations about the graph variable GV, we assume that
any graph is represented by two arrays of lists: successors and predecessors of
nodes. The list of index 7 in the successors array represents the successors of the
node ¢ € V. In order to make the complexity study easier, we introduce several
basic notations: n = |V|, m = |A|, mg = |Ag| with mg < m (Section 2).

Proposition 5. An O(m + n) worst case time complezxity algorithm ezists to
check whether GV can lead or not to a tree partition of G.

Proof. Considering the list representation of the graph, condition 1 of Proposi-
tion 2 can be checked in O(n) by computing the size of the list of successors of
each node, once in Gg and once in Gx.

Let R be the set of potential roots, i.e. R = {v|v € V,(v,v) € Ag}. Let’s
consider the graph Ggs = (V Us, Ag US) where s ¢ V, A NS = () and
S = U,cr((r,s) U (s,7)). Let the digraph G & be the graph inverse of Gpg
(obtained by reversing the orientation of arcs of Ggg). A simple Depth-First
Search (DF'S) exploration of G;Jls from node s will check whether each node
v € V is reachable or not from s using directed paths in G;Jg. So it checks
whether each node v € V' can reach or not a potential root using a directed path
in Gg. Thus it checks condition 2 of Proposition 2. The time complexity of a
DFS of a graph of mg arcs is O(mg). The total worst case time complexity of
this algorithm is so O(n+mpg). As Agp C A, mg < m. Thus this algorithm runs
in O(n + m) worst case time complexity. O

Proposition 6. If the graph variable GV, associated with the digraph G to par-
tition, can lead to a tree partition of G, an O(m+n) worst case time complezity
algorithm exists to detect and remove all the arcs (x,y) € Ag that do not belong
to any tree partition of G.

Proof. In this context pruning an arc (x,y) counsists in removing it from Ag.
We will now describe such an algorithm, which relies upon two main steps that
respectively correspond to conditions 1 and 2 of Proposition 3.

Condition 1: for each node v € V, either v has one successor in G or v has
no successor in G . If v has one successor w in G i then the list of successors of
v in G is cleared and (v, w) is put back into Gg. This is done in constant time
so the whole complexity of step 1 is O(n).



Condition 2: let us consider the graph GE}; previously described. Then condi-
tion 2 of Proposition 3 to ensure that the arc (x,y) € G belongs to no solution
is equivalent to "z dominates y in the flow graph G;Jls(s)". Several algorithms
enable to find immediate dominators in a flow graph [15, 3] in O(n + mg) worst
case time complexity. Let’s compute I the dominance tree of the flow graph
G5&(s) with one of those algorithms.

Then a node p € V dominates v € V in G;J}9 if and only if p is an ancestor of
v in I. Such a query can be answered in constant time thanks to a O(n) space
and O(n + m) time preprocessing. Let’s create two n-size arrays opening and
closure, perform a depth first search of I from s and record pre-order and post-
order numbers of each node in respectively opening and closure. Then, p is an
ancestor of v if and only if: opening[p] < opening[v] and closure[p] > closure[v].
There are at most mpg requests (one for each arc) so the whole worst case time
complexity of step two is O(n + m). O

Proposition 7. If the graph variable GV, associated with the digraph G to par-
tition, can lead to a tree partition of G and if all its infeasible arcs have been
pruned, an O(m + n) worst case time complexity algorithm exists to add all the
arcs (x,y) € Ag,x # vy, that belong to all tree partitions of G, into Ak.

Proof. In this context enforcing an arc (x,y) consists in adding it to Ag. Let’s
consider the previously introduced flow graph G;Jls(s). It should be noticed that
the condition for enforcing an arc (x,y) € Ag of Proposition 4 is equivalent to:
(x,y) € Ag belong to all solutions if and only if (y,x) is an arc-dominator in
G5&(s). Thus computing arc-dominators of G(s) is all we have got left.

In [5] and [10], it is suggested to insert a fictive node inside each arc of
the input graph and then compute dominators (in linear time). If a dominator
is a fictive node, then the corresponding arc is an arc-dominator. Thus, the
total processing time remains in O(n+m) worst case time complexity. However,
(y,x) is an arc-dominator of a flow graph G(s) if and only if y is the immediate
dominator of z in G(s) and for each predecessor p of x such that p # y, x
dominates p in G(s). Thus we present an alternative method which we claim to
be faster in practice and less space-consuming.

We assume that the pruning algorithm has been performed. Thus the dom-
inance tree I, of G,}é, is already computed and the preprocessing for ancestor
relationships in I introduced in Proposition 6 has been done. A Depth First
Search (DFS) exploration of G;Jls is then performed from the node s. For each
encountered arc (y, z), such that (z,y) € I and (x,y) ¢ Ag, for each predecessor
p of x, a request to know whether x is an ancestor of p in I is computed. If one
of those queries return false then (y, ) is not an arc-dominator of G 5(s). Oth-
erwise (x,y) can be enforced i.e. added into Ak . This algorithm computes O(m)
constant time queries. It is thus in O(n + m) worst case time complexity. a

Remark 2. In our problem, each node has exactly one successor and all infeasi-
ble arcs are detected. Thus it is not useful to compute arcs that belong to all
solutions explicitly: they will be deduced from the filtering algorithm. However
in the general case, unlike integer variables, graph variables enable a node to



have 0 or many outgoing arcs. Then the identification of arcs that belong to
all solutions cannot be immediately deduced from pruning and thus provides
important additional information.

Proposition 8. Given the input graph G and an integer variable L, a partition
of G into L trees, if one exists, can be found within O(nm) worst case time
complezity.

Proof. Each of the n nodes must have exactly one successor. Then n < m. If
the decision used in the propagation engine is "enforce an arca € Ag, a ¢ Ag"
then, as the pruning is complete the number of nodes in the tree search is O(n).
Plus it has just been shown that each propagation runs in O(n + m) worst case
time complexity. Thus the total solving time is O(n(n + m)) = O(nm) worst
case time complexity. a

4.3 Implementation details

The new tree constraint consists in the conjunction of 3 propagators: OneSucc
enforces that each node must have exactly one successor; Ntrees controls the
cardinality of the partition as described in [2|; TreeProps ensures a complete
filtering over tree partitioning properties, which is the focus of the paper.

Algorithm 1 TreeProps propagator of the tree constraint

Require: two digraphs Gg = (Vg, Ag), G}_E1 s.t. s ¢ Vg is its unique source
Ensure: each arc of Gg that does not belong to any solution has been removed
1: T — dominatorTree(G;l, s); {dominance tree of Ggl}
2: int[] opening, closure «+ ancestorPreProcess(Tg, s); {pre/post-order of T}
3: for all node v € Vg do

4: for all node w € Ag.getSucc(v) s.t. w # v do

5: if opening[v] < opening[w] A closure[v] > closure[w] then
6: Ap — Ag \ {(v,w)};

7 end if

8: end for

9: end for

The structural filtering of TreeProps is based on the dominatorTree(G, s)
algorithm which computes the immediate dominators of the flow graph G(s)
and return its dominance tree. It can be run in O(n +m) worst case time [15, 3].
However, for practical reasons, the current implementation uses the Lengauer-
Tarjan algorithm [6] which runs in O(ma(n,m)) worst case time complexity,
where a(n,m) is the inverse of the Ackermann function and thus grows very
slowly. The function ancestorPreProcess(T, s) returns the pre-order and the
post-order (starting from node s) labels of the nodes involved in the tree T'. This
can be done in O(n) time if T involves n nodes.

5 Experimental study

This section enables to compare several previously exposed models: the decom-
position model of Section 3.1, the original tree constraint of Section 3.3 and



the new linear time algorithm introduced by Section 4. Each algorithm consists
in providing a tree partition of a randomly generated input graph. For practical
interest, two cases of the new tree constraint have been tested. Both uses ex-
actly the same constraint implementation but one uses graph variables with a
matrix representation whereas the second one uses adjacency lists. Technically,
the matrix representation uses bitset arrays instead of boolean matrix. For ho-
mogeneity reasons, all those experiments use the same branching strategy which
consists in enforcing a randomly selected arc. All algorithms are implemented
within the Choco open source Java Library. The source code is not included in
the current distribution but is available on demand. The experiment has been
performed on a Mac mini 4.1, with a 2.4 Ghz Intel core 2 duo processor and 3
Go of memory allocated to the Java Virtual Machine.

As the study focuses on structural filtering, the cardinality of the expected
partition has not been restricted and input graphs were generated connected. We
note d the density of the input graph and d+ the average outdegree of its nodes.
We have d = 5 = %. For each parameters combination (n,d") thirty graphs
have been randomly generated and partitioned into trees. Then, for each method,
the number of solved instances and their mean solving time have been recorded.
The time limit has been set to one minute. This enables to get information about
the stability of those algorithms and about the relevance of our measures.

Instances| Decomp. | Original Matrix List
n  d+|time solved|time solved |time solved|time solved

5 1.1 80| 0.5 100, O 100 O 100
50 20/ 0.1 100 1.3 100, O 100] O 100

50| 0.1 100{ 1.2 100f O 100f O 100
5| 2.6 60| 4.5 100, 0 100 O 100
20| 3.1 80/11.3 100, O 100/ O 100

150 50| 0.6 87/25.3 100/ 0.1 100| 0.2 100
150| 2.8 100 - 0| 0.3 100] 1.4 100

5 0.1 20{51.6 100| 0.1 100f O 100

300 20| 0.4 47 - 0| 0.2 100] 0.3 100
50| 1.7 53 - 0| 0.5 100 1 100
300(17.7 7 - 0| 2.4 100 30 100

Table 1. Stability and performance study

Table 1 highlights that all approaches with a complete pruning are stable
whereas the decomposition is unreliable. The computation time (column time)
is provided in seconds, while the solved column denotes the percentage of solved
instances. The decomposition is the worst choice for sparse graphs whereas it is
better than the original tree constraint for dense graphs. This is due to the fact
that the decomposition pruning is faster and that the denser the input graph,
the higher the chance of any given arc to belong to at least one solution.



o — 60 e
ngl{\alt’ee) - ! !
L matrix) -r—— | L ! [
>0 new tree (lists) -i--+-- >0 i
40t A 4ot [
o [ o /
g 30 / . g 30f I
T ot . T o0t [
10 - 10 i
0 " . A 0 - i
10 100 1000 10000 10 100 1000
Number of nodes Number of nodes
(a) Sparse graphs (dt = 5) (b) Complete graphs (d+ = n)

Fig. 3. Scalability and data structure

Figure 3 shows that the new tree constraint clearly outperforms the previous
version by an important scaling factor. It can solve problems with up to 750
vertices when the graph is complete and up to 4500 vertices when the graph is
sparse. Those results confirm the complexity of O(nm) in theory (Proposition 8)
and O(nma(n, m)) in practice (Section 4.3). Moreover they highlight the impact
of the chosen data structure according to the input graph density. We observed
a critical density d. = ?;—5: when d < d. a list representation should be preferred
whereas a matrix representation should be more relevant for denser graphs.

The last experiments we provide concerns scalability. For this purpose, the
time limit is increased from one minute to two minutes and we observe the size of
the graphs which can be treated within this time. In the case of sparse digraphs,
a list representation in our algorithm improves the size of the largest treated
digraph by 31% (up to 5900 nodes), while the original approach only allows to
handle digraphs about 17% bigger (about 350 nodes). In the case of complete
digraphs, a matrix representation in our algorithm improves the results by 20%

(up to 900 nodes), while the original approach reaches 28% (about 160 nodes).

6 Conclusion

In this paper we have presented a non incremental linear time filtering algorithm
that ensures generalized arc consistency for the tree constraint. Its correctness
and worst case time complexity have been demonstrated and enforced by an
experimental study. Even with an implementation in O(ma(n, m)) of the filtering
phase (due to the Lengauer-Tarjan algorithm) the constraint gains a mean scale
factor of approximately ten. Moreover, two different types of data structures
have been tested: matrix and adjacency lists. We experimentally showed that
the lists representation clearly outperforms the matrix representation for sparse
graphs and that this trend reverses when the input graph density grows enough.
All those results are encouraging for further works as path partitioning. Also, we
might work on incremental algorithms, however the dominance property seems
too global to let us hope in significant improvements.



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global Constraint Catalog;:
Past, Present and Future. Constraints, 12(1):21-62, 2007.

N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In CPAIOR’05,
volume 3524 of LNCS, pages 64-78, 2005.

A.L. Buchsbaum, H. Kaplan, A. Rogers, and J.R. Westbrook. A new, simpler
linear-time dominators algorithm. ACM Transactions on Programming Languages
and Systems, 20:1265-1296, 1998.

G. Dooms, Y. Deville, and P. Dupont. CP(graph): Introducing a graph computa-
tion domain in constraint programming. In CP’05, volume 3709 of LNCS, pages
211-225, 2005.

G. F. Italiano, L. Laura, and F. Santaroni. Finding Strong Bridges and Strong
Articulation Points in Linear Time. In COCOA 10, volume 6508 of LNCS, 2010.

T. Lengauer and R.E. Tarjan. A fast algorithm for finding dominators in a flow-
graph. TOPLAS, 1(1), 1979.

J. Menana and S. Demassey. Sequencing and counting with the multicost-regular
constraint. In CPAIOR’09, volume 5547 of LNCS, pages 178-192, 2009.

G. Pesant. A regular language membership constraint for finite sequences of vari-
ables. In CP’04, volume 3258 of LNCS, pages 482-495, 2004.

. G. Pesant. A regular language membership constraint for finite sequences of vari-

ables. In CP’04, volume 3258 of LNCS, pages 482—-495, 2004.

L. Quesada. Solving constrained graph problems using reachability constraints based
on transitive closure and dominators. PhD thesis, Université Catholique de Lou-
vain, 2006.

L. Quesada, P. van Roy, Y. Deville, and R. Collet. Using dominators for solving
constrained path problems. In PADL’06, volume 3819 of LNCS, pages 73-87, 2006.
J-C. Régin. A filtering algorithm for constraints of difference in CSP. In AAAI’94,
pages 362-367, 1994.

J-C. Régin. Generalized arc consistency for global cardinality constraint. In
AAAI’96, pages 209-215, 1996.

J-C. Régin. Simpler and incremental consistency checking and arc consistency
filtering algorithm for the weighted tree constraint. In CPAIOR’08, volume 5015
of LNCS, pages 233-247, 2008.

P.W. Lauridsen S. Alstrup, D. Harel and M. Thorup. Dominators in linear time.
SIAM J. Comput., 28(6):2117-2132, 1999.

M. Sellmann. Cost-based filtering for shortest path constraints. In CP’03, volume
2833 of LNCS, pages 694-708, 2003.

S. Sorlin and C. Solnon. A global constraint for graph isomorphism problems. In
CPAIOR’04, volume 3011 of LNCS, pages 287-301, 2004.

R.E. Tarjan. Depth-first search and linear graph algorithms. In SIAM J. Comput.,
volume 1, pages 146—-160, 1972.

S. Zampelli, Y. Devilles, C. Solnon, S. Sorlin, and P. Dupont. Filtering for subgraph
isomorphism. In CP’07, volume 4741, pages 728-742, 2007.



