
Criojo: A Pivot Language for Service-Oriented

Computing - The Introspective Chemical Abstract

Machine

Hervé Grall, Mayleen Lacouture

To cite this version:

Hervé Grall, Mayleen Lacouture. Criojo: A Pivot Language for Service-Oriented Computing -
The Introspective Chemical Abstract Machine. 2012. <hal-00676083v2>

HAL Id: hal-00676083

https://hal.archives-ouvertes.fr/hal-00676083v2

Submitted on 7 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50616604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00676083v2

Criojo: A Pivot Language for Service-Oriented
Computing

The Introspective Chemical Abstract Machine

Hervé Grall and Mayleen Lacouture

ASCOLA Research Team (Mines de Nantes–INRIA, LINA), France

Table of Contents

Criojo: A Pivot Language for Service-Oriented Computing 1
Hervé Grall and Mayleen Lacouture

1 Introduction . 3
2 Specification of the Pivot Language . 5
3 The Introspective Chemical Abstract Machine and its Language 7

3.1 Syntax and Semantics . 8
3.2 Introspection with Pure Criojo . 10
3.3 Other Examples: Equality and Substitution 13
3.4 Bisimilarity . 15

4 Translation of Four Idiomatic Languages . 20
4.1 Dijkstra’s Language of Guarded Commands 20
4.2 A Logic Language: Datalog with negation . 24

The alternating fixed point construction . 25
Implementation in Pure Criojo . 27

4.3 A Functional Language: Gödel’s System T . 30
4.4 A Concurrent Language: The π-Calculus . 35

5 Summary – Related Work – Perspectives . 38

Criojo: A Pivot Language for Service-Oriented Computing 3

Abstract. Interoperability remains a significant challenge in service-
oriented computing. After proposing a pivot architecture to solve three
interoperability problems, namely adaptation, integration and coordina-
tion problems between clients and servers, we explore the theoretical
foundations for this architecture. A pivot architecture requires a uni-
versal language for orchestrating services and a universal language for
interfacing resources. Since there is no evidence today that Web Ser-
vices technologies can provide this basis, we propose a new language
called Criojo and essentially show that it can be considered as a pivot
language. We formalize the language Criojo and its operational seman-
tics, by resorting to a chemical abstract machine, and give an account
of formal translations into Criojo: in a distributed context, we deal with
idiomatic languages for four major programming paradigms: imperative
programming, logic programming, functional programming and concur-
rent programming.

1 Introduction

Assume you want to automatize the management of your photos, by using Web
photos management systems, like Picasa and Flickr. You may quickly face in-
teroperability problems, namely adaptation, integration and coordination prob-
lems. Indeed, Picasa and Flickr are based over distinct interfaces, not only from
a functional point of view, with distinct resource models, differently organizing
photos, but also from a communicational one, since Flickr provides both Restful
and WS* services, the mainstream technologies for Web services, while Picasa
only provides Restful services. Therefore, an adaptation is needed when a client
application that orchestrates Picasa services must evolve to orchestrate Flickr
services, or conversely; or even when it must evolve from a Restful interface to
a WS* interface, in the case of Flickr. An integration is needed when the client
application must orchestrate both Picasa and Flickr services. A coordination is
needed when two scripts, possibly written in distinct languages, must cooperate
to orchestrate services provided by one system.

The Flickr vs Picasa scenario is summarized in Fig. 1. In the center, the
Restful and WS* interfaces, provided by Flickr and Picasa, manage the resources
(photos) on the right side. On the left side, you have some of the possible or-
chestration languages used to communicate with the interfaces. At first glance
is clear the combinatorial explosion for communications from multiple languages
to multiple interfaces.

In this paper, after proposing a pivot architecture to solve these problems,
we explore the theoretical foundations for this architecture. A pivot architecture
essentially requires a pivot language, which is universal both for orchestrating
services and for interfacing resources. Since there is no evidence today that WS*
or Restful technologies can provide the basis for a pivot architecture, we propose
a new language called Criojo as a pivot language. Our contributions are as
follows.

4 Grall–Lacouture

Orchestration

Languages

Resource

Interfaces Resources

REST

REST

WS*

Java

BPEL

YQL

(SQL)

XQuery

Fig. 1. Problem Communication from Multiple Languages to Multiple Interfaces

– We recall how a pivot architecture solves the problems of adaptation, in-
tegration and coordination. The solution requires three specific abilities for the
associated pivot language:

• Defining wrappers for resources,
• Translating any orchestration language,
• Encoding the Adapter, Mediator and Facade patterns [15, pp. 139, 273, 185],

used to adapt, integrate and coordinate.

We deduce from these requirements a specification of the pivot language, in the
context of service-oriented computing.

– We formalize the language Criojo and its operational semantics, by resort-
ing to a distributed chemical abstract machine. A program in Criojo actually
corresponds to (i) the description of the collaboration between agents and (ii) the
syntactic description of the reduction rules specific to the chemical abstract ma-
chine associated to each agent. Agents float in a chemical soup, which represents
the pervasive infrastructure of a network (like Internet) where agents produce
and consume messages. An agent acts as a server interfacing resources or as an
orchestrator. It can be a black box, implemented in impure Criojo, which means
that another language is also used, or an autonomous process executing a pro-
gram written in pure Criojo. Thus, Criojo exists in two distinct flavors, pure and
impure. To fulfill the first requirement, we simply define a wrapper of a resource
as a black box server written in impure Criojo: therefore the language Criojo
can provide in its impure flavor a universal language for interfacing resources.

– We give an account of the formal translation of four idiomatic languages
into pure Criojo while considering a distributed context:

• Imperative Programming: a variant of Dijkstra’s language of guarded com-
mands,

• Logic Programming: Datalog with negation,
• Functional Programming: λ-calculus with inductive types and fixed point

operator (Gödel’s System T),
• Concurrent Programming: π-calculus.

These translations aim at substantiating the argument that the language Criojo
can be the target language for compiling from any orchestration language, as-
sumed to be represented by the four idiomatic languages (second requirement)

Criojo: A Pivot Language for Service-Oriented Computing 5

and allows adapters, mediators and facades to be encoded (third requirement).
Thus the language Criojo can provide in its pure form a universal language for
orchestrating services. This ability results from a powerful extension of standard
chemical abstract machines: a program in pure Criojo can introspect the local
chemical solution. Chemical abstract machines become introspective.
From a theoretical perspective, the language Criojo can therefore be seen as an
attempt to combine different computational paradigms, such as imperative, logic
(for queries), functional and concurrent programming in a clean, uniform, and
effective way. From a practical perspective, an alternative to our proposal of a
new language could be chosen: just select an existing language enough expressive
and experiment it as a pivot language. But in our opinion this approach would
have two drawbacks. First, showing the practicability of the solution in concrete
cases would probably require an excessive implementation effort. Second, the
experimentation would not emphasize the concepts that are essential for design-
ing a pivot language. Thus our proposal follows a more economical and more
foundational approach.

2 Specification of the Pivot Language

As seen in the example of Picasa and Flickr, the absence of a unified model
for service-oriented computing leads to interoperability issues, namely adapta-
tion, integration and coordination problems. To solve these problems, we have
proposed a pivot architecture [24], as shown in Fig. 2. On the left side of the dia-
gram, scripts written in existing orchestration languages, like BPEL or Java, are
compiled into the pivot language, here Criojo. On the right side of the diagram,
wrappers implemented in impure Criojo allow the interaction of the compiled
scripts with the Restful and WS* interfaces proposed by Picasa and Flickr. In
the middle of the diagram, we use design patterns to solve the adaptation, in-
tegration and coordination problems. The adaptation problem is solved with
the Adapter pattern: an adapter built between the client and the new service
provider allows to switch from one service provider to another without modifying
the client. The integration problem is solved with the Facade pattern: an inter-
mediate component built between the client and the two service providers offers
a common representation for the two resource models. Finally, the coordination
problem is solved with the Mediator pattern: a mediator component allows the
coordination of two or more scripts by combining their results.

However, the solution relies on three assumptions for the pivot language
Criojo: (i) that any orchestration language can be compiled into Criojo, (ii) that
Criojo can interact with different resource interfaces, and (iii) that the design
patterns used to solve interoperability issues can be encoded in Criojo. We turn
these assumptions into three requirements for the pivot language.

Universality for Compiling In order to compile scripts written in differ-
ent orchestration languages into Criojo, we need a multi-paradigm language.
Concretely, the pivot language must support compilation from imperative lan-
guages like Java, functional languages like XQuery, concurrent languages like

6 Grall–Lacouture

Orchestration

Languages

Resource

Interfaces Resources

REST

REST

WS*

Java

BPEL

YQL

(SQL)

XQuery

CRIOJO

Wrappers +

Compile

Execute

Fig. 2. The Pivot Architecture

BPEL, and logic languages like YQL or SQL, following an approximate classifi-
cation since each language also presents features from other paradigms.

Universality for Interfacing Service interfaces differ not only from a func-
tional point of view, but also from a communicational one. A universal language
for representing resources is therefore required, as well as a middleware layer.

Expressivity The pivot language must be enough expressive to allow the
different design patterns to be encoded. However, as we consider that this last
requirement derives from the first one, we do not deal with it in the following.
The interested reader can find examples with an earlier version of Criojo in a
preceding article [24, Sect. 5].

Finally, we also add requirements specific to the context of service-oriented
computing. As exemplified by mainstream technologies for Web services, service-
oriented computing is an efficient solution to organise the exchange of messages
in a network-based architecture, by making agents provide services. These agents
are used not only to manipulate local resources, in response to requests, but also
to remotely call other services, following a specific orchestration. Thus, each
agent can play two roles, a server, as in the first case, and an orchestrator, which
is also a client of other services, and often implements a business process, as
in the second case. We have identified four requirements resulting from service
orientation: message passing, channel mobility, scope management and Black
Box principle.

Message Passing Traditionally, distributed systems are represented as sets
of autonomous agents that execute concurrently and interact with each other.
There are two classes of models [25]: message-passing models and the other ones,
including models based on shared memory and on synchronous communication
between sequential processes. Clearly, service-oriented computing, where agents
communicate with each other by exchanging messages [22], requires to choose a
message-passing model for the pivot language.

Channel Mobility Dynamic binding is necessary for service discovery and
dynamic routing. Indeed, during an execution, the network topology often needs
to evolve: an agent needs to discover another agent that it does not know initially.
The π-calculus provides an elegant solution to the problem of dynamic binding,
by allowing the mobility of communication channels: messages convey not only

Criojo: A Pivot Language for Service-Oriented Computing 7

values but also channels [32, p. 1]. Thus, we require channel mobility for the
pivot language.

Scope Management The collaborations between agents are often orga-
nized around sessions. A session is identified by a token, with a particular scope:
the token is generated when the session starts, and then shared between the
agents participating to the session. Scope management is therefore required in
the pivot language.

Black Box Principle To promote interoperability, service-oriented com-
puting adheres to the Black Box principle: agents hide the implementation de-
tails of the services that they provide and use the services that they require
only through their interfaces. Thus, the pivot language must allow an agent
implementation to be abstracted away.

3 The Introspective Chemical Abstract Machine and its
Language

In the section, we describe the syntax and the semantics of the pivot language
Criojo. It can be described as the language associated to a chemical abstract
machine dedicated to service-oriented computing. Finally, we define a notion of
program equivalence, based on weak bisimulations.

Before the formalization, we start by a small example with a client and a
server. The server provides a channel ping while the client provides a channel
pong to get the response. The server also manages a local counter: when it
receives a request over channel ping, it sends the current value of the counter to
the client and increments the counter. The whole collaboration can be described
as follows.

Client. (Begin) ‖ Server. (Counter(0))

The initial state of the client contains a unique internal message, Begin, whereas
the initial state of the server contains a unique message Counter(0), giving the
initial value 0 of the counter. The behavior of the client is described by the
following rules.

Begin→ ping(pong), End pong(n)→ Print(n)

It first sends the request to the server, then waits for the response, and finally
prints the value received. The behavior of the server is described as follows.

Counter(n), ping(k)→ Counter(n+ 1), k(n)

The server indefinitely replies to requests by sending the value of the counter
and incrementing its value. This simple example highlights some essential con-
cepts: (i) a program in Criojo describes a collaboration and the behaviors of
the agents involved in the collaboration.; (ii) there are two kinds of messages,
internal ones like Print(n) and external ones like pong(n); (iii) channels are also
values, like pong; (iv) a name server, like a counter, allows names to be locally
managed.

8 Grall–Lacouture

3.1 Syntax and Semantics

The starting point for the formal definition of the pivot language Criojo is Berry
and Boudol’s chemical model [2], based on a chemical abstract machine (or
cham). Thanks to the associativity and commutativity properties of multisets,
their chemical model has been immediately acknowledged as an elegant formal-
ism for concurrency, as shown for instance by Milner, who gave a new way of
formulating the π-calculus [28]. The model is also well suited to distribution, and
especially message-passing models. Indeed, chemical solutions can be organized
in a hierarchy. Thus, any solution can contain cells, defined as membranes en-
capsulating sub-solutions, and which can be distributed. Cells evolve in a (truly)
concurrent way: indeed chemical reactions, which are always local to a solution,
can be performed in parallel, provided that they involve disjoint sets of molecules
or cells. The communication between chemical solutions is also local: to migrate,
a molecule need to move from a sub-solution to the airlock of the membrane,
and then after reaction to the outer solution, or in the reverse direction.

After this general description, we now define the cham dedicated to service-
oriented computing.

The molecules of the cham are messages, corresponding to requests and re-
sponses. A message is a value, defined as a term over some algebraic signature,
and conveyed by a channel. To ensure channel mobility, channels belong to the
signature as constants, and can therefore be considered as terms.

Messages: k(v) k ∈ K (Set of Channels), v ∈ V (Set of Values),K ⊆ V

In the following, the algebraic signature is left implicit. It is often tacitly
assumed to contain tuple constructors, which are often omitted. For instance,
we write k(v1, . . . , vn) instead of k(cn(v1, . . . , vn)), where cn is the constructor of
n-tuple. The cells of the cham are agents. Each agent a provides some channels,
which together form the set K(a). It consumes incoming messages, produces
outgoing messages and updates its state.

A program in Criojo first defines a collaboration between agents, as defined
as follows.

Collaboration c ::= a. σ Agent a with State σ

| c ‖ c Collaborations in Parallel

Agent a ∈ A Set of Agents

State σ ∈ Σ Set of States

We assume that the agent identifiers are pairwise distinct and that the sets K(a)
of provided channels are pairwise disjoint. The collaboration is then deployed in
the top-level chemical solution, called the web. Finally, the cham makes the web
evolve, by performing chemical reactions. The web is defined as a multiset, as

Criojo: A Pivot Language for Service-Oriented Computing 9

follows.

Web Ω ::= 〈−→ω 〉 Multiset of Web Entities ω

Entity ω ::= c Collaboration to be Deployed

| a[Λ] Agent a with Local Solution Λ

| a. α[Λ] Agent a with Local Solution Λ and Airlock α

| k(v) Message in Transit

Local Solution Λ ::= 〈σ 〉] 〈
−−→
k(v) 〉 State and Multiset of Messages

Airlock α ::= σ | k(v) State or Message

It contains collaborations to be deployed, active agents, each one with a state,
a local solution, defined as a multiset of messages, and possibly an airlock con-
taining the initial state or a migrating message. The semantics of the cham is
operational, defining a reduction relation. The generic reduction rules are de-
scribed in Table 1. First, there are two kinds of inference rules, [chemical] and
[membrane], which are laws, that is to say rules common to all chams: they al-
low reductions to locally occur in any solution. Second, there are specifics rules,
for deployment and for communication, as well as the associated law [reaction],
allowing the specific rules (which are rule schemata) to be instantiated. The de-

[chemical]
Ω1→Ω2

Ω1]Ω→Ω2]Ω

a ` Λ1→Λ2

(Λ = 〈
−−→
k(v) 〉)

a ` Λ1]Λ→Λ2]Λ

[membrane]
a ` Λ1→Λ2

〈 a[Λ1] 〉→ 〈 a[Λ2] 〉

a ` Λ1→Λ2

〈 a. α[Λ1] 〉→ 〈 a. α[Λ2] 〉

[deployment] c1 ‖ c2→ c1, c2 a. σ→ a. σ[〈 〉]

[in] k(v), a[Λ]→ a. k(v)[Λ]
(
k ∈ K(a)

)
[in-airlock] a. k(v)[Λ]→ a[〈 k(v) 〉]Λ]

(
k ∈ K(a)

)
[out-airlock] a[〈 k(v) 〉]Λ]→ a. k(v)[Λ]

(
k /∈ K(a)

)
[out] a. k(v)[Λ]→ k(v), a[Λ]

(
k /∈ K(a)

)
[reaction]

−→ω1→−→ω2 (
θ : X → V valuation

)
〈
−−−→
ω1[θ] 〉→ 〈

−−−→
ω2[θ] 〉

Table 1. Chemical Abstract Machine – Generic Reduction Rules

ployment rules allow a collaboration to be decomposed until the agents stand

10 Grall–Lacouture

[init]impure a. σ[〈 〉]→ a[〈σ 〉]

[local]impure a ` σ1,
−−−−→
k1(v1)→σ2,

−−−−→
k2(v2)

[reaction]impure

a `
−→
λ1→

−→
λ2

(θ : X → V valuation)
a ` 〈

−→
λ1[θ] 〉→ 〈

−→
λ2[θ] 〉

Table 2. Impure Criojo – Reduction Rules

in the web and become active with the creation of an empty local solution. The
two communication rules [in] allow a message k(v) in transit to come through
the airlock into the local solution associated to the agent providing the channel
k. Symmetrically, the two communication rules [out] allow a message k(v) in
the local solution to go through the airlock into the web.

Besides the preceding rules, which are generic, there are rules specific to
agents. Indeed, a program in Criojo defines not only a collaboration but also
the behavior of the agents involved in the collaboration. In impure Criojo, the
behavior of an agent is described by any finite presentation of a possibly infinite
set of instances of the generic rule [local]impure: see Table 2. These reduction
rules can perform after the local solution has been initialized with the initial
local state, as described by the rule [init]impure. Associated to the specific rules,
there is the law [reaction]impure, allowing an instantiation: the free variables,
which occur in the left hand side containing the premises are instantiated and
then substituted in the right hand side containing the conclusions. Thus, impure
Criojo is a language for wrappers: it allows an integration into a Criojo col-
laboration, by abstracting away from concrete devices for generating the rules
specific to agents. We will see in the next section different examples. We now
present pure Criojo: contrary to impure Criojo, it allows specific rules to be
directly defined.

3.2 Introspection with Pure Criojo

A program in impure Criojo is not effective, in that it assumes some external
device to generate a possibly infinite set of rules. In pure Criojo, the program is
effective: there is a finite set of rules, which are given extensionally, so that no
external device is needed. The machine is purely chemical.

Concretely, in pure Criojo, the state of an agent has a concrete representation,
as an aggregate of internal messages. An internal message is an atom, a predicate
applied to a value.

Internal Messages: R(v) R ∈ P (Set of Predicates), v ∈ V (Set of Values)
State: σ ::= ∅ | R(v) &σ

Internal messages look like external ones. However, there is a difference be-
tween predicates and channels: contrary to channels, predicates are not terms

Criojo: A Pivot Language for Service-Oriented Computing 11

and therefore cannot occur in a value. In the following, we will follow a nam-
ing convention: channels will have a name with the first letter lowercase while
predicates will have a name with the first letter capitalized. With the formal
homogeneity between the internal messages defining the local state and the ex-
ternal messages, the local solution can become a multiset of messages, which is
performed by the following initialization rule.

[init]pure a. (R(u) &σ)[Λ]→ a. σ[〈R(u) 〉]Λ] a. ∅[Λ]→ a[Λ]

Pure Criojo is defined as a language that allows syntactically describing the re-
ductions of a local solution, defined as a multiset of messages, and semantically
defining all the possible transformations of a local solution. This universality
property requires an extension of standard chams. Indeed we now show a com-
putability limitation for standard chams, where all reactions are assumed to be
local with respect to an agent a, that is to say to conform to the following rules.

a `
−→
λ1→

−→
λ2

a `
−→
λ1→

−→
λ2

a ` 〈
−−→
λ1[θ] 〉→ 〈

−−→
λ2[θ] 〉

a ` Λ1→Λ2

a ` Λ1]Λ→Λ2]Λ

The first rule expresses the local reduction of some messages (internal and
external), and is a schema for the rules specific to the local cham associated to
the agent. The first inference rule, an instance of the law [reaction], allows the
instantiation of the specific rules. The second inference rule, an instance of the
law [chemical], allows the reduction to occur in any local solution. To express
the computability limitation for standard chams, we need some terminology.
Without loss of generality, we only consider internal messages. Predicates are
arbitrarily split into two classes, the class of public predicates and the class of
private ones. A transformation is a binary relation over multisets of messages,
defined over public predicates. A transformation T is computable by a standard

cham if there are (i) a finite set of local rules (a `
−→
λ1→

−→
λ2) and (ii) a multiset

Λi of initial messages defined over private predicates such that for all multiset
Λin in the input domain of the transformation T , we have: (i) for all multiset
Λout associated to Λin by T , there exists an execution starting from the solution
Λi]Λin and terminating with the solution Λf]Λout, where Λf is some multiset
of final messages defined over private predicates, and (ii) all execution starting
from the solution Λi]Λin terminates, with a final solution Λf]Λout, where Λf

is some multiset of final messages defined over private predicates, and where
(Λin, Λout) belongs to T . We can now formally specify the following limitation:
a standard cham cannot compute a cloning transformation.

Proposition 1 (Clone Problem). Given a public predicate R with arity zero,
the transformation T equal to (〈Rn 〉, 〈R2n 〉)n∈N cannot be computed by a stan-
dard cham (Rp means p occurrences of R).

Proof. Suppose for a contradiction that there exists a standard cham comput-
ing transformation T . Let n be a natural number. There exists an execution
starting from Λi] 〈Rn 〉 and terminating with Λf] 〈R2n 〉 Then by applying the
chemical law, we deduce an execution starting from Λi] 〈Rn+1 〉 and reaching

12 Grall–Lacouture

Λf] 〈R2n+1 〉. The last solution cannot be final. Hence there exists a rule that
can be fired. If the rule consumes less than 2n+ 1 messages R, then Λf] 〈R2n 〉
cannot be a final solution, contradiction. Therefore, for each n, there exists a
rule that consumes 2n + 1 messages R. This is a contradiction, since the cham
has a finite set of rules. ut

To tackle this limitation, we extend the cham with introspection capacities. Thus,
in pure Criojo, the behavior of an agent is described by a finite set of guarded
rules a `

−→
λ1→ g ?

−→
λ2. Such a rule is fired only when the guard condition g is

satisfied in the local solution formed with the internal messages, then consuming
the premises

−→
λ1 and producing the conclusions

−→
λ2. External messages, which can

freely come in or go out, are not considered in a guard to avoid race conditions.
How to express guards? As we will see in the solution of the clone problem
as well as in the following section, introspection is powerful when it allows to
determine whether some rules are blocked. Hence guards are expressed in first-
order logic, since a rule a `

−→
λ1→ g ?

−→
λ2 is blocked when the local solution satisfies

¬(∃−→x . 〈
−→
λ1 〉 ∧ g), where −→x denotes the free variables in

−→
λ1 and 〈

−→
λ1 〉means that

this multiset is included in the local solution.

Guard g ::= 〈
−−−→
R(u) 〉 Presence of Local Messages

| True | False | g ∨ g | g ∧ g | ¬g Propositional Guards

| ∃x . g | ∀x . g First-Order Guards

Semantically, we define the satisfaction judgment Λ �θ g, which means that g[θ]
is satisfied in the solution Λ. The satisfaction relation is defined as usual, follow-
ing Tarski’s interpretation over the set V of values, with one notable exception
for atomic formulas.

Λ �θ 〈
−−−→
R(u) 〉 def⇔ 〈

−−−→
R(u)[θ] 〉vΛ

Λ �θ True
def⇔ True

Λ �θ g1 ∨ g2
def⇔ Λ �θ g1 ∨ Λ �θ g2

Λ �θ ¬g
def⇔ ¬(Λ �θ g)

Λ �θ ∃x . g
def⇔ ∃ v ∈ V . Λ �θ⊕(v/x) g

The satisfaction relation is decidable, in time polynomial in the size of the
solution Λ, as shown by Dantsin and Voronkov [8]. Finally, the cham for pure
Criojo is defined as follows.

[local]pure a `
−−−−→
R1(u1),

−−−−→
k1(v1)→ g ?

−−−−→
R2(u2),

−−−−→
k2(v2)

[introspection]pure
a `
−→
λ1→ g ?

−→
λ2 〈

−−−−→
R1(u1)[θ] 〉]Λ �θ g

−→
λ1 =

−−−−→
R1(u1),

−−−−→
k1(v1)

−→
λ2 =

−−−−→
R2(u2),

−−−−→
k2(v2)

Λ = 〈
−−−→
R(u) 〉

θ : X → V valuation

a ` 〈
−→
λ1[θ] 〉]Λ→〈

−→
λ2[θ] 〉]Λ

The introspection rule combines the reaction rule expressing instantiation and
the chemical rule expressing locality while adding the satisfaction of the guard.
Note also that a guarded rule a `

−→
λ1→ True ?

−→
λ2 is equivalent to the standard

rule a `
−→
λ1→

−→
λ2, so that we will often omit the guard True. With introspection,

we can now solve the clone problem.

Criojo: A Pivot Language for Service-Oriented Computing 13

Proposition 2 (Clone Problem Revisited). Given a public predicate R with
arity zero, the transformation T equal to (〈Rn 〉, 〈R2n 〉)n∈N can be computed by
an introspective cham.

Proof. Consider the following program in pure Criojo.

One, R→ One, S, S One→¬〈R 〉 ? Two Two, S→ Two, R Two→¬〈S 〉 ? Three

Then its execution starting from the local solution 〈 One, Rn 〉 terminates with
the solution 〈 Three, R2n 〉, for any n. ut

3.3 Other Examples: Equality and Substitution

The translations into pure Criojo described in the next section require realizing
some substitutions. It turns out that realizing a substitution also requires testing
equality (between variables). We now give two programs written in pure Criojo
to test term equality and to implement substitutions respectively. They are mod-
ular, since they are associated to two agents, EQ, a generic agent for equality and
SUBp, an agent for substitutions depending on an underlying nominal algebra,
an algebra with binders.

Here is the program to test equality. It is generic, being independent from
the signature for terms, thanks to introspection and instantiation.

EQ ` isEqual(v, u, k+, k−), Session(n) → RepEq(n, k+, k−), Eq(n, v, u),
Session(succ(n))

EQ ` Eq(n, v, u), RepEq(n, k+, k−) → ¬〈 Eq(n, v, v) 〉 ? k−(v, u)

EQ ` Eq(n, v, v), RepEq(n, k+, k−) → k+(v)

To test the equality between v and u, a client sends the request isEqual(v, u, k+, k−):
channel isEqual is provided by agent EQ, and channels k+ and k−, provided by
the client, are response channels used for positive tests and negative tests respec-
tively. When the agent EQ receives a request, first it gets a new session identifier
from the name server: thus the agent EQ can organize the responses to requests in
parallel, each response being identified by the session identifier. The name server
is implemented with the predicate Session, the constant 0 used to initialize the
state with Session(0) and the successor function succ used to increment the
identifier n. Second the agent EQ generates two internal messages depending on
the session identifier, one for the pending request, the other for testing equality.
If the values v and u are distinct, the second rule is executed, which sends the
negative response over k−. Otherwise, the last rule is executed, which sends the
positive response over k+.

For substitutions, we do not consider universal algebras but nominal alge-
bras [36], which are universal algebras with a built-in support for names and
binding. This generalization is not only useful since the λ-calculus and the π-
calculus, translated into Criojo, have binders, but also quite simple, since we
only substitute closed terms to variables. Given a nominal algebra, we can de-
fine an agent SUBp computing substitutions over the algebra. The agent provides

14 Grall–Lacouture

a channel doSub, manipulated following a request-response protocol, as already
seen for equality.

SUBp ` doSub(t, v, a, k), Session(n) → RepSub(n, k), Sub(n, t, v, a), Session(succ(n))

SUBp ` RepSub(n, k), ResSub(n, t) → k(t)

When the agent receives the message doSub(t, v, a, k), it computes the sub-
stitution t[v/a], from Sub(n, t, v, a) to ResSub(n, t′), and finally sends the result
t′ over k. A variant allows the client to send not only the channel but also a
session identifier s used by the client to correlate the response with the calling
computation. Thus, the response would become k(s, v) instead of k(v), the iden-
tifier s allowing correlation on the client side. We now detail the computation of
substitutions in a nominal algebra.

A nominal signature has two basic sorts, ν for atoms (representing bound
variables) and δ for data, and a set of functions f , each of which has an arity of
the form τ → δ. The left sort τ ranges over the sorts generated by the following
grammar.

Sort τ ::= 1 | ν | δ | τ × τ | [ν]τ

A sort is either the singleton 1, used to represent the absence of arguments,
the basic sorts ν and δ, used to represent a unique argument, an atom or a
data, the Cartesian product τ × τ , used to represent multiple arguments, and
the non-standard sort [ν]τ , used to represent an argument that is an abstraction
binding atoms. The corresponding terms are defined as follows.

Term t ::= () | a | f t | (t, t) | a.t

The term a.t, with sort [ν]τ , binds atom a in t. For instance, the λ-calculus
can be described with the following signature.

var : ν → δ
app : δ × δ → δ

lambda : [ν]δ → δ

We now recursively define the computations for substituting atom a with v
in a term. The case for () is trivial.

SUBp ` Sub(n, (), v, a) → ResSub(n, ())

For an atom b, we need to test equality, which is performed by calling agent
EQ.

SUBp ` Sub(n, b, v, a) → isEqual(b, a, equal+, equal−), WSub(n, b, v, a)
SUBp ` equal+(a), WSub(n, a, v, a) → ResSub(n, v)
SUBp ` equal−(b, a), WSub(n, b, v, a) → ResSub(n, b)

We now deal with the recursive cases. There are two phases: a top-down phase
that makes the recursive calls, and a bottom-up phase that synthesize the result.
Here is the top-down phase. First, for a function or a pair, one or two recursive
calls are generated. Each recursive call has an identifier, provided by the name
server RecCall. The internal messages Op(n, f,m) and Pair(n,m, succ(m)) give

Criojo: A Pivot Language for Service-Oriented Computing 15

the links between the different identifiers, assigned to the caller and to the callees,
which later will allow the result to be synthesized.

SUBp ` Sub(n, f t, v, a), RecCall(m) → Sub(m, t, v, a), Op(n, f,m), RecCall(succ(m))

SUBp ` Sub(n, (t1, t2), v, a), RecCall(m) → Sub(m, t1, v, a), Sub(succ(m), t2, v, a),
Pair(n,m, succ(m)), RecCall(succ(succ(m)))

Second, for a binding abstraction, an equality test is also needed: only free
atoms are substituted.

SUBp ` Sub(n, b.t, v, a) → isEqual(b, a, equal+, equal−),
WSub(n, b.t, v, a)

SUBp ` equal+(a), WSub(n, a.t, v, a) → ResSub(n, a.t)
SUBp ` equal−(b, a), WSub(n, b.t, v, a), RecCall(m) → Sub(m, t, v, a), Binder(n, b,m),

RecCall(succ(m))

Now we come to the bottom-up phase: the results are collected at some level and
then synthesized at the upper level, thanks to the internal messages Op(n, f,m),
Pair(n,m1,m2) and Binder(n, a,m), which keep the links between recursive
calls.

SUBp ` Op(n, f,m), ResSub(m, v) → ResSub(n, f v)
SUBp ` Pair(n,m1,m2),

ResSub(m1, v1), ResSub(m2, v2) → ResSub(n, (v1, v2))
SUBp ` Binder(n, a,m), ResSub(m, v) → ResSub(n, a.v)

How can we prove that this implementation is right? We propose a system-
atic method to answer questions like this one, described below for the case of
substitutions. First, derive from the standard definition of substitutions with an
inference system an implementation in impure Criojo, for a new agent SUBi. The
reduction relation is generated by an inference rule that looks like the following
one, giving a benchmark definition.

t[v/a] 7→ t′

SUBi ` Sub(n, t, v, a)→ ResSub(n, t′)

Second, we prove that the pure agent SUBp and the impure agent SUBi are
equivalent. We now formalize this notion of equivalence.

3.4 Bisimilarity

Consider a web Ω and a subset A of its agents. The projection of Ω over A is
the web including in Ω and containing all the entities associated to agents in A:

– active agents a[Λ] or a. α[Λ], with a in A,
– messages k(v) in transit, with k provided by some agent in A.

In the following, a projection over A is also called a collaboration over A, since
it represents the semantic counterpart of a syntactic collaboration. Given a col-
laboration Ω over A, we denote by K(Ω) the set of the channels provided by the
agents in A. We deal with the following question: can we replace a collaboration

16 Grall–Lacouture

with another one observationally equivalent, that is to say such that the envi-
ronment can never observe any difference? Following the Black Box principle,
the environment interacts with a collaboration only by exchanging messages.
First difficulty: when we replace a collaboration by another one providing ex-
tra channels, the environment can trivially observe a difference, the ability to
communicate over the extra channels. Thus, we should restrict ourselves to col-
laborations providing exactly the same set of channels. But it is not a good idea:
it would prevent from decomposing an agent into multiple agents to provide the
same services. Therefore we may need a firewall between a collaboration and its
environment. It is represented as a restriction operator, reminiscent of the lan-
guage CCS: given a collaboration Ω and a subset K of K(Ω), Ω \K represents a
collaboration where the communications with the environment over the channels
in K are forbidden. Second difficulty: the operational semantics, defined by a
reduction relation, does not account for the interactions with an environment.
Thus, to formalize observational equivalence, we turn the reduction relation into
a labeled transition system, following a standard technique [2]. We consider as
actions the silent action, τ , input messages, denoted +k(v), and output mes-
sages, denoted −k(v). For collaborations Ω \K and Ω′ \K, denoting by →∗ the
reflexive and transitive closure of the reduction relation →,

– we write (Ω \K) τ=⇒(Ω′ \K) if Ω→∗Ω′;
– we write (Ω \K)

+k(v)
=⇒ (Ω′ \K) if there exists a collaboration Ω1 and an

active agent a[Λ] such that

Ω→∗Ω1] 〈 a[Λ] 〉, Ω1] 〈 a. k(v)[Λ] 〉→∗Ω′ and k ∈ K(a)−K;

– we write (Ω \K)
−k(v)
=⇒ (Ω′ \K) if there exists a collaboration Ω1 and an

active agent a[Λ] such that

Ω→∗Ω1] 〈 a. k(v)[Λ] 〉, Ω1] 〈 a[Λ] 〉→∗Ω′ and k /∈ K(Ω).

For any labeled transition system, there is a standard notion of bisimulation.

Definition 1 (Simulation – Bisimulation – Bisimilarity). Let R be a rela-
tion over collaborations. R is a simulation if for any ordered pair (Ω1 \K1, Ω2 \
K2) in R, whenever (Ω1 \ K1) X=⇒ (Ω′1 \ K1), there exists Ω′2 such that (Ω2 \
K2) X=⇒ (Ω′2 \ K2) and (Ω′1 \ K1, Ω

′
2 \ K2) ∈ R. R is a bisimulation if R and

R−1 are simulations.
Two collaborations Ω1 \K1 and Ω2 \K2, are bisimilar if there exists a bisim-

ulation containing (Ω1 \K1, Ω2 \K2).

We do not develop further the theory of bisimulation because the previous defini-
tion is enough to state the main properties of the translations in the next section
and to state the equivalence between both versions for substitutions, as shown
below. The development of the theory probably requires extending the gram-
mar for syntactic collaborations with the restriction operator and the chemical
abstract machine with firewalls: we let this extension to a future work.

Criojo: A Pivot Language for Service-Oriented Computing 17

Coming back to substitutions, we can now prove the equivalence between
both definitions, the impure one and the pure one.

We first define the impure version for substitutions. The state of the impure
agent SUBi is represented as an aggregate combining (i) a global counter

Session(n)

for the identifiers of the internal sessions, and (ii) pending requests. A pending
request is a sub-aggregate, either

Sub(n, t, v, a) & RepSub(n, k)

or
ResSub(n, t′) & RepSub(n, k).

It indicates that in the internal session n, the agent either has to evaluate
t[v/a] or has evaluated t[v/a] into t′, and will respond over channel k. The join
operator & is assumed to be associative and commutative, which leads to the
following rules.

σ1 &(σ2 &σ3) ≡ (σ1 &σ2) &σ3

σ1 &σ2 ≡ σ2 &σ1

σ1 ≡ σ′1 SUBi ` σ′1→σ′2 σ′2 ≡ σ2

SUBi ` σ1→σ2

Like SUBp, the impure agent SUBi provides a channel doSub, manipulated
following the same request-response protocol.

SUBi ` doSub(t, v, a, k), σ& Session(n) → RepSub(n, k) & Sub(n, t, v, a) &σ& Session(succ(n))

SUBi ` RepSub(n, k) & ResSub(n, t) &σ → σ, k(t)

The reduction rules SUBi ` Sub(n, t, v, a) &σ→ ResSub(n, t′) &σ are defined
in Table 3 by a syntax-directed inference system, directly adapted from the
standard definition.

We finally show the equivalence between the pure agent SUBp and the impure
one SUBi.

Theorem 1 (Substitutions – Bisimilarity). Let K be the following set of
channels:

{isEqual, equal+, equal−}.

Then the collaborations

〈 SUBi[〈 Session(0) 〉] 〉 \∅

and
〈 SUBp[〈 Session(0), RecCall(0) 〉], EQ[〈 Session(0) 〉] 〉 \K

are bisimilar.

Proof. We sketch the proof.

18 Grall–Lacouture

SUBi ` Sub(n, (), v, a) &σ→ ResSub(n, ()) &σ

SUBi ` Sub(n, b, v, a) &σ→ ResSub(n, v) &σ (b = a)

SUBi ` Sub(n, b, v, a) &σ→ ResSub(n, b) &σ (b 6= a)

SUBi ` Sub(n, t, v, a) &σ→ ResSub(n, t′) &σ

SUBi ` Sub(n, f t, v, a) &σ→ ResSub(n, f t′) &σ

SUBi ` Sub(n, t1, v, a) &σ→ ResSub(n, t′1) &σ SUBi ` Sub(n, t2, v, a) &σ→ ResSub(n, t′2) &σ

SUBi ` Sub(n, (t1, t2), v, a) &σ→ ResSub(n, (t′1, t
′
2)) &σ

SUBi ` Sub(n, t, v, a) &σ→ ResSub(n, t′) &σ
(b 6= a)

SUBi ` Sub(n, b.t, v, a) &σ→ ResSub(n, b.t′) &σ

SUBi ` Sub(n, b.t, v, a) &σ→ ResSub(n, b.t) &σ (b = a)

Table 3. Substitutions in Impure Criojo

We split the relations and channels of SUBi and SUBp into three sets:

H = {doSub (request), k (response)},
I = {Session (for substitutions), RepSub, ResSub},
J = {Sub, WSub, Op, Pair, Binder, RecCall, equal+, equal−, isEqual,

. . . (equality relations)}.

We exhibit a bisimulation R containing both collaborations. Consider collabo-
rations

〈 SUBi[〈A1 &C1 〉]B1] 〉 \∅

and
(〈 SUBp[A2]C2]B2], EQ[D2] 〉]E2) \K

where

– B1 and B2 contain the messages over H,
– A1 and A2 contain the messages over I,
– C1, C2, D2 and E2 contain the messages over J .

They are related by R if the following conditions are satisfied.
(A) There is a biunivocal correspondence between the impure state A1, B1

and the pure state A2, B2, built as follows.

doSub(t, v, a, k) ←→ doSub(t, v, a, k)
k(t) ←→ k(t)

Session(n) ←→ Session(n)
RepSub(n, k) ←→ RepSub(n, k)
ResSub(n, t) ←→ ResSub(n, t)

Criojo: A Pivot Language for Service-Oriented Computing 19

(B) We denote by X the set of session identifiers occurring in C1:

C1 = 〈 Sub(n, tn, vn, an) | n ∈ X 〉

If n ∈ X, whereas there is an internal message Sub(n, tn, vn, an) in the impure
state C1, either there is a corresponding message in the pure state C2, or there
is no corresponding message, the pure agent being computing the substitution
tn[vn/an]. Therefore, we add the following condition: the collaboration

〈 SUBp[C2], EQ[D2] 〉]E2

converges to the following final state 〈 ResSub(n, t′n) | n ∈ X 〉, such that for
any n, we have t′n = tn[vn/an].

Finally, it remains to prove that R is a bisimulation. We need to consider
three cases, corresponding to the silent action, an input message (over channel
doSub) and an output message (over channels k). We deduce the simulation
properties from the following lemmas.

(1) First Lemma – Computational Correction
Assume the collaboration

〈 SUBp[C2], EQ[D2] 〉]E2

converges to the following final state

〈 ResSub(n, t′n) | n ∈ X 〉 .

Then given a fresh identifier m, the collaboration

〈 SUBp[C2] 〈 Sub(m, t, v, a) 〉], EQ[D2] 〉]E2)

converges to the following final state

〈 ResSub(n, t′n) | n ∈ X 〉] 〈 ResSub(m, t′) 〉,

such that t′ = t[v/a]. By induction over term t.
(2) Second Lemma – Operational Simulation

Starting from two collaborations

Λ1
def
= 〈 SUBi[〈A1 &C1 〉]B1] 〉 and Λ2

def
= 〈 SUBp[A2]C2]B2], EQ[D2] 〉]E2

such that (Λ1 \ ∅, Λ2 \K) belongs to R, if Λ1→Λ′1, then there exists Λ′2 such
that Λ2→∗ Λ′2 and (Λ′1 \∅, Λ′2 \K) belongs to R, and conversely if Λ2→Λ′2, then
there exists Λ′1 such that Λ1→∗ Λ′1 and (Λ′1 \ ∅, Λ′2 \K) belongs to R. By a case
analysis over reductions and by using the preceding lemma.

ut

Finally, to conclude the section, we examine to what extent the language
Criojo meets the requirements. Pure Criojo, with its introspective capacities,
is a candidate for a universal language for compiling orchestration languages,
whereas impure Criojo, with its capacities for wrapping, is a candidate for a
universal language for interfacing resources. The next section essentially aims at

20 Grall–Lacouture

arguing these claims. The chemical abstract machine that we have designed
for service-oriented computing is clearly based on a message-passing model:
molecules represent messages and some obvious chemical rules account for mes-
sage communication. Channel mobility is also an important feature of our cham:
it allows complex protocols to be implemented in a simple way, by passing chan-
nels as values. We have not dealt with scope management explicitly: as seen
through the previous examples, it essentially corresponds to a specific discipline
in the management of names like session identifiers by using name servers. The
chemical model, as developed, also adheres to the Black Box principle. The
bisimulation theory that we have sketched formalizes the principle and will lead
to applications in the next section.

4 Translation of Four Idiomatic Languages

We now give the formal translations of the four idiomatic languages that we
have chosen: a variant of Dijkstra’s language of guarded commands, Datalog with
negation, a λ-calculus extended and the π-calculus. Actually, except for Datalog,
where there is a computation but no communication, we proceed as described at
the end of the preceding section: in a distributed context, we give two versions,
the former in impure Criojo, considered as the benchmark definition, the latter in
pure Criojo, and then we prove that they are equivalent by giving a bisimilarity
result.

4.1 Dijkstra’s Language of Guarded Commands

As shown by the solution to the clone problem, sequencing can be managed
by tokens. Instead of this low-level management, we would rather writing the
following program:

do {R(g ?S, S} ; do {S(g ?R}.
The command do, corresponding to a loop, allows the rule to be repeated

until blocking, which entails its termination. Note the new notation for a rule,
reminiscent of Linear Logic: indeed, a rule is now consumed after it has been
fired. Commands can also be sequenced. If we add a blocking alternative, we get
the following variant of Dijkstra’s language of guarded commands.

Script s ::= skip | s ; s | if {c} | do {c}
Guarded Command Set c ::= r . s | c ‖ c
Guard Rule r ::= M(g ?M

Messages M ::=
−−−→
R(u),

−−→
k(v)

Compared with Dijkstra’s language, there are two differences, related: first,
there is no atomic action, except the empty one skip, second, the guard of a
command becomes a one-shot rule, with a side-effect, called a guard rule, thus
compensating the lack of actions. In the following, a guard rule with no message
(∅(g ? ∅) is simply denoted by its guard (g). The empty action is also omitted,
r . skip becoming r.

Criojo: A Pivot Language for Service-Oriented Computing 21

The operational semantics of the language is described in Table 4. It is a
variant of the one given by Plotkin for Dijkstra’s language of guarded com-
mands [30], following the Structural Operational Semantics style. It involves
two relations, the first one to reduce a configuration composed of a script and
a solution, and the second one to select a guarded command. More precisely,
(s, Λ) ⇒ (s′, Λ′) means that the script s with solution Λ reduces to the script
s′ with solution Λ′, while (s, Λ) ⇒ Λ means that the script s cannot reduce in
solution Λ and terminates. Given a set of guarded commands c and a solution
Λ, (c, Λ) 7→ (M,M ′, s) means that a guarded command has been selected in c,
producing two multisets of messages, M to be removed, and M ′ to be added,
and a script s to be executed, while (c, Λ) 7→ ⊥ means that the selection fails.

(skip, Λ)⇒ Λ
(s1, Λ)⇒ (s′1, Λ

′)

(s1 ; s2, Λ)⇒ (s′1 ; s2, Λ
′)

(s1, Λ)⇒ Λ

(s1 ; s2, Λ)⇒ (s2, Λ)

(c, Λ) 7→ (M−,M+, s)

(if {c}, Λ)⇒ (s, Λ] 〈M+ 〉 - 〈M− 〉)

(c, Λ) 7→ (M−,M+, s)

(do {c}, Λ)⇒ (s ; do {c}, Λ] 〈M+ 〉 - 〈M− 〉)

(c, Λ) 7→ ⊥

(do {c}, Λ)⇒ Λ

Λ �θ M ∧ g

((M(g ?M ′) . s, Λ) 7→ (M [θ],M ′[θ], s)

Λ � ¬(∃−→x . M ∧ g)

((M(g ?M ′) . s, Λ) 7→ ⊥

(ci, Λ) 7→ (M,M ′, s)
(i ∈ {1, 2})

(c1 ‖ c2, Λ) 7→ (M,M ′, s)

(c1, Λ) 7→ ⊥ (c2, Λ) 7→ ⊥

(c1 ‖ c2, Λ) 7→ ⊥

Table 4. Guarded Commands – Small-Step Operational Semantics

Thanks to the impure version of Criojo, we can embed Dijkstra’s language
into Criojo in a straightforward way: it suffices to translate the operational
semantics into rules for the cham. The state of an agent GCi that implements
Dijkstra’s language is a pair s&Λ composed of a script s and a multiset of
internal messages Λ. We add an extra state >&Λ to indicate that the script has
terminated its execution because it could not reduce. The rules of the cham are
generated by the following inferences rules.

(s1, Λ1] 〈
−−−−→
k1(v1) 〉)⇒ (s2, Λ2] 〈

−−−−→
k2(v2) 〉)

GCi ` s1 &Λ1,
−−−−→
k1(v1)→ s2 &Λ2,

−−−−→
k2(v2)

(s, Λ] 〈
−−→
k(v) 〉)⇒ Λ] 〈

−−→
k(v) 〉

GCi ` s&Λ→>&Λ

The rules of the agent GCi are generic: they do not depend on the script to be
executed, since the dependence comes from the injection of the script into the
initial state.

22 Grall–Lacouture

Now, we translate into pure Criojo Dijkstra’s language of guarded commands.
The translation of each command depends on two tokens, B for ”Begin” and E
for ”End”, which are used to manage the scheduling of commands.

D(skip)B,E = B→ True ?E
D(s1 ; s2)B,E = ν I.D(s1)B,I ,D(s2)I,E
D(if {c})B,E = D(c)B,E
D(do {c})B,E = D(c)B,B , (B→G(c) ?E)

The empty script converts the begin token into the end token. The sequence
s1 ; s2 requires an intermediate fresh token (cf. ν I.−), which corresponds to the
end of s1 and the beginning of s2. The translation of the alternative and the
loop depends on the translation of the associated set of guarded commands.
Note the differences: for the loop, the translation uses the same token, allowing
a repetition, and adds a rule to quit the loop, when its guard rules cannot be
fired. A guarded command is translated into a rule and the translation of the
continuation script. Their sequencing results from the use of an intermediate
fresh token.

D((M(g ?M ′) . s)B,E = ν I.(M,B→ g ?M ′, I),D(s)I,E
D(c1 ‖ c2)B,E = D(c1)B,E ,D(c2)B,E

Finally, given a set c of guarded commands, the guard G(c) expresses that the
guard rules cannot be fired.

G((M(g ?M ′) . s) = ¬(∃−→x . M ∧ g)
G(c1 ‖ c2) = G(c1) ∧ G(c2)

Note that we need to assume that the premise M only contains internal mes-
sages in order to get a guard defined over internal messages. This assumption
is reasonable because it prevents race conditions from happening: since external
messages can freely come in or go out, the termination of a loop ought not to
depend on external messages.

Conversely, any program R in Criojo can be represented as a script in the
language of guarded commands. First, the rules are translated into guarded
commands. Second, a program is translated into a loop. To avoid the termination
of the loop, the rules translated belong to an alternative, which can block and
wait, and is guarded with True.

ER(M→ g ?M ′) = (M(g ?M ′) . skip
ER(R1, R2) = ER(R1) ‖ ER(R2)

EP(R) = do {True . if {ER(R)}}

The variant EP(R) = do {ER(R)}, simpler, does not work: indeed, in a situation
where no rule could be selected, the program would terminate.

We now study the equivalence between the scripts in Dijkstra’s language and
the programs in Criojo, for both translations. First, we deal with the translation
into pure Criojo.

Theorem 2 (Guarded Commands to Pure Criojo – Bisimilarity). Let s0
be a script in Dijkstra’s language of guarded commands, and let D(s0)B,E be its
translation, for distinct tokens B and E. Consider the generic impure agent GCi

Criojo: A Pivot Language for Service-Oriented Computing 23

implementing Dijkstra’s language and the pure agent GCp with rules D(s0)B,E.
Then for any multiset Λin of internal messages and any multiset Λex of external
messages, the collaborations

〈 GCi[〈 s0 &Λin 〉]Λex] 〉

and
〈 GCp[〈B 〉]Λin]Λex] 〉

are bisimilar.

Proof. We sketch the proof.
First, we need some results about the translation of a script. Given a trans-

lation D(s)B,E of a script s with respect to tokens B and E, we can define a
transitive relation ≺ between the tokens used in the translation: it is the transi-
tive closure of the relation that contains (I1, I2) if there exists in the translation
some rule where token I1 occurs on the left hand side and token I2 occurs on the
right hand side. Token B is a least element of ≺ while E is a greatest element
of ≺: ∀ I . (I 6= B) ⇒ (B ≺ I) ∧ (I 6= B) ⇒ (I ≺ E). Moreover, if B 6= E, E
is also a maximal element of ≺: ∀ I . ¬(E ≺ I). Note that this is not true for B
because of loops. We also define a notion of restriction for translations: given a
token I, the script πID(s)B,E contains all the rules of D(s)B,E involving tokens
I1 and I2 such that I � I1 and I � I2.

Second, we exhibit a bisimulation R containing both collaborations. Consider
collaborations

〈 GCi[〈 s&Λin 〉]Λex] 〉
and

〈 GCp[〈 I 〉]Λin]Λex] 〉 .

They are related by R if the following conditions are satisfied.
(A) If s is different from >, then πID(s)B,E = D(s)I,E .
(B) If s is equal to >, then I = E.

Finally, it remains to prove that R is a bisimulation. We deduce the simulation
properties from the following lemmas.

(1) First Lemma – Restriction Composition
For all tokens I1 and I2 with I1 ≺ I2, we have: πI2πI1D(s)B,E = πI2D(s)B,E .

(2) Second Lemma – Reduction Simulation
First, (s, Λ) ⇒ (s′, Λ′) if and only if for any pair (B,E), there exists a token I
different from B and E such that (i) the script D(s)B,E entails reduction

〈B 〉]Λ→〈 I 〉]Λ′

and (ii) πID(s)B,E = D(s′)I,E .
Second, (s, Λ)⇒ Λ if and only if the script D(s)B,E entails reduction

〈B 〉]Λ→〈E 〉]Λ.

ut

Second, we deal with the translation from pure Criojo.

24 Grall–Lacouture

Theorem 3 (Pure Criojo to Guarded Commands – Bisimilarity). Let
R be a script in pure Criojo and let EP(R) be its translation into Dijkstra’s
language of guarded commands. Consider the pure agent GCp with rules R and
the generic impure agent GCi implementing Dijkstra’s language. Then for any
multiset Λin of internal messages and any multiset Λex of external messages, the
collaborations

〈 GCp[Λin]Λex] 〉
and

〈 GCi[〈 EP(R) &Λin 〉]Λex] 〉

are bisimilar.

Proof. We sketch the proof.
We exhibit a bisimulation R containing both collaborations. Consider collab-

orations
〈 GCp[Λin]Λex] 〉

and
〈 GCi[〈 s&Λin 〉]Λex] 〉 .

They are related by R if s is equal to either EP(R), if {ER(R)} ; EP(R) or
skip ; EP(R).

Finally, it remains to prove that R is a bisimulation, which is trivial. ut

As defined, because Dijkstra’s language is sequential, it is not well-suited
to a distributed context. In a typical application, multiple clients request a se-
quential service: each request leads to a thread that concurrently executes with
other threads. It is straightforward to encode a concurrent behavior like this
with slight modifications to our translation. First, a request-response protocol is
implemented, as already seen in the preceding section.

GCp ` Session(n), Session(succ(n)),
l(a, k) → Begin(n), Arg(n, a), Rep(n, k)

GCp ` End(n), Return(n, r), Rep(n, k) → k(r)

The agent GCp provides a channel l. When it receives the message l(a, k),
it begins a new session n by producing the token Begin(n) and passing the
argument a. Finally it sends the result r over k, after consuming the token
End(n). Second, each session corresponds to a thread executing the script s. To
get the correct behavior, it suffices to slightly modify the translation: tokens
occurring in the translation

D(s)Begin(n),End(n)

are now parameterized with the session identifier n. The internal messages
Arg(n, a) and Return(n, r) are respectively used to pass the argument a and to
return the result r inside the script.

4.2 A Logic Language: Datalog with negation

Pure Criojo shares many features with logic programming. A rule with the guard
True can be considered as an inference rule. However the premises are consumed,

Criojo: A Pivot Language for Service-Oriented Computing 25

as in Linear Logic: in Criojo, logical atoms are ephemeral and not persistent.
It is not really a problem: just preserve the premises, by adding them to the
conclusions. For instance, given a binary relation R, assume that we want to
compute its reflexive and transitive closure. Here is a program in Datalog.

R∗(x, x) ← True

R∗(x, z) ← R(x, y) ∧R∗(y, z)

Following the preservation principle, a first attempt to translate the second
inference rule would give the following rule.

R(x, y), R∗(y, z)→R(x, y), R∗(y, z), R∗(x, z)

However, this rule loops: an infinite number of atoms R∗(x, z) can be generated.
To avoid this indefinite generation, we can require that an atom is either absent
in the solution, or present with a unique occurrence. Introspection can force this
condition.

R(x, y), R∗(y, z)→¬〈R∗(x, z) 〉 ?R(x, y), R∗(y, z), R∗(x, z)

There is still a problem. Assume we now want to compute the Cartesian product
R2 of a unary relation R, which is performed as follows in Datalog.

R2(x, y) ← R(x) ∧R(y)

A naive translation would give the following rule in Criojo.

R(x), R(y)→¬〈R2(x, y) 〉 ?R(x), R(y), R2(x, y)

But this rule cannot generate R2(x, x), which requires two atoms R(x) in the
solution. To solve the problem, we can either increase the number of occurrences
of each atom in the solution, or require a linearity condition for Datalog rules.
Both options are akin. We opt for the second alternative: it forbids a rule where
there are two atoms with the same predicate in the premises. The previous
program in Datalog needs to be rewritten as follows.

R1(x) ← R(x)
R2(x, y) ← R(x) ∧R1(y)

The translation now works. In the following, we formalize the translation and
generalize it to an extension of Datalog with negation. The implementation,
which requires computing an alternating fixed point, highlights the contribution
provided by the extension of Criojo with guarded commands.

The alternating fixed point construction A program in Datalog with nega-
tion is a set of inference rules. An inference rule is of the form a← l1 ∧ . . . ∧ ln,
where the head a is an atom and where each literal li in the body is either a
positive literal, that is an atom ai, or a negative literal, that is the negation ¬ai
of an atom ai. It is a logical implication, asserting that from premises l1, . . . , ln,
you can deduce conclusion a. A fact is represented by a rule a← True, called an
axiom. Atoms are defined from predicates applied to variables and constants. As

26 Grall–Lacouture

usual, we assume that the rules are range-restricted: in any rule, each variable
also occurs in the body of a positive literal. The condition ensures the existence
of a finite set, such that each variable takes its value in this set. This finite set
is a subset of the universe, which is the finite set of all the constants occurring
in the program. Moreover, without loss of generality, we assume that two posi-
tive literals in the body never have the same predicate, likewise for two negative
literals. In the following, we refer to this assumption as the linearity hypothesis.

Whereas Datalog has a univocal fixed point semantics, there are different
fixed point semantics for Datalog with negation. Here, we will assign to each
program its well-founded model [19], which can be characterized by an alternat-
ing fixed point construction [18]. In this model, a ground atom is either true,
false or unknown. In order to compute the set of true atoms, two approximations
are computed. The first one computes the set of atoms that are certainly true:
this is an under-approximation. The second one computes the set of atoms that
are possibly true: this is an over-approximation. By complementation, we get
the set of atoms that are possibly false and certainly false respectively: an atom
is possibly false if and only if it is not certainly true, and certainly false if and
only if it is not possibly true. More formally, given a program D in Datalog with
negation, let U be the finite universe, and H be the Herbrand base, the finite
set of all the ground atoms defined from the predicates in D and the constants
in U . We define the immediate consequence operator as follows, for any set of
negative ground literals N and positive ground literals A:

ΦD[N](A)
def
= {a[τ] | ∃ r ∈ D . r = a← l1 ∧ . . . ∧ ln, ∀ i ∈ {1, . . . , n} . li[τ] ∈ N +A}

We introduce four sequences (C+i)i, (C
−
i)i, (P

+
i)i, (P

−
i)i, with the following in-

terpretation:

– C+i : set of ground atoms that are certainly true at rank i
– C−i : set of ground atoms that are certainly false at rank i
– P+i : set of ground atoms that are possibly true at rank i
– P−i : set of ground atoms that are possibly false at rank i

These sequences are inductively defined as follows. We use some usual notations:
X denotes the complement of the set X in H, and ¬X the set of the negations
of atoms in X; lfp(ϕ) denotes the least fixed point of the operator ϕ defined over
the powerset 2H.

C+0 = C−0 = ∅ P+0 = P−0 = H
C+i+1 = lfp(ΦD[¬C−i]) P+i+1 = lfp(ΦD[¬P−i])

C−i+1 = P+i+1 P−i+1 = C+i+1

The computation halts when the four sequences become stationary. They are
ultimately stationary since the sequences (C+i)i and (C−i)i are increasing whereas
the sequences (P+i)i and (P−i)i are decreasing. The well-founded model is derived
from the limits C+ and C− of the sequences (C+i)i and (C−i)i:

– C+ is the set of ground atoms that are true in the model,
– C− is the set of ground atoms that are false in the model.

Criojo: A Pivot Language for Service-Oriented Computing 27

positive

Certain facts

negative positive

Possible facts

negative

C+

@A
∆C+=+δ

BC
∆P−=−δ

OOC− P+BC ∆P+=−δ@A∆C−=+δ
OO P−

Fig. 3. The Alternating Fixed Point Construction

Implementation in Pure Criojo To implement the alternating fixed point
construction in pure Criojo, we prefer to modify the inductive definition by
adding difference sequences (∆C+i)i, (∆C−i)i, (∆P+i)i, (∆P−i)i. Indeed, they sim-
plify the computations by allowing the sequences (C−i)i and (P−i)i to be incre-
mentally computed. See Figure 3 for a visual representation of the following
equations.

C+0 = C−0 = ∅ P+0 = P−0 = H
C+i+1 = lfp(ΦD[¬C−i]) ∆C+i+1 = C+i+1 − C+i ∆P−i+1 = ∆C+i+1

P+i+1 = lfp(ΦD[¬P−i]) ∆P+i+1 = P+i − P+i+1 ∆C−i+1 = ∆P+i+1

C−i+1 = C−i +∆C−i+1 P−i+1 = P−i −∆P−i+1

The local state is defined by using the following relations. Let m be the
maximal arity of the predicates R occurring in the program D.

– U: relation representing the universe U
– Hn: relation representing the Cartesian product Un (n ≤ m)
– For each predicate R occurring in the program D, relations

C
+[R], C−[R], P+[R], P−[R],∆C

+[R],∆C
−[R],∆P

+[R],∆P
−[R]

corresponding to the projection of the sets

C
+
i , C

−
i , P

+
i , P

−
i ,∆C

+
i ,∆C

−
i ,∆P

+
i ,∆P

−
i

over the predicate R
– For each predicate R occurring in the program D, relations C[R] and P[R]

corresponding to the result of the computation of the least fixed points at
each iteration

We now describe the script computing the alternating fixed point in a sequence
of elementary steps, which will be finally combined.

1. Universe Initialization
The solution is initialized with the multiset

〈 U(v) | v ∈ U 〉 .

28 Grall–Lacouture

2. Multiple Universe
Actually, we need multiple occurrences of atoms U(v) in order to compute the
Herbrand base, used to initialize P+0 and P−0 . The number of occurrences of each
atom becomes m, the maximal arity.

[Multiplicity] U(x)(¬ 〈 U(x)m 〉 ? U(x)m

3. Generation of Cartesian Products (for n ≤ m)
We also need to compute Cartesian products in order to compute the Herbrand
base.

[Basen] U(x1), . . . , U(xn)(¬ 〈 Hn(x1, . . . , xn) 〉 ? Hn(x1, . . . , xn), U(x1), . . . , U(xn)

4. Initialization of Relations for Possible Facts (n: arity of R)

[InitR] Hn(−→x)(¬ 〈 P+[R](−→x) 〉 ? P+[R](−→x), P−[R](−→x), Hn(−→x)

This set of rules initializes the families (P+[R]) and (P−[R]) with P+0 and P−0
respectively.

5. Cleanup
The atoms that are henceforth useless are consumed.

[Cleanupn] U(x)m (U(x)
‖ Hn(−→x)(∅

6. Computation of the Least Fixed Points
The program D in Datalog is translated into a program in Criojo: each rule in
Datalog gives rise to two rules, for certain facts and possible facts respectively.

T (D) = ‖r∈D T (r)
T (r) = T C

Prem(r)(T C
Guard(r) ? T C

Ccl(r) ‖ T P
Prem(r)(T P

Guard(r) ? T P
Ccl(r)

We now detail how to get the premises, the guard and the conclusions of the
rules in Criojo. The translation is parameterized by X, either C for certain facts,
or P for possible facts. The positive atoms occurring as premises are translated
using the family (X[R]) whereas the negative atoms are translated using the
family (X−[R]).

T XPrem(a←
−→
l) = T XPrem(

−→
l)

T XPrem(R(
−→
t)) = X[R](

−→
t) T XPrem(¬R(

−→
t)) = X−[R](

−→
t)

T XPrem(l1 ∧
−→
l2) = T XPrem(l1), T XPrem(

−→
l2) T XPrem(True) = ∅

If the rule r has R(
−→
t) as head, then the guard tests the absence of X[R](

−→
t)

before the conclusion not only generates X[R](
−→
t) corresponding to the head

atom but also preserves all the premises.

T XGuard(r) = ¬ 〈X[R](
−→
t) 〉 T XCcl(r) = T XPrem(r), X[R](

−→
t)

Finally, starting from the families C−[R] and P−[R] initialized with C−i and P−i
respectively, the previous rules (after iterations) compute the families C[R] and
P[R], equal to lfp(ΦD[¬C−i]) and lfp(ΦD[¬P−i]) respectively.

Criojo: A Pivot Language for Service-Oriented Computing 29

7. Update of Families C+i , P
+
i , ∆C+i , ∆P+i

The differences for positive atoms can be computed as follows.

[UpdateOld+R] C+[R](−→x), C[R](−→x)(C+[R](−→x)
‖ P+[R](−→x)(∆P+[R](−→x)

[UpdateDiff+R] C[R](−→x)(∆C+[R](−→x), C+[R](−→x)
‖ ∆P+[R](−→x), P[R](−→x)(P+[R](−→x)

Assume that before the execution of the previous rules, we have the following
equalities.

Family Sequence

(C[R]) lfp(ΦD[¬C−i])
(P[R]) lfp(ΦD[¬P−i])

(C+[R]) C+i
(∆C+[R]) ∅
(P+[R]) P+i

(∆P+[R]) ∅
Then, after their execution, we have the following equalities.

Family Sequence

(C[R]) ∅
P[R] ∅

(C+[R]) C+i+1

(∆C+[R]) ∆C+i+1

(P+[R]) P+i+1

(∆P+[R]) ∆P+i+1

8. Progress Condition
The computation has progressed if the following condition is satisfied.∨

R

∃−→x . ∆C
+[R](−→x) ∨∆P

+[R](−→x)

Indeed, it means that some new fact has been generated by the last computation
of the fixed points.

9. Update of Families ∆C−i , ∆P−i , C
−
i , P

−
i ,

The differences for negative atoms can be computed as follows.

[UpdateDiff−R] ∆C+[R](−→x)(∆P−[R](−→x)
‖ ∆P+[R](−→x)(∆C−[R](−→x)

[UpdateNew−R] ∆C−[R](−→x)(C−[R](−→x)
‖ ∆P−[R](−→x), P−[R](−→x)(

Assume that before the execution of the previous rules, we have the following
equalities.

Family Sequence

(∆C+[R]) ∆C+i+1

(∆P−[R]) ∅
(∆P+[R]) ∆P+i+1

(∆C−[R]) ∅
(P−[R]) P−i
(C−[R]) C−i

30 Grall–Lacouture

Then, after their execution, we have the following equalities.

Family Sequence

(∆C+[R]) ∅
(∆P−[R]) ∅
(∆P+[R]) ∅
(∆C−[R]) ∅
(P−[R]) P−i+1

(C−[R]) C−i+1

Thus a new computation for the fixed points is possible.
Finally, we can conclude.

Theorem 4 (Alternating Fixed Point in Pure Criojo). Let D be a Datalog
program with universe U and Herbrand Base H. Let us define a script D′ in the
Criojo variant of Dijkstra’s language of guarded commands as follows.

do {Multiplicity}; (Multiple Universe)
do {‖n Basen}; (Cartesian Products for Herbrand base)
do {‖R InitR}; (Initialization)
do {‖n Cleanupn}; (Cleanup)
do {T (D)}; (First Fixed-Point Computation)
do {‖R UpdateOld+R}; do {‖R UpdateDiff+R}; (First Update of Positive Families)
do { (Main Loop)(∨

R ∃
−→x . ∆C+[R](−→x) ∨∆P+[R](−→x)

)
. (If Progress)

do {‖R UpdateDiff−R}; do {‖R UpdateNew−R}; (Update of Negative Families)
do {T (D)}; (New Fixed-Point Computation)
do {‖R UpdateOld+R}; do {‖R UpdateDiff+R}; (New Update of Positive Families)

} (End of Loop)

Then the script D′ transforms the solution

〈 U(v) | v ∈ U 〉

into the solution

〈 U(v) | v ∈ U 〉](
⊎

R
C
+[R])](

⊎
R
C
−[R])](

⊎
R
P
+[R])](

⊎
R
P
−[R])

where the families (C+[R]) and (C−[R]) are equal to C+ and C−, the set of
ground atoms that are true and false respectively in the well-founded model, and
where the families (P−[R]) and (P+[R]) are equal to their complementary with
respect to the Herbrand base H.

Proof. By induction on the index i used for iterations. The result derives from
the description previously given of the different steps involved in the script. ut

4.3 A Functional Language: Gödel’s System T

As an idiomatic language for functional programming, we consider Gödel’s Sys-
tem T [20, chap. 7], a λ-calculus with inductive types and recursion operators.
Here we only consider the type of natural numbers, directly represented by con-
structors 0 and s, and use a call-by-value and weak (without reduction under

Criojo: A Pivot Language for Service-Oriented Computing 31

abstraction) strategy. We do not consider the type system, which ensures that
the redexes effectively reduce while preserving typing. In order to cope with
distribution, we extend the language by adding the possibility to call external
functions.

Term e ::= x | λx . e | e e | 0 | s(e) | r(e, e, e) | f
Value v ::= λx . e | 0 | s(v) | f
Redex r ::= v v | r(v, v, v)

Reduction Context E ::= − | E e | v E | s(E) | r(E, e, e) | r(v,E, e) | r(v, v, E)

Since we need to represent the language in Criojo, its (nominal) signature is
added to the signature used in Criojo. However, we keep the usual notation for
λ-terms, instead of the notation for nominal terms.

Thanks to the impure version of Criojo, we can embed Gödel’s System T
into Criojo in a straightforward way, leading to a distributed version for free.
Indeed, the operational semantics, expressed by an inference system, can be con-
sidered as a finite description of local rules for the cham. The state of the agent
STi, implementing some function c, is represented as an aggregate combining
(i) a global counter Session(n) for the identifiers of the internal sessions, and
(ii) pending requests. A pending request LC(n, e) & Rep(n, k, s) indicates that in
the internal session n, the agent is currently evaluating e and will response over
channel k with external identifier s. The join operator & is assumed as usual to
be associative and commutative, which leads to the following rules.

σ1 &(σ2 &σ3) ≡ (σ1 &σ2) &σ3

σ1 &σ2 ≡ σ2 &σ1

σ1 ≡ σ′1 STi ` σ′1→σ′2 σ′2 ≡ σ2

STi ` σ1→σ2

The agent STi provides a channel g for requests. A client transmits the argument
a of the function c, a channel k to get the response and an external identifier
s used to correlate the response with the calling computation. At each request,
a fresh session identifier is used, allowing multiple computations to be run in
parallel. The response is finally sent over the external channel, with the external
identifier.

STi ` σ& Session(n), g(a, k, s) → LC(n, c a) & Rep(n, k, s) &σ& Session(succ(n))(
STi ` LC(n, v) & Rep(n, k, s) &σ → σ, k(s, v)

)
v value

Note that the second rule is indexed by an infinite set: indeed, it is impossible
to match a value, because of the case s(v). The remaining rules directly come
from the operational semantics. Again they describe an infinite set of rules.(

STi ` LC(n, (λx . e) v) &σ → LC(n, e[v/x]) &σ
)
v(

STi ` LC(n, r(v1, v2, 0)) &σ → LC(n, v1) &σ
)
v1,v2(

STi ` LC(n, r(v1, v2, s(v))) &σ → LC(n, v2 r(v1, v2, v) v) &σ
)
v1,v2,v(

STi ` LC(n, e1) &σ→ LC(n, e2) &σ

STi ` LC(n,E[e1]) &σ→ LC(n,E[e2]) &σ

)
E

Finally, the rules for calling an external function follow the protocol that is now
common. The agent STi sends a request, with the argument, the return channel

32 Grall–Lacouture

retF and the session identifier, then waits for the response on channel retF.

(
STi ` LC(n,E[f v]) &σ → LC(n,E) &σ, f(v, retF, n)

)
E,v(

STi ` LC(n,E) &σ, retF(n, v) → LC(n,E[v]) &σ
)
E

To translate the program in pure Criojo, we need to solve two problems:
decomposing in a top-down way a term into a value or a redex in a reduction
context, and realizing the substitution involved in the β-reduction. The local
state is defined with three predicates, LC for terms, V for values, RC for reduction
contexts. First the request-response protocol is implemented as usual.

STp ` Session(n), g(a, k, s) → LC(n, c a), RC(n, ε), Rep(n, k, s), Session(succ(n))

STp ` V(n, v), RC(n, ε), Rep(n, k, s) → k(s, v)

The reduction context − is represented as ε, an empty stack. Indeed, reduction
contexts are represented as stacks.

Stack S ::= ε | S ::− e | S ::v− | S ::s(−) | S ::r(−, e, e) | S ::r(v,−, e) | S ::r(v, v,−)

We denote by S the reduction context associated to S. The usual unique de-
composition of a term into a value or a redex in a reduction context can be
rephrased as follows: for any term e, there exists a unique value v and a unique
stack S of the form ε, (S′ ::v′−) or

(
S′ ::r(v′, v′′,−)

)
such that e = S[v]. In that

case we say that (S, v) is the canonical decomposition of e. To get the decom-
position, we implement a focus function, a well-known technique for abstract
machines dedicated to functional languages, formalized by Danvy et al. [9]. The
focus function leads to the intended canonical decomposition, in two alternating
steps. The stack is progressively built, in a top-down left-to-right movement.

STp ` LC(n, e1 e2), RC(n, S) → LC(n, e1), RC(n, S ::− e2)

STp ` V(n, v), RC(n, S ::− e) → LC(n, e), RC(n, S ::v−)

STp ` LC(n, s(e)), RC(n, S) → LC(n, e), RC(n, S ::s(−))

STp ` LC(n, r(e1, e2, e3)), RC(n, S) → LC(n, e1), RC(n, S ::r(−, e2, e3))

STp ` V(n, v1), RC(n, S ::r(−, e2, e3)) → LC(n, e2), RC(n, S ::r(v1,−, e3))

STp ` V(n, v2), RC(n, S ::r(v1,−, e3)) → LC(n, e3), RC(n, S ::r(v1, v2,−))

As for the values, they are built in a bottom-up movement.

STp ` LC(n, λ x . e) → V(n, λ x . e))

STp ` LC(n, 0) → V(n, 0)

STp ` V(n, v), RC(n, S ::s(−)) → V(n, s(v)), RC(n, S)

STp ` LC(n, f) → V(n, f)

Finally, the redexes can be reduced. For the β-reduction, an external call is
needed to perform the substitution: the agent uses the channel retS to get the

Criojo: A Pivot Language for Service-Oriented Computing 33

response.

STp ` V(n, v), RC(n, S :: (λx . e)−) → RC(n, S), doSub(e, v, x, retS, n)

STp ` retS(n, e) → LC(n, e)

STp ` V(n, 0), RC(n, S ::r(v1, v2,−)) → V(n, v1), RC(n, S)

STp ` V(n, s(v)), RC(n, S ::r(v1, v2,−)) → LC(n, v2 r(v1, v2, v) v), RC(n, S)

STp ` V(n, v), RC(n, S ::f −) → RC(n, S), f(v, retF, n)

STp ` retF(n, v) → V(n, v)

Both implementations, in impure Criojo and in pure Criojo respectively, are
equivalent.

Theorem 5 (Gödel’s System T – Bisimilarity). Let K be the following set
of channels:

doSub, retS, isEqual, equal+, equal−.

The collaborations
〈 STi[〈 Session(0) 〉] 〉 \∅

and

〈 STp[〈 Session(0) 〉], SUBp[〈 Session(0), RecCall(0) 〉], EQ[〈 Session(0) 〉] 〉 \K

are bisimilar.

Proof. We sketch the proof.
We split into four sets the relations and channels of STp and STi:

G = {Session, Rep},
H = {LC, V, RC, doSub, retS},
I = {g, k, f, retF}.

We also consider a restriction ST′p of agent STp: it contains all the rules of the
focus function, as well as the rule ST′p ` retS(n, e)→ LC(n, e). In other words,
the agent ST′p performs the decomposition needed before reduction.

We exhibit a bisimulation R containing both collaborations. Consider collab-
orations

〈 STi[〈A1 &B1 〉]C1] 〉 \∅

and
(〈 STp[A2]B2]C2], SUBp[E2], EQ[F2] 〉]M2) \K

where

– A1 and A2 contain the messages over G,
– B1 and B2 contain the messages over H,
– C1 and C2 contain the messages over I,
– M2 contains the messages in transit, therefore over K.

They are related by R if the following conditions are satisfied.

34 Grall–Lacouture

(A) There is a biunivocal correspondence between the impure state A1 and
the pure state A2, and between the external messages C1 and C2, built as fol-
lows.

Rep(n, k, s) ←→ Rep(n, k, s)
Session(n) ←→ Session(n)

g(a, k, s) ←→ g(a, k, s)
k(s, v) ←→ k(s, v)

f(v, retF, n) ←→ f(v, retF, n)
retF(n, v) ←→ retF(n, v)

(B) There exists two setsX and Y of session identifiers, a bipartition (B′1, B
′′
1)

of B1 and a bipartition (B′2, B
′′
2) of B2 such that

– B′1 = 〈 LC(n,En) | n ∈ X 〉,
– B′′1 = 〈 LC(n, en) | n ∈ Y 〉,
– B′2 = 〈 RC(n, S′n) | n ∈ X 〉,
– B′′2 = B2 −B′2.
Moreover, the following conditions are satisfied:
– there is a biunivocal correspondence between B′1 and B′2, with for all n in X,
S′n = En,

– the collaboration
〈 ST′p[B′′2], SUBp[E2], EQ[F2] 〉]M2

converges to the following final state 〈 V(n, vn), RC(n, S′′n) | n ∈ Y 〉, such that
for any n in Y, (S′′n, vn) is the canonical decomposition of en.
Finally, it remains to prove thatR is a bisimulation. We need to consider three

cases, corresponding to the silent action, an input message (over channels retF

or g) and an output message (over channels f or k). We deduce the simulation
properties from the following lemmas.

(1) First Lemma – Canonical Decomposition
Assume the collaboration

〈 ST′p[B], SUBp[E], EQ[F] 〉]M

converges to the following final state

〈 V(n, vn), RC(n, Sn) | n ∈ Y 〉,

such that for any n in Y, (Sn, vn) is the canonical decomposition of some term
en. Then given a fresh session identifier m, the collaboration

〈 ST′p[B] 〈 LC(m, e), RC(m,S) 〉], SUBp[E], EQ[F] 〉]M

converges to the following final state

〈 V(n, vn), RC(n, Sn) | n ∈ Y 〉] 〈 V(m, v′), RC(m,S′) 〉,

such that (S′, v′) is the canonical decomposition of S[e].
It is sufficient to prove that the rules defining ST′p are convergent. Indeed, the
normal forms clearly correspond to the canonical decomposition. First, when we
consider a unique session, the rules are deterministic. Second, there is a natural
well-founded order over reductions: it measures the length of the traversal, which
is depth-first and left-to-right.

Criojo: A Pivot Language for Service-Oriented Computing 35

(2) Second Lemma – Operational Simulation
Starting from two collaborations

Λ1
def
= 〈 STi[〈A1 &B1 〉]C1] 〉 and Λ2

def
= (〈 STp[A2]B2]C2], SUBp[E2], EQ[F2] 〉]M2)

such that (Λ1 \ ∅, Λ2 \K) belongs to R, if Λ1→Λ′1, then there exists Λ′2 such
that Λ2→∗ Λ′2 and (Λ′1 \∅, Λ′2 \K) belongs to R, and conversely if Λ2→Λ′2, then
there exists Λ′1 such that Λ1→∗ Λ′1 and (Λ′1 \ ∅, Λ′2 \K) belongs to R. By a case
analysis over reductions and by using the preceding lemma.

ut

4.4 A Concurrent Language: The π-Calculus

As an idiomatic language for concurrent programming, we consider the asyn-
chronous π-calculus [32, chap. 5], defined as follows.

p ::= 0 | p ‖ p | x y | x(y).p |!x(y).p | νx.p

Without loss of generality, we opt for input replication instead of general
replication. Moreover, we omit sums, corresponding to external choices, to sim-
plify the presentation since their translation is a bit lengthy. In order to avoid
confusions between Criojo channels and π-calculus channels, a channel of the
π-calculus is called a name in the following, whereas a channel always refer to a
Criojo channel. Since we need to represent the language in Criojo, its (nominal)
signature is added to the signature used in Criojo. However, we keep the usual
notation for π-processes, instead of the notation for nominal terms.

As with Gödel’s System T, thanks to the impure version of Criojo, we can
embed the π-calculus in Criojo in a straightforward way, leading to a distributed
version: just translate the operational semantics into rules for the cham. The
state of an agent that implements a process of the π-calculus is represented as a
pair Pi(p) & New(n), where p is the current process and n is a counter generating
new identifiers, allowing the creation of new names. Each agent provides a unique
channel. A name is represented as an ordered pair (k, n), where k is a channel
provided by an agent and n is an identifier generated by the agent. Thus a π-
calculus particle (k, n)x corresponds to the Criojo message k(n, x). There are
two related rules, for distribution. Although they involve the nil process, they
are actually general, since any process p can be put in parallel, by applying an
inference rule defined below.

PIi ` Pi(0) & New(n), l(m,x) → Pi((l,m)x) & New(n) (l ∈ K(PIi))

PIi ` Pi((k,m)x) & New(n) → Pi(0) & New(n), k(m,x) (k /∈ K(PIi))

The following rules directly express the reduction axioms. They correspond to
a finite representation of an infinite set of rules, because of substitutions. Note
that we use a name server to manage scope extrusion, as proposed by Berry and
Boudol [2].(

PIi ` Pi(νx.p) & New(n) → Pi(p[(l, n)/x]) & New(succ(n))
)
p(

PIi ` Pi(x y′ ‖x(y).p) & New(n) → Pi(p[y′/y]) & New(n)
)
p(

PIi ` Pi(x y′ ‖!x(y).p) & New(n) → Pi(p[y′/y] ‖!x(y).p) & New(n)
)
p

36 Grall–Lacouture

There are also the standard rules for the congruence relation, expressing that
the processes equipped with the nil process and the parallel operator form a
commutative monoid.

p ‖ 0 ≡ p p ‖ p′ ≡ p′ ‖ p p ‖(p′ ‖ p′′) ≡ (p ‖ p′) ‖ p′′

Finally, two inference rules express that the congruence relation and the parallel
operator are compatible with the reduction relation.

q ≡ p PIi ` Pi(p) & New(n),
−−→
l(v)→ Pi(p′) & New(n′),

−−−→
k′(v′) p′ ≡ q′

PIi ` Pi(q) & New(n),
−−→
l(v)→ Pi(q′) & New(n′),

−−−→
k′(v′)

PIi ` Pi(p) & New(n),
−−→
l(v)→ Pi(p′) & New(n′),

−−−→
k′(v′)

PIi ` Pi(p ‖ q) & New(n),
−−→
l(v)→ Pi(p′ ‖ q) & New(n′),

−−−→
k′(v′)

To translate a π-calculus process in pure Criojo, we need to solve two prob-
lems: first, realizing the substitutions involved in the different reductions, second,
expressing the congruence and the compatibility rules. The solution to the first
problem is easy: just use an external agent to realize substitutions, as already
seen for System T. For the second problem, the solution is straightforward:
the free commutative monoid of processes in parallel can be taken to be the
set of finite multisets with processes as elements. That is the reason why ”the
chemical abstract machine can be regarded as the computational model of the
π-calculus” [11]. The local state is defined with two predicates, Pi for processes
and New for creating new names. Consider an agent PIp providing the channel l.
The local state 〈 Pi(p1), . . . , Pi(pn), New(n) 〉 represents the process p1 ‖ . . . ‖ pn
and the fact that the next new name will be (l, n). Here are the two rules for
distribution.

PIp ` l(n, x) → Pi((l, n)x) (l ∈ K(PIp))

PIp ` Pi((k, n)x) → k(n, x) (k /∈ K(PIp))

The following rules translate the communication rules and the rule for new
names. Since they require a substitution, an external message doSub(p, y, x, pi) is
generated to compute the substitution p[y/x]. The response will use the channel
pi.

PIp ` Pi(νx.p), New(n) → doSub(p, (l, n), x, pi), New(succ(n))

PIp ` Pi(x y′), Pi(x(y).p) → doSub(p, y′, y, pi),

PIp ` Pi(x y′), Pi(!x(y).p) → doSub(p, y′, y, pi), Pi(!x(y).p)

PIp ` pi(p) → Pi(p)

Finally, the processes in parallel are embedded into the multiset defined by the
local solution, thanks to the following decomposition rules.

PIp ` Pi(0) →

PIp ` Pi(p ‖ q) → Pi(p), Pi(q)

Finally, the translation is a simple adaptation of the one given by Berry and
Boudol [2], with a name server to generate new names. The only difference comes

Criojo: A Pivot Language for Service-Oriented Computing 37

from substitutions: they are not effectively described in the original translation,
which therefore contains an infinite set of rules, hence is impure following our
terminology, while they are performed by an adjoint agent in pure Criojo.

Again, both implementations, in impure Criojo and in pure Criojo respec-
tively, are equivalent.

Theorem 6 (π-calculus – Bisimilarity). Let K be the following set of chan-
nels:

{doSub, pi, isEqual, equal+, equal−}.
For any process p, the collaborations

〈 PIi[〈 Pi(p), New(0) 〉] 〉 \∅

and

〈 PIp[〈 Pi(p), New(0) 〉], SUBp[〈 Session(0), RecCall(0) 〉], EQ[〈 Session(0) 〉] 〉 \K

are bisimilar.

Proof. We sketch the proof.
We exhibit a bisimulation R containing both collaborations. Consider collab-

orations
〈 PIi[C1] 〉 \∅

and
(〈 PIp[D1], SUBp[D2], EQ[D3] 〉]M1) \K

where M1 is a multiset of messages over channels in K. They are related by R
if the following conditions are satisfied.

(A) There is a biunivocal correspondence between the impure local solution
C1 and the pure one D1, when considering the relation New and the channels l
and k.

New(n) ←→ New(n)
l(n, x) ←→ l(n, x)
k(n, x) ←→ k(n, x)

(B) Consider the remaining solution in C1: 〈 Pi(p) 〉. Consider now the re-
maining solution in D1. It can be split into two solutions, on the one hand
〈 Pi(p1), . . . , Pi(pn) 〉, on the other hand M2, a multiset of external messages
over the channels doSub and pi, used for substitutions. Then the collaboration

〈 SUBp[D2], EQ[D3] 〉]M1]M2

converges to the following final state 〈 pi(p′1), . . . , pi(p′m) 〉, and we have

p ≡ (p1 ‖ . . . ‖ pn) ‖(p′1 ‖ . . . ‖ p′m).

Finally, it remains to prove that R is a bisimulation. It is straightforward,
by using a canonical decomposition for any process p: p ≡ (p1 ‖ . . . ‖ pn), where
each process pi is either an output particle, an input process (possibly with
replication), or a restriction process. ut

38 Grall–Lacouture

5 Summary – Related Work – Perspectives

The pivot language Criojo is the internal language of the chemical abstract
machine that we have designed for service-oriented computing: it allows the
collaborations between agents and the rules specific to each agent to be defined.
In its impure form, by abstracting the state of agents, it provides a universal
language for interfacing (informational or computational) resources. We have
seen three examples of this ability: the translation of (i) a variant of Dijkstra’s
language of guarded commands, (ii) Gödel’s System T and (iii) the π-calculus.
For Gödel’s System T and the π-calculus, the translation was eased by the
algebraic framework used to represent data in Criojo. In its pure form, the
language Criojo provides a universal language for orchestrating services, thanks
to an extension of the chemical abstract machine by an introspection mechanism.
We have seen four examples of this ability: the translation of the three previous
languages as well as Datalog with negation, which covers the major paradigms
in programming.

Our starting point is clearly Berry and Boudol’s chemical abstract machine [2].
However this is not an effective machine. First, the reversible rules are not ef-
fective, as pointed out by Garg et al. [17]. Second, the set of specific rules may
be infinite, which implies an external device generating them, leading to an im-
pure aspect. The reflexive chemical abstract machine, proposed by Fournet and
Gonthier [11], brings effectiveness, thanks to intercession (the ability to produce
new reaction rules), a restriction of the algebraic signatures to relational signa-
tures and to a linearity condition greatly simplifying pattern matching. From
a framework designed to express operational semantics, the chemical abstract
machine has evolved to a calculus, the join-calculus, possible core of real dis-
tributed programming languages [12]. However, since the reduction rules of the
reflexive chemical abstract machine are still local, effectiveness does not imply
completeness. Indeed, as proved here, such a machine cannot compute all the
transformations of a chemical solution that an introspective machine can com-
pute. If the introspective chemical abstract machine is new, the idea of intro-
spection is not new in chemical models: see the definition of contexts as catalysts
or inhibitors given by Braione and Picco [5], or the extension of the language
Constraint handling Rules (CHR) with a negation as absence [38].

As shown by CHR, a declarative language based on multiset rewriting, orig-
inally designed for writing constraint solvers and now employed as a general
purpose language [13], chemical models deal not only with concurrent and dis-
tributed computing, but also logic programming. Thus the language Criojo is
also inspired by logic languages like Datalog [7]. a query language for deduc-
tive databases, in other words for structures in the relational model. However,
Datalog has a major limitation: it cannot express the deletion or the update of
resources. Its semantics is essentially monotone: the representation of resources
always increases during computations. Linear Logic, considered as a logic for
resources, has turned out to be useful for addressing the problem: Pfenning and
Simmons [33] resort to linear resources to generalize the logical algorithms of
Ganzinger and McAllester [16] a first attempt for solving the problem. Likewise,

Criojo: A Pivot Language for Service-Oriented Computing 39

Betz, Raiser and Frhwirth have developed new foundations based on Linear Logic
for the language CHR [3].

The development of Criojo, as a distributed and declarative language, can
also be seen as part of a recent trend exemplified by the project BOOM [1]. The
trend relies on two hypotheses: (i) the design of distributed systems should be
data-centric, capturing the states of a system as logical structures, like the one
defined by the internal messages in Criojo, (ii) the behavior of these systems
should be implemented using declarative programming languages that manipu-
late the logical structures.

We now come to the specific field of service-oriented computing. There are
many formal models, which all adhere to at least one of the following dual
perspectives: the logic-oriented perspective considering dedicated logics and (la-
beled) transition systems as models, and the process-oriented perspective con-
sidering process calculi or algebra and labeled transition systems as semantic
interpretations. These models have been proposed with the aim of capturing
aspects of service-oriented computing, following different points of view:

– verification or modeling, with models using automata, e.g. [14], process alge-
bra, e.g. [10,31], or Petri nets, e.g. [29], and associated to verification tools,

– formalization and programming, with models using process calculi, either
original like Orc [23] or extending some standard process calculi like the
π-calculus [4,27]. 1

The latter point of view is directly related to our approach. The main difference
between these works and ours stands in the starting point. First of all, the pro-
cess calculi are proposed to provide a good syntax for an orchestration language,
allowing features specific to services to be expressed: sessions [4,6] or correla-
tions [37,26,21], compensations (after the abort of a transaction) [27]. On the
contrary, we propose a semantic framework, which is minimal. Thanks to impure
Criojo, and the Black Box principle, we should be able to integrate these process
calculi into our framework. Thanks to pure Criojo, we should be able to encode
the specific features of these calculi, by following a discipline of programming,
as shown for sessions for instance.

Finally, these theoretical foundations are still a preliminary work. From the
theoretical side, first, the development of the theory of bisimulation can lead to
interesting extensions with firewalls. Second, if we have shown the computability
limitations of the standard chemical abstract machines without introspection, we
have not yet formalized a precise notion of computability for chemical abstract
machines. This formalization asks for a computability theory over multisets, as
developed by Tucker and Zucker for abstract data types [35]. From the practical
side, we need for Criojo a proof of concept in order to get a real programming
language. An implementation is currently developed, using the language Scala
and the technology of Web Services. The complexity of the algorithms involved
is a major question, in order to get a clear and precise model of the run time of
Criojo programs.

1 For more references, see a survey from 2007 [34].

40 Grall–Lacouture

References

1. Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Heller-
stein, and Russell Sears. Boom analytics: exploring data-centric, declarative pro-
gramming for the cloud. In EuroSys 2010, pages 223–236, 2010.

2. Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, 1992.

3. Hariolf Betz, Frank Raiser, and Thom Frühwirth. A complete and terminating
execution model for Constraint Handling Rules. In ICLP 2010.

4. Michele Boreale, Roberto Bruni, and Lúıs Caires et al. SCC: A service centered
calculus. In WS-FM 2006, volume 4184 of LNCS, pages 38–57. Springer-Verlag.

5. Pietro Braione and Gian Pietro Picco. On calculi for context-aware coordination.
In COORDINATION 2004.

6. Lúıs Caires and Hugo Torres Vieira. Conversation types. Theoretical Computer
Science, 411(51–52):4399–4440, 2010.

7. Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know
about datalog (and never dared to ask). IEEE Transactions on Knowledge and
Data Engineering, 1:146–166, 1989.

8. Evgeny Dantsin and Andrei Voronkov. Expressive power and data complexity of
query languages for trees and lists. In PODS 2000, pages 157–165.

9. Olivier Danvy and Lasse Nielsen. Refocusing in reduction semantics. Technical
report, BRICS Report Series, 2004.

10. Andrea Ferrara. Web services: a process algebra approach. In ICSOC 2004, pages
242–251.

11. Cédric Fournet and Georges Gonthier. The reflexive cham and the join-calculus.
In POPL 1996, pages 372–385.

12. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In CONCUR 1996, pages 406–421.

13. Thom Frühwirth. Welcome to constraint handling rules. In Constraint Handling
Rules, volume 5388 of LNCS, pages 1–15. Springer-Verlag, 2008.

14. Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting BPEL web
services. In WWW 2004, pages 621–630, 2004.

15. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. 1994.

16. Harald Ganzinger and David McAllester. Logical algorithms. In ICLP 2002, pages
209–223.

17. Deepak Garg, Akash Lal, and Sanjiva Prasad. Effective chemistry for synchrony
and asynchrony. In TCS 2004.

18. Allen Van Gelder. The alternating fixpoint of logic programs with negation. Jour-
nal of Computer and System Sciences, 47(1):185–221, 1993.

19. Allen Van Gelder, Kenneth Ross, and John Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

20. Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. 1989.
21. Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi, and Gianluigi Za-

vattaro. SOCK: a calculus for service oriented computing. In ICSOC 2006, pages
327–338.

22. M.N. Huhns and M.P. Singh. Service-oriented computing: key concepts and prin-
ciples. Internet Computing, IEEE, (1):75 – 81, 2005.

23. David Kitchin, William Cook, and Jayadev Misra. A language for task orchestra-
tion and its semantic properties. In CONCUR 2006, pages 477–491.

Criojo: A Pivot Language for Service-Oriented Computing 41

24. Mayleen Lacouture, Hervé Grall, and Thomas Ledoux. CREOLE: a Universal Lan-
guage for Creating, Requesting, Updating and Deleting Resources. In FOCLASA
2010.

25. Leslie Lamport and Nancy A. Lynch. Distributed computing: Models and methods.
In Handbook of Theoretical Computer Science, Volume B, pages 1157–1199. 1990.

26. Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A calculus for or-
chestration of web services. In ESOP 2007, pages 33–47.

27. Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for WS-BPEL.
Journal of Logic and Algebraic Programming, 70(1):96–118, 2007.

28. Robin Milner. Functions as processes. Mathematical Structures in Computer Sci-
ence, 2(2):119–141, 1992.

29. Chun Ouyang, Eric Verbeek, Wil van der Aalst, Stephan Breutel, Marlon Dumas,
and Arthur ter Hofstede. Formal semantics and analysis of control flow in ws-bpel.
Science of Computer Programming, 67(2–3):162–198, 2007.

30. Gordon Plotkin. Dijkstra’s predicate transformers and Smyth’s powerdomains. In
Abstract Software Specifications, pages 527–553, 1980.

31. Gwen Salaün, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning on
web services using process algebra. In ICWS 2004, pages 43–50.

32. Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile Pro-
cesses. Cambridge University Press, 2003.

33. Robert Simmons and Frank Pfenning. Linear logical algorithms. In ICALP 2008,
pages 336–347.

34. Maurice ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Formal methods
for service composition. Annals of Mathematics, Computing and Teleinformatics,
1(5):1–10, 2007.

35. John Tucker and Jeffery Zucker. Computable functions and semicomputable sets
on many-sorted algebras, pages 397–525. Oxford University Press, 2000.

36. Christian Urban, Andrew Pitts, and Murdoch Gabbay. Nominal unification. The-
oretical Computer Science, 2004.

37. Mirko Viroli. A core calculus for correlation in orchestration languages. Journal
of Logic and Algebraic Programming, 70(1):74–95, 2007.

38. Peter Van Weert, Jon Sneyers, Tom Schrijvers, and Bart Demoen. Extending CHR
with negation as absence. In CHR 2006.

	Criojo: A Pivot Language for Service-Oriented Computing
	Introduction
	Specification of the Pivot Language
	The Introspective Chemical Abstract Machine and its Language
	Syntax and Semantics
	Introspection with Pure Criojo
	Other Examples: Equality and Substitution
	Bisimilarity

	Translation of Four Idiomatic Languages
	Dijkstra's Language of Guarded Commands
	A Logic Language: Datalog with negation
	The alternating fixed point construction
	Implementation in Pure Criojo

	A Functional Language: Gödel's System T
	A Concurrent Language: The -Calculus

	Summary – Related Work – Perspectives

