
A Practical Monadic Aspect Weaver

Ismael Figueroa, Éric Tanter, Nicolas Tabareau

To cite this version:

Ismael Figueroa, Éric Tanter, Nicolas Tabareau. A Practical Monadic Aspect Weaver. Foun-
dations of Aspect-Oriented Languages, Mar 2012, Potsdam, Germany. 2012. <hal-00690717>

HAL Id: hal-00690717

https://hal.inria.fr/hal-00690717

Submitted on 24 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50616512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00690717

A Practical Monadic Aspect Weaver

Ismael Figueroa ∗ Éric Tanter
PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile – Chile

{ifiguero,etanter}@dcc.uchile.cl

Nicolas Tabareau
ASCOLA group
INRIA, France

nicolas.tabareau@inria.fr

Abstract
We present Monascheme, an extensible aspect-oriented pro-
gramming language based on monadic aspect weaving. Ex-
tensions to the aspect language are defined as monads, en-
abling easy, simple and modular prototyping. The language
is implemented as an embedded language in Racket. We il-
lustrate the approach with an execution level monad and a
level-aware exception transformer. Semantic variations can
be obtained through monad combinations. This work is also
a first step towards a framework for controlling aspects with
monads in the pointcut and advice model of AOP.
Categories and Subject Descriptors: D.3.3 [Programming
Languages]: Language Constructs and Features
General Terms: Languages, Design

Keywords Aspect-oriented programming, monads, execu-
tion levels, weaving.

1. Introduction
In the pointcut-advice model of AOP, weaving is the fun-
damental mechanism by which aspects inject their crosscut-
ting behavior in programs. Typically, prototype aspect lan-
guages reuse the facilities of an existing aspect language,
like AspectJ [6] or AspectScheme [3], as a solid base on
which to provide new extensions. However, in some cases it
is necessary to maintain (potentially very similar) branches
of the base language and the new features under focus of
study. This situation is usually tedious, but can be managed
with standard version control systems. However, this is but
a symptom of a deeper problem: there is a lack of an ab-
straction mechanism for experimenting with aspect seman-

∗ Funded by a CONICYT-Chile Doctoral Scholarship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOAL’12, March 26, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1099-4/12/03. . . $10.00

Monadic
Aspect
Weaver

Monadic
Aspect

Semantics
New Aspect Language=

Figure 1. Combining a monadic weaver with a monadic
aspect semantics to obtain a new aspect language.

tics without having to be concerned with the mechanics of a
full blown aspect language.

We faced this maintenance problem during the devel-
opment of an exception handling mechanism for execution
levels. Tanter proposed execution levels for AOP [9] as a
means to structure computation and avoid infinite regres-
sion by default, while providing flexibility to the program-
mer when required. In subsequent work, Figueroa and Tan-
ter [4] address the exception conflation problem, that is,
the problematic interactions between aspect and base code
in presence of an exception handling mechanism. To solve
this problem, they propose a level-aware exception handling
mechanism in which exceptions are bound to the level at
which they are thrown, and are only caught by handlers at
those levels. During development of the level-aware excep-
tion mechanism, it was necessary to maintain two branches
of LAScheme [9] (the original execution levels prototype
language). The reason is that the new version introduced ad-
ditional noise that was unused and unnecessary for the origi-
nal version to work, so in order to clearly present both imple-
mentations we kept them separate. Unfortunately, both code
bases diverged, requiring extra work to keep them in sync.

Independently, Tabareau recently proposed a monadic in-
terpretation for execution levels [8], in which the exception
semantics can be plugged by using a monad transformer. It
was observed by Tabareau that in the standard execution le-
vels calculus, the execution level is a property of the control
flow and, as such, is propagated between expression evalua-
tion in a sequential order. This matches the semantics of the
State monad, in the case where the state is a natural num-
ber. He then defined the execution level monad, and two
exception transformers to provide flat (standard exceptions
that do not have access to the level of execution), and level-
aware [4] exceptions to execution levels. More importantly,

1

Tabareau developed an abstract weaving algorithm that re-
lies on monads to define concrete aspect semantics. Such a
monadic aspect weaver allows for modular construction of
languages (Figure 1). Using these concepts, he describes a
monadic weaving algortihm on top of MinAML, a statically
typed functional aspect language.

As a first practical instantiation of the formal devel-
opment of Tabareau, we developed a monadic version of
AspectScheme [3], called Monascheme. Monascheme is a
higher-order functional aspect language with monadic as-
pect weaving, which supports dynamic aspect deployment
with lexically, dynamically, and globally scoped aspects.
Monascheme is implemented as an embedded language in
Racket. At the heart of Monascheme lies the monadic aspect
weaver, which provides management of the join point stack
and is parametric with respect to the monadic aspect seman-
tics of a given language. Our implementation is available at
http://pleiad.cl/research/monascheme.

The contributions of our work are: first, we validate the
work of Tabareau by providing a concrete implementation
of a monadic aspect weaver for the Racket language, called
Monascheme (Section 2). Monadic aspect semantics are
defined as Racket modules, encapsulating the correspond-
ing monad definition as well as supplementary procedures
and syntactic extensions as needed. Second, we improve
on MinAML by providing a full-fledged aspect language.
Third, we exemplify the usefulness of our system by im-
plementing the execution level monad, and combining it
with a variant of the exception monad transformer to ob-
tain level-aware exceptions (Section 3). We describe aspect
deployment and weaving in Section 4. Finally, we see this
development as the first step for a modular framework for
controlling aspects with monads (Section 5). Section 6 dis-
cusses related work.

2. Monascheme in Action
We start by describing shortly how to write aspect-oriented
programs in Monascheme, assuming the semantics given
by the execution level (EL) monad. Monascheme is imple-
mented in Typed Racket [10], a typed version of Racket de-
signed to ease the transition between untyped and typed pro-
grams. Consider the program shown in Listing 1. The (:
...) notation is for type annotations in Typed Racket. The
run form (line 6) evaluates a given program providing the
initial level of execution (internally defined as 0). A tracing
aspect is dynamically deployed using deploy-fluid (line
6). It matches all calls to write and executes trace around
those calls. Then, when (write ’hello) (line 7) is called,
the trace advice executes writing ’tracing to the output,
and then proceeds (line 3-4). The end result is that the sym-
bol ’tracinghello is written to the standard output. Ob-
serve that the advice does not loop when calling write, due
to the semantics of execution levels (which we explain in
Section 3.3).

1 (: trace ((Any -> (EL Any)) -> (Any -> (EL Any))))
2 (define (trace proceed)
3 (lambda: ([a : Any]) (do (write ’tracing)
4 (proceed a))))
5

6 (run (deploy-fluid (call write) (return trace)
7 (write ’hello)))

Listing 1. A simple aspect-oriented monadic program in
Monascheme (with the execution level monad).

Besides type annotations, the only difference between the
program of Listing 1 and its LAScheme equivalent is the use
of return and do in Monascheme1. This is because both
base and aspect code are written in monadic style, and all
functions must return a computation inside the correspond-
ing monad. In this example, all functions must return an
EL computation. Computations are also needed when de-
ploying aspects, as reflected by the use of (return trace)
at line 6. Additionally, we borrow the do notation from
Haskell as a shorthand for using the monadic bind func-
tion. It chains operations sequentially and allows the pro-
grammer to extract the value of a computation. Also, addi-
tional bindings can be provided by a specific semantics. In
our example, the run form is specific to semantics of the EL
monad. Finally, the forms deploy-fluid, deploy-static
and deploy-top allow the deployment of aspects with dy-
namic, static, and global scope respectively. All these forms
are implemented using the Racket macro system and are
valid in all aspect semantics.

3. Instantiating Monascheme
This section describes how to define monadic aspect seman-
tics as modules that plug into Monascheme. First, we de-
scribe how to plug the modular semantics into Monascheme.
Then, we present the interface that a module has to adhere
to. Finally, we illustrate how to implement such an interface
for both the execution levels and level-aware exceptions se-
mantics, as described in [8].

3.1 Pluggable Aspect Semantics
In our setting, the aspect semantics of a language is specified
by a monad, with the usual return and bind functions, plus
a function responsible to create monadic aspects.

The core Monascheme module is responsible for config-
uring the monadic aspect semantics. It must require (i.e. im-
port) an aspect semantics module in order to typecheck and
compile correctly. When a client program requires the core
module, the monadic aspect semantics are stored in two
Racket parameters (i.e. thread- and continuation-safe dy-
namic bindings). The current configuration can be queried
using functions like get-current-monad. For instance, the
do form we used above queries the current monad in order to

1 We provide a fmap form to reuse Racket primitives in the monadic setting.
It is possible to define a require/lift form to automatically require and
lift the bindings of a Racket module. However, this feature is currently not
implemented so specific bindings must be manually lifted using fmap.

2

1 (struct: (A) ValueLevel([value : A] [level : Integer]))
2 (struct: (A) EL ([value : (Integer -> (ValueLevel A))]))
3

4 (: EL-return (All (A) (A -> (EL A))))
5 (define (EL-return a)
6 (EL (lambda: ([s0 : Integer])
7 (ValueLevel a s0)))))
8

9 (: EL-bind (All (A B)
10 ((EL A) (A -> (EL B)) -> (EL B))))
11 (define (EL-bind ma f)
12 (EL (lambda: ([s0 : Integer])
13 (let ([result ((EL-value ma) s0)])
14 ((EL-value (f (ValueLevel-value result)))
15 (ValueLevel-level result)))))))

Listing 2. Definition of the execution level monad.

obtain the associated binder. Also, the weaver (Section 4.3)
uses the get-current-makeasp function to construct as-
pects according to the current configuration. A monadic as-
pect semantics module must implement a specific interface.

3.2 Aspect Semantics Module
A module that defines monadic aspect semantics must at
least export the following bindings:
• A type constructor M: the type constructor for the monad.

For all types A, (M A) defines a new type.
• M-return with type ∀ A : A→ (M A).
• M-bind with type ∀ A, B : (M A) (A → (M B))→ (M B).
• M-do: form that behaves like do, but uses the M-bind

binder instead of the binder of the current monad. We
provide an internal macro to ease the definition of M-do.
• MakeAspect: the type of M-make-aspect. It is an

alias of (Pc Adv → (Pairof Pc Adv)), where Pc is
JPStack → (M Any) and Adv is (Any → (M Any))
→ (Any → (M Any)) (see Section 4.1 for details on
typing).
• M-make-aspect: function that defines the creation of

pointcuts and advices in the semantics.
• MakeAspectResult: return type of M-make-aspect

The interface is designed to overcome some limitations of
the Typed Racket type system. M-return and M-bind define
the fundamental monad operations and are used to define the
return and do forms, respectively. The M-make-aspect is
used for aspect creation and deployment.

As any Racket module, a monadic aspect semantics mod-
ule can provide supplementary procedures and syntactic ex-
tensions as needed, e.g. up and run in the EL monad.

3.3 Execution Level Monad
We show the encoding of the execution level monad [8] as a
monadic aspect semantics for Monascheme2.

Monadic definition. The execution level monad is de-
fined (Listing 2) by its EL-return (line 4-7) and EL-bind
functions (line 9-15), which rely on the EL type construc-
tor (line 2). EL uses a support ValueLevel struct (line 1)
that holds values, of any type A, and the execution level as

2 A Racket module can rename bindings when exporting. This way we can
use different internal names than those of Section 3.2

1 (: lookup (-> (EL Integer)))
2 (define (lookup) (EL (lambda: ([s : Integer])
3 ((EL-value (EL-return s)) s))))
4

5 (: inc-level (-> (EL Void)))
6 (define (inc-level) (EL (lambda: ([s : Integer])
7 (ValueLevel (void) (+ s 1)))))
8

9 (: dec-level (-> (EL Void)))
10 (define (dec-level) (EL (lambda: ([s : Integer])
11 (ValueLevel (void) (- s 1)))))
12

13 (define-syntax-rule (up e)
14 (do (inc-level)
15 (x <- e)
16 (dec-level)
17 (EL-return x)))

Listing 3. Level management functions.

an integer. A computation (EL A) is defined as a function
with type Integer → (ValueLevel A). EL-return lifts
a value a into the monad by wrapping it into a closure with
the appropriate type. The EL-bind binder first extracts the
value of its computation argument (line 13) to obtain a (po-
tentially) modified level of execution, and then passes the
new level as the level at which the application of f is evalu-
ated (line 14-15).

Monadic operators. Some programs may be interested
in querying or modifying the level of execution. To this
end, the monadic aspect semantics module exports some
functions and syntactic extensions. For instance, the level-
shifting operator up is used to move the evaluation of an ex-
pression to the level above the current level. Its definition is
shown in Listing 3 (lines 13-17). It uses the lower-level (not
user-visible) functions inc-level and dec-level. down
is defined similarly. Finally, the lookup function reifies the
current level as a value (lines 1-3).

Aspect semantics. In execution levels, an aspect is de-
ployed at a level n and can only advise join points emitted at
that level. Join points are emitted one level above the com-
putation they originated. Also, an aspect at level n evaluates
its advice at level n + 1. This semantics is specified by the
EL-make-aspect function (Listing 4). Given a pointcut pc
and an advice adv, the function creates both a level-aware
pointcut and advice. In both cases this is done by capturing
n (line 3), the level of execution at definition time, using lex-
ical scoping. The new pointcut first performs a level check
(line 8), comparing the level of definition with the level of
execution, and only if those levels match pc is applied one
level above (line 9). The new advice returns a closure which
executes adv one level above current computation, using up,
wrapping proceed in a level-capturing function (line 13) to
ensure that base computation is always executed at its orig-
inal level. A level-capturing function is bound to a level of
execution l. When applied, it is evaluated at level l and then
the level goes back to its previous value. lambda-at is an
internal expression to construct a level-capturing function
bound at level n.

3

1 (: EL-make-aspect MakeAspect)
2 (define (EL-make-aspect pc adv)
3 (do (n <- (lookup) : Integer)
4 (EL-return
5 (cons
6 (lambda: ([jp : JPStack]) ;; New pointcut
7 (do (l <- (lookup) : Integer)
8 (if (= l n)
9 (up (pc jp))
10 (EL-return #f))))
11 (lambda: ([proceed : (Any -> (EL Any))]) ;; New advice
12 (lambda: ([arg : Any])
13 (up (adv (lambda-at n (args) (proceed args))) arg)))))))

Listing 4. Aspect creation in the execution level monad

1 (define-type Exception (Pairof ’Exception Integer))
2 (define-type LA (All (A) (M (U A Exception))))
3

4 (: LA-return (All (A) (A -> (LA A))))
5 (define (LA-return a) (M-return a))
6

7 (: LA-bind (All (A B)
8 ((LA A) (A -> (LA B)) -> (LA B))))
9 (define (LA-bind ma f)
10 (M-bind ma
11 (lambda: ([a : (U A Exception)])
12 (if (Exception? a)
13 (M-return (cons ’Exception (cdr a)))
14 (f a)))))

Listing 5. Monadic definition of the level-aware exception
transformer

3.4 Level-Aware Exceptions Monad Transformer
We define a special-purpose exception monad transformer
to provide level-aware exception semantics to our language
(as in [4]). By accessing the level of execution stored in the
monadic context, the transformer can perform the necessary
checks to only catch exceptions whose level matches those
of the handlers. Note that this transformer requires a monad
M that implements the lookup operation.

As a monadic aspect semantics module, it must adhere
to the interface of Section 3.2. The transformer takes a
monadic aspect semantics to be transformed, and exports
the bindings required by Monascheme. Listing 5 describes
the monadic definition of the transformer. This part is sim-
ilar to the traditional Exception Monad Transformer. An
Exception type (line 1) is defined as a pair of a constant
symbol ’Exception (we use a simple version where excep-
tions contain no extra information) and an integer represent-
ing the level at which the exception was raised. We define
the type LA A (line 2) as an alias for a computation of the
original monad with the union type (U A Exception), de-
noting a value of type either A or Exception. To lift values
into the new setting, LA-return (line 4-5) uses the original
M-return (line 5) to create a LA computation. LA-bind
(line 7-14) behaves as the usual exception monad trans-
former binder.

Having established the context in which exceptions prop-
agate adequately, we define (Listing 6) the throw and
try-with forms, to raise and catch exceptions, respectively.
To raise exceptions, we get the current level n (line 3) using
the lookup operation provided by M, and return an exception

1 (: throw (All (A) (A -> (M Exception))))
2 (define (throw a)
3 (M-do (n <- (lookup) : Integer)
4 (M-return (cons ’Exception n))))
5

6 (: try-with ((LA Any) (LA Any) -> (LA Any)))
7 (define (try-with e1 e2)
8 (M-do (result <- e1 : (U Any Exception))
9 (if (Exception? result)
10 (M-do (n <- (lookup) : Integer)
11 (if (= n (cdr result))
12 e2
13 (M-return (cons ’Exception (cdr result)))))
14 (M-return result))))

Listing 6. throw and try-with forms tag and check the
execution level respectively

1 (define-syntax-rule (deploy-fluid pc adv body ...)
2 (do (v-pc <- pc : (JPStack -> (M Any)))
3 (v-adv <- adv : ((Any -> (M Any)) -> (Any -> (M Any))))
4 (asp-pair <- ((get-current-makeasp)
5 v-pc v-adv) : MakeAspectResult)
6 (aspect <- (return
7 (Aspect (car asp-pair)
8 (cdr asp-pair))) : Aspect)
9 (handle <- (add-dynamic! aspect) : Undeployer)
10 (result <- (do body ...) : Any)
11 (remove-dynamic! handle)
12 (return result)))

Listing 7. deploy-fluid implementation

at that level using M-return (line 4). The try-with takes
two computations e1 and e2. It extracts the value of e1 into
result (line 8) using the binder of the monad M. Then, if
result is an exception (line 9) it checks if the level of the
handler matches that of the exception (line 11-13). If they
match, e2 is returned (line 12). Otherwise, the exception is
propagated (line 13). If result is not an exception, it is
returned (line 14).

4. Aspect Deployment and Weaving
In this section, we describe in detail the implementation of
aspect deployment and weaving in Monascheme. The man-
agement of the join point stack is as in AspectScheme [3].

4.1 Typing in Monascheme
The monadic aspect weaver enables Monascheme to be para-
metric with respect to the aspect semantics. For now, the type
system only checks monadic types. All values have type Any,
and all non-advice functions have type Any → (M Any).
This is due to two limitations of Typed Racket: absence of
type casts, and erasure of polymorphic types.

4.2 Aspect Deployment
Monascheme features scoped aspect deployment, for all as-
pect semantics. It relies on the function M-make-aspect
to construct adequate pointcut and advice functions, and
then stores them in an internal Aspect structure inside the
corresponding aspect environment. The implementation of
deploy-fluid is given in Listing 7. The other deployment
constructs, deploy-static and deploy-top, are imple-
mented in a similar way.

4

1 ;; (All (A B) ((M (A −> (M B))) JPStack (Listof Aspect) −> (M (A −> (M B)))))
2 (define (weave fun jp* aspects)
3 (foldr
4 (lambda (aspect proceed)
5 (do (proceed-fun <- proceed)
6 (pointcut-result <- ((aspect-pc aspect) jp*))
7 (if pointcut-result
8 (return (lambda (arg)
9 (do (advice <- ((aspect-adv aspect) proceed-fun))
10 (advice arg))))
11 (return proceed-fun))))
12 fun aspects))

Listing 8. Monadic Aspect Weaver

4.3 Monadic Weaving Process
The abstract weaving function (Listing 8) is implemented in
an untyped module (its polymorphic type is given in com-
ments). It expects a computation fun, a join point stack jp*
and an aspect environment aspects containing all aspects
that can apply and returns a new woven function. Aspects
are processed sequentially, and in each step a proceed-fun
function is generated (line 5). proceed-fun corresponds
either to the next advice in the chain, or to the original
fun function. Advice is inserted in the resulting function
(line 7-11) only when the pointcut matches (lines 8-10). The
aspect-pc (line 6) and aspect-adv (line 9) functions are
accessors to the internal aspect structure used during aspect
deployment. Note that the algorithm uses do and return to
work in the monadic setting, but is independent of any spe-
cific monad.

5. Controlling Aspects with Monads
So far, our motivation has been the separation of concerns
between a core aspect language and concrete aspect seman-
tics specifications. However, since monads are typically used
to control effects in programs, we want to mix monads to
control the effects available to base and aspect code. To make
the combination possible, it is necessary to provide a lift-
ing between base and aspect monads (in both directions).
For instance, we have developed the agnostic execution level
(AEL) monad, in which no explicit level-shifting is allowed.
We can then define a mixed AEL+EL monad in which level-
shifting is forbidden in advices.

But there are many more combinations that remain to be
explored and are part of ongoing work. For instance, it is
possible to support sandboxed aspects. This includes scenar-
ios like providing aspects with e.g. read-only capabilities to
the underlying store, or using the State monad so that aspects
have their private store. This can be achieved by using two
variants of the state monad Mbase and Masp, with the same
underlying type constructor but with different effects: when
executing base computation in Mbase, only effects (such as
read or write) on Sbase can be used, and when executing
advice computation in Masp, only effects on Sasp are acces-
sible. In that case, lifting a computation from one monad to
another is simply given by the identity. The key to specify-
ing the allowed effects lies in the M-make-aspect function.

By dynamically adjusting the monadic aspect semantics, the
execution of advice can be wrapped in a completely different
monadic setting.

6. Related work
A monadic aspect weaver enables modular variations of
the language semantics, and also makes it possible to con-
trol the effects of aspects. Work on extensible compilers
(e.g. abc [2]) relate to the first point. The advantages of using
monads for defining language variations are well-known; in
particular, monads are modular, composable, and they bring
opportunities for reasoning about effects. For instance, if
execution levels are implemented in abc, it is impossible to
know if a method is “pure” with respect to the execution le-
vel, without manually customizing the type system.

EffectiveAdvice (EA) [7] is the most related proposal. EA
is inspired by Open Modules [1], but with full support for
reasoning about effects using monads. EA is based on open
recursion, and on application of a fixpoint combinator as the
weaving process. EA provides strong guarantees about non-
interference and harmless advice. There are two main differ-
ences with our work: first, EA supports neither quantification
nor obliviousness, instead it uses explicit advice points and
explicit composition of aspects and programs. In contrast,
our work supports the full-fledged pointcut-advice mecha-
nism. On the other hand, the monadic encoding proposed by
Tabareau modifies the actual weaving process, whereas the
monadic translation of EA only applies to advices. Hence
our approach supports language extensions.

The relation between aspects and monads has been dis-
cussed several times. Hofer and Ostermann [5] clarified that
they are two different beasts. Our work does not attempt at
unifying them, but rather at extending monads to AOP lan-
guages in order to build extensible aspect languages with
reasoning support.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice. In ECOOP 2005,

pages 144–168.

[2] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: an extensible AspectJ
compiler. In Transactions on AOSD, vol. 3880, pages 293–334, 2006.

[3] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and scoping
of aspects in higher-order languages. Science of Computer Programming,
63(3):207–239, 2006.

[4] I. Figueroa and É. Tanter. A semantics for execution levels with exceptions. In
FOAL 2011.

[5] C. Hofer and K. Ostermann. On the relation of aspects and monads. In FOAL
2007.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of AspectJ. In ECOOP 2001, pages 327–353.

[7] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. EffectiveAdvice: discplined
advice with explicit effects. In AOSD 2010, pages 109–120.

[8] N. Tabareau. A monadic interpretation of execution levels and exceptions for
AOP. In AOSD 2012.

[9] É. Tanter. Execution levels for aspect-oriented programming. In AOSD 2010,
pages 37–48.

[10] S. Tobin-Hochstadt and M. Felleisen. The design and implementation of Typed
Scheme. In POPL 2008, pages 395–406.

5

