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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50616496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00692175


Using Models of Partial Knowledge to Test Model
Transformations

Sagar Sen1, Jean-Marie Mottu2, Massimo Tisi1, and Jordi Cabot1
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Abstract. Testers often use partial knowledge to build test models. This knowl-
edge comes from sources such as requirements, known faults,existing inputs, and
execution traces. In Model-Driven Engineering, test inputs are models executed
by model transformations. Modelers build them using partial knowledge while
meticulously satisfying several well-formedness rules imposed by the modelling
language. This manual process is tedious and language constraints can force users
to create complex models even for representing simple knowledge. In this paper,
we want to simplify the development of test models by presenting an integrated
methodology and semi-automated tool that allow users to build only small partial
test models directly representing their testing intent. Weargue that partial models
are more readable and maintainable and can be automaticallycompleted to full
input models while considering language constraints. We validate this approach
by evaluating the size and fault-detecting effectiveness of partial models com-
pared to traditionally-built test models. We show that theycan detect the same
bugs/faults with a greatly reduced development effort.

1 Introduction

Model transformations are core components that automate important steps in Model-
Driven Engineering (MDE), such as refinement of input models, model simulation, re-
factoring for model improvement, aspect weaving into models, exogenous/endogenous
transformations of models, and the classical generation ofcode from models. Models
and transformations have a widespread development in academia and industry because
they aregenericartifacts to represent complex data structures, constraints, and code
abstractions. However, there is little progress in techniques to test transformations [5].
Testing requires the specification of software artifacts called test modelsthat aim to de-
tect faults in model transformations. Specifying test models manually is a tedious task,
complicated by the fact that they must conform to a modellinglanguage’s specification
and numerous well-formedness rules. For instance, the specification of the UML con-
tains numerous inter-related concepts and well-formedness rules for its models such as
class diagrams, activity diagrams, and state machines. Theissue becomes crucial when
a tester needs to create several hundred test models for a model transformation.

The knowledge to create test models can come from various sources. Usually some
tests have a direct correspondence with application requirements, others are conceived



by imagining corner cases that can cause an error in a transformation. Several methods
exist to derive further testing knowledge. For instance, analyzing a model transforma-
tion can reveal locally used classes, properties and possibly some of their values or
bounds on values called afootprint [16]. Similarly, analyzing a localized fault via tech-
niques such as dynamic tainting [12] in a model transformation can reveal patterns in
the input modelling language that evoked the fault. Other sources include existing mod-
els via model slicing [7] and execution traces of a model transformation [3]. However,
most of this knowledge is incomplete orpartial in the sense that it must be completed
and certified as a valid input test model that conforms to the well-formedness rules and
constraints of the modelling language. We face and rise to three challenges:

Challenge 1: How can we express partial knowledge in a modelling language? We call
the artifact containing this knowledge apartial model.

Challenge 2: How can we automatically complete a partial model?
Challenge 3: Are these automatically completed models effective in detecting the same

faults that a human-made model containing the partial knowledge detects?

In this paper, we provide a methodology to generate effective test models from
partial models and a semi-automated supporting tool [25]. The methodology to gen-
erate complete test models from partial knowledge is divided into two phases. In the
first phase, we need to specify partial model(s) as required by Challenge 1. We pro-
pose to represent a partial model as a model conforming to a relaxed version of the
original input metamodel of the model transformation. The relaxed metamodel allows
specification of elements in a modelling language without obligatory references, con-
tainments, or general constraints that were in the originalmetamodel. Our tool adopts
the transformation in [24] to generate a relaxed metamodel suitable to specify a partial
model. In the second phase, we automatically complete partial models by integrating
our tool PRAMANA [26] as required byChallenge 2. PRAMANA transforms the input
metamodel to a base constraint satisfaction problemAb in Alloy [15]. In this paper, we
re-write partial models aspredicates in Alloythat are juxtaposed toAb. We also specify
finite bounds on the satisfaction problem called thescope. The scoping strategy can be
modified depending on whether we would like to generate minimally sized or large test
models. We solve the constraint satisfaction problem in Alloy using a SAT solver to
generate one or more test models that complete the partial models and satisfy all well-
formedness rules of the input modelling language. If the partial model conflicts with
a modelling language constraint, which has higher priority, we do not generate a test
model, but we give feedback to the tester about the partial model being invalid. Our ap-
proach is applicable to transformations written using model transformation languages
(e.g., ATL [17], Kermeta [22]) or also general-purpose languages (e.g., Java).

Finally, we experimentally evaluate a case study, to tacklethe lastChallenge 3, but
also to show the benefits of our methodology in drastically reducing the manual aspects
of test specification in MDE. Our experimentation shows thata set of small partial mod-
els can detect all the faults that human-made complex modelsdetect. We compare, by
usingmutation analysisfor model transformations [11] [21], the bug-detecting effec-
tiveness between a test set of completed partial models and human-made test models.
In our experiments, we employ the representative case studyof transforming simplified
UML class diagram models to database (RDBMS) models calledclass2rdbms. Mutation



analysis on this transformation reveals that a set of 14 concise partial models can detect
the same bugs as 8 complex man-made models. The 8 complete models contain more
than twice (231 vs. 109) the number of elements compared to partial models. It is also
important to note that the complete models were constructedmeticulously to satisfy
well-formedness rules while the partial models contain loosely connected objects that
are automatically linked by our tool. The partial models arenoise-free in the sense that
they illustrate thetesting intentprecisely without the clamor of well-formedness rules.
This result suggests that concise expression or extractionof partial knowledge for test-
ing is sufficient, comparatively effective, and less tediousthan manually creating test
models hence solvingChallenge 3and promoting our approach.

The paper is organized as follows. In Section 2 we present therepresentative case
study for transformation testing. In Section 3 we present our integrated methodology
to generate complete test models from partial knowledge. InSection 4 we present our
experimental setup and results. In Section 5 we discuss related work. We conclude in
Section 6.

2 Case Study

In the paper, we consider the case study of transforming simplified UML Class Diagram
models toRDBMS models calledclass2rdbms. We briefly describeclass2rdbms in this
section and discuss why it is a representative transformation to validate our approach.

For testing a model transformation, the user provides inputmodels that conform
to the input metamodelMM (and possibly transformation pre-conditionpre(MT)). In
Figure 1, we present the simplifiedUMLCD input metamodel forclass2rdbms. The con-
cepts and relationships in the input metamodel are stored asanEcore model [10] (Figure
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OCL Invariants

context Class  

 inv noCyclicInheritance: 

  not self.allParents()->includes(self) 

 inv uniqueAttributesName: 

  self.attrs->forAll(att1, att2 | 

   att1.name=att2.name implies att1=att2) 

context ClassModel  

 inv uniqueClassifierNames: 

  self.classifier->forAll(c1, c2 | 

   c1.name=c2.name implies c1=c2) 

 inv uniqueClassAssociationSourceName : 

  self.association->forAll(ass1, ass2 | 

   ass1.name=ass2.name implies  

   (ass1=ass2 or ass1.src != ass2.src)) 

(b)

Fig. 1. (a) Simplified UML Class DiagramEcore Metamodel (b)OCL constraints on the MM



1 (a)). Part of all the invariants on the simplifiedUMLCD Ecore model, expressed inOb-
ject Constraint Language (OCL) [23], are shown in Figure 1 (b). TheEcore model and
the invariants together represent the true input metamodelfor class2rdbms. TheOCL
andEcore are industry standards used to develop metamodels and specify different in-
variants on them.

For this paper we use the Kermeta implementation ofclass2rdbms, provided in [21].
The transformationclass2rdbms serves as a sufficient case study for several reasons.
The transformation is the benchmark proposed in the MTIP workshop at the MoDELS
2005 conference [6] to experiment and validate model transformation language features.
The input domain metamodel of simplifiedUMLCD covers all major metamodelling
concepts such as inheritance, composition, finite and infinite multiplicities. The con-
straints on the simplifiedUMLCD metamodel contain both first-order and higher-order
constraints. There also exists a constraint to test transitive closure properties on the in-
put model such as there must be no cyclic inheritance. The transformation exercises
most major model transformation operators such as navigation, creation, and filtering
(described in more detail in [21]) enabling us to test essential model transformation
features.

3 Methodology

We present a methodology to generate complete models from partial models, and the
supporting tool [25] we developed. We describe the process in three phases: 1) Partial
Model Specification, 2) Transformation to ALLOY , 3) Model Completion.

1) Partial Model Specification

A partial model is essentially a graph of elements such that:(1) The elements are in-
stances of classes in the modelling language metamodelMM (2) The partial model does
not need to conform to the language metamodelMM or its invariants expressed in a tex-
tual constraint language such asOCL. A complete model on the other hand contains all
the objects of the partial model and additional objects or property value assignments in
new/existing objects such that it conforms both to the metamodel and its invariants.

In the first phase, the user can specify partial models using an automatically-genera-
ted relaxed language. Given an input metamodelMM we generate a relaxed metamodel
MMr using a relaxation transformation as shown in Figure 2 (a). The transformation is
adopted from Ramos et al. [24]. The relaxed metamodelMMr allows the specification
of partial models that need not satisfy a number of constraints enforced by the original
metamodelMM. In Figure 2 (b), we show the relaxed metamodel derived from the sim-
ple class diagram metamodel shown in Figure 1 (a). The relaxed metamodel allows the
specification of partial models in a modelling language. Forinstance, in Figure 4(a), we
show a partial model specified usingMMr . It is important to clarify that PObject acts as
a linking object to another metamodel that allows writing ofpatterns calledmodel snip-
petson the relaxed metamodel. for a pattern-matching framework.This pattern matching
metamodel from Ramos et al.[24] is not used in this paper and is hence not shown. It
is interesting to note that the partial model specified usingMMr allows specification
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Fig. 2. (a) Metamodel relaxation to help specifying a partial model(b) Relaxed metamodelMMr

of objects required for testing. For instance, we specify Class and Association without
the need to specify their containment in ClassModel. Similarly, a full specification of
all property values is not required. The only properties specified in the partial model
are Class.ispersistent, Association.src, Association.dest, and Class.parent. On the con-
trary, a model that conforms toMM, must satisfy the metamodelMM’s constraints and
its well-formedness rules such as no cyclic inheritance such as in Figure 1(a), (b). Us-
ing OCL [23] constraints is another way to specify partial models. However, it is more
complex for the tester to write an OCL constraint equivalentto a partial model: it is
based on the completeMM to navigate the model from its root to the constrained con-
cepts. For instance, whereas a partial model constrains oneclass to have its attribute
is attribute = true is made only with this class with only this attribute initialized,
the same constraint written in OCL is:

i n p u t . c l a s s i f i e r . s e l e c t ( c| c . o c l I s Ty p e ( C l as s ) ) . e x i s t s ( cs| cs . a t t r s . e x i s t s ( a| a . i s p r i m a r y = t r u e ) )

In our approach, the concepts in the partial model are those that are available inMM
but no one is mandatory.

2) Transformation to A LLOY

In the second phase, we transform the original metamodelMM to Alloy [15]. We in-
tegrate the tool PRAMANA presented in Sen et. al. [26], for the transformation in [25].
PRAMANA first transforms a metamodel expressed in the Ecore format using the trans-
formation rules presented in [26] to ALLOY . Basically, classes in the input metamodel
are transformed to ALLOY signatures and implicit constraints such as inheritance, op-
posite properties, and multiplicity constraints are transformed to ALLOY facts. Sec-
ond, PRAMANA does not fully address the issue of transforming invariantsand pre-
conditions expressed on metamodels in the industry standard OCL to ALLOY . The au-
tomatic transformation ofOCL to ALLOY presents a number of challenges that are
discussed in [1]. We do not claim that allOCL constraints can be manually/automat-
ically transformed to ALLOY for our approach to be applicable in the most general
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case. The reason being thatOCL and ALLOY were designed with different goals.OCL
is used mainly to query a model and check if certain invariants are satisfied. ALLOY

facts and predicates on the other hand enforce constraints on a model. The core of AL-
LOY is declarative and is based on first-order relational logic with quantifiers while
OCL includes higher-order logic and has imperative constructsto call operations and
messages making some parts ofOCL overly expressive for the purpose of finite-domain
constraint solving. In our case study, we have been successful in manually transforming
all constraints on the simplifiedUMLCD metamodel to ALLOY from their originalOCL
specifications. Can we fully automate this step? This question remains to be answered
in our approach. However, the manual transformation is a onetime mental effort for a
fixed set of constraints.

The ALLOY model generated in the previous phase has to be extended withthe
information coming from the partial test models. A partial model, such as in Figure
4 (a), is manually re-writtento an ALLOY predicate as shown in Figure 4 (b). For
the translation we navigate all objects of a certain type andput them together as an
ALLOY predicate. The predicate states that there exists three objects c1,c2,c3 of type
Class such that they are unequal, and only c1.ispersistent =True. The Class objects c2
and c3 inherit from c1. There exists also an Association object a1 such that its source
a1.src is Class object c2 and destination a1.dest is c3. The name properties of the Class
objects c1,c2,c3 and Association object a1 are not specified. They also do not contain
a primary attribute which is mandatory for the transformationclass2rdbms. The partial
model objects also do not have to be contained in a ClassModelobject. This process
can be automated to generate a concise and effective ALLOY predicate. For instance,
in [28], the authors have automated the transformation of partial models specified in a
model editor. It can also be improved to consider negative application conditions (false-
positives) or bounds on maximum/minimum of objects that canbe specified in a partial
model.

3) Model Completion

The final phase in our methodology is that of solving the translated ALLOY predicate
in the executable ALLOY modelAf to obtain one or more complete models.

Model completion requires finite values such as the upper bound on the number
of objects of the classes in theMM, or the exact number of objects for each class, or a
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Fig. 4. (a) Partial Model P3 (b) Re-written Alloy Predicate (c) Complete Model from P3

mixture of upper bounds and exact number of objects for different classes. These values
are called thescope. We call the approach to specify the scope thescoping strategy.
The default scoping strategy is the upper bound defined by thenumber of objects of
each type in the partial model. For objects that are not part of the partial model we
manually fine tune the scope to a minimum value such that a complete model can be
generated. The scope of the top-level container class (ClassModel in our case study)
is often exactly one. The scoping strategy is generated in the form of a ALLOY run
commandthat is finally inserted in the executable ALLOY modelAf as shown in Figure
3. For example, the run command generated and fine-tuned for the partial model in
Figure 4 (a) is:

run p a r t i a l M o d e l fo r e x a c t l y 1 ClassModel , 4i n t , 3 C lass , 3 A t t r i b u t e , 1 P r i m i t i v eD a taTy pe , 1 A s s o c i a t i o n

The above run command ismanually fine-tunedfor Attribute and PrimitiveDataType.
Fine-tuning is necessary in our case study since all Class objects require at least one pri-
mary Attribute object.

The ALLOY model is transformed to a set of expressions in relational calculus by
the ALLOY analyzer. These expressions are then transformed to Conjunctive Normal
Form (CNF) [29] using KodKod. Finally, the CNF is solved using a SAT solver [19].
The low-level SAT solutions are transformed back to XMI models that conform the
initial metamodel. The resulting XMI models are validated by loading them into an
EMF model editor. The editor ensures both the satisfaction with respect to an Ecore
metamodel and OCL constraint checker. The use of an industrial tool helps ensure that
the input models contain objects of valid classes, and conform to all metamodel and
OCL constraints

There is always the option to either automatically/manually fine tune the scoping
strategy to generate big or concise complete models. For instance, in Figure 4 (c), we
show a concise complete model that we generate for the partial model in Figure 4 (a).
One or more non-isomorphic solutions can be generated by ALLOY by adding a sym-
metry breaking constraint for each new solution. The symmetry breaking constraints are
generated and added automatically by Alloy whenever a new solution is requested. This
in-turn allows us to generate several hundred different models that are non-isomorphic
if possible.All elements of the partial model are preserved in the complete test
models. Minimal number of objects are added so that all well-formedness rules



Table 1.Degree of automation in our tool

Aspect of Tool Degree of Automation
Metamodel to Alloy in PRAMANA automatic
OCL to Alloy manual
Metamodel to relaxed metamodel automatic
Partial Model Specification manual
Partial Model to Alloy Predicate currently manual/can be automated [28]
Solution Scoping default and manually tunable
Solving Alloy Model from API in P RAMANA automatic
XMI model instance from solution in PRAMANA automatic

and other constraints are satisfied. In Table 1, we present the degree of automation
achieved in our tool.

4 Experiments

In this section we perform experiments to address two questions:

Q1 Can tests derived from partial models detect the same faultsthat human-made mod-
els detect?

Q2 Are partial models more concise than equivalently powerfulhuman-made models?

The inputs to our experiments are (a) the simplifiedUMLCD input metamodel from
class2rdbms, (b) a set of well-formedness rules andclass2rdbms pre-conditions in
OCL. The experimentation proceeds as follows:

1. A set of random faults are injected in theclass2rdbms model transformation, using
a mutation tool;

2. A first modeler, aware of the previous mutations, developsa set of models that kills
all the injected faults;

3. A second modeler, aware of the mutations, develops a set ofpartial models to kill
all the injected faults, following our approach;

4. We measure the size of test models and compare the effectiveness of the two test
sets.

The two modelers are both experienced in testing and modeling. For our final evalu-
ation, we use a Macbook Pro Intel dual-core processor 2.7 GHz, 8 GB RAM to generate
complete models and perform the analysis.

4.1 Injecting Faults in the Model Transformation

Our experimental evaluation is based on the principles of mutation analysis [11]. Mu-
tation analysis involves creating a set of faulty versions or mutantsof a program. A test
set must distinguish the correct program output from all theoutput of its mutants. In



Table 2.Partition of theclass2rdbms mutants depending on the mutation operator applied

Mut. Oper. CFCA CFCD CFCP CACD CACA RSMA RSMD ROCC RSCC Total
# of Mutants 19 18 38 11 9 72 12 12 9 200

practice, faults are modelled as a set of mutation operatorswhere each operator repre-
sents a class of faults. A mutation operator is applied to theprogram under test to create
each mutant injecting a single fault. A mutant is killed whenat least one test model
detects the pre-injected fault. It is detected when programoutput and mutant output are
different. A test set is relatively adequate if it kills all mutants of the original program.
A mutation score is associated to the test set to measure its effectiveness in terms of
percentage of the killed/revealed mutants.

To inject faults in our transformation, we use the mutation operators for model trans-
formations presented by Mottu et al. [21]. These mutation operators are based on three
abstract operations linked to the basic treatments in a model transformation: the naviga-
tion of the models through the relations between the classes, the filtering of collections
of objects, the creation and the modification of the elementsof the output model. Using
this basis, Mottu et al. defined the following mutation operators:

Relation to the same class change (RSCC):The navigation of one association
toward a class is replaced with the navigation of another association to the same class.

Relation to another class change (ROCC):The navigation of an association to-
ward a class is replaced with the navigation of another association to another class.

Relation sequence modification with deletion (RSMD):This operator removes
the last step off from a navigation which successively navigates several relations.

Relation sequence modification with addition (RSMA):This operator does the
opposite of RSMD, adding the navigation of a relation to an existing navigation.

Collection filtering change with perturbation (CFCP): The filtering criterion,
which could be on a property or the type of the classes filtered, is disturbed.

Collection filtering change with deletion (CFCD): This operator deletes a filter
on a collection; the mutant operation returns the collection it was supposed to filter.

Collection filtering change with addition (CFCA): This operator does the oppo-
site of CFCD. It uses a collection and processes an additional filtering on it.

Class compatible creation replacement (CCCR):The creation of an object is
replaced by the creation of an instance of another class of the same inheritance tree.

Classes association creation deletion (CACD):This operator deletes the creation
of an association between two instances.

Classes association creation addition (CACA):This operator adds a useless cre-
ation of a relation between two instances.

We apply all these operators on theclass2rdbms model transformation. We identify
in the transformation code all the possible matches of the patterns described by each
operator. For each match we generate a new mutant. This way weproduce two hun-
dred mutants from theclass2rdbms model transformation with the partition indicated
in Table 2.

In general not all injected mutants become faults, since thesemantics of some of
them is equivalent to the correct program, and therefore they can never be detected. The
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controlled experiments presented in this paper use mutantspresented in our previous
work [21] where we have clearly identified mutants and equivalent mutants.

4.2 Building Manual Tests

A modeler manually designed a set of test models, by analyzing the 200 faults we in-
jected inclass2rdbms as described earlier. The objective was to obtain a test set able
to kill all the mutants we generated. The resulting test set is composed by 8 models
conforming to the fully constrainedUMLCD modelling domain (metamodel + well-
formedness rules + pre-conditions forclass2rdbms). Together, the hand-made test mod-
els count 231 elements. We used mutation analysis to verify that these 8 human-made
models can kill all 194 mutants (excluding 6 equivalent mutants identified).

4.3 Building Partial Models

For the experimentation, we could have built the partial models from scratch (as it
normally happens) but we prefer to extract partial models from the manual models
derived in the previous phase. We need it to have a direct correspondence between
traditional models and partial models, that is useful in theevaluation. This does not
influence the global experimentation results: from scratchor from a traditional model,
the second modeler wants to kill one mutant. With both methods, only the mutant is
targeted. Additionally with our experimental approach, partial models contain elements
comparable with traditional models.

We incrementally derive our partial models from the 8 human-made models. Given
a reference human-made model (as shown in Figure 5) we extract a partial model (in
Figure 4 (a)). A partial model is extracted from a human-mademodel by keeping only
the useful elements to kill one target mutant. We use our methodology in Section 3
to automatically complete the partial model to get 10 test models. Second, we apply
mutation analysis to obtain a score for the 10 complete test models if the partial model
is solvable. If the mutation score is not 100% we extract morepartial models from the



Table 3.Size Comparison Between Partial Models and Human-made Models

partial model P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

from reference model M1 M1 M1 M3 M5 M6 M3 M4 M7 M3 M4 M2 M1 M8 M1 M2 M3 M4 M5 M6 M7 M8

#ClassModel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

#Class 1 3 3 2 2 2 2 2 3 3 4 1 1 3 4 3 3 3 2 3 2 3

 #name attr. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 3 3 2 3 2 3

 #is_persistent attr. 1 3 1 2 0 0 2 0 0 3 1 0 1 1 4 3 3 3 2 3 2 3

 #parent relation 0 1 2 0 1 1 1 0 0 1 1 0 0 1 3 1 2 1 1 1 0 1

#Association 0 0 1 1 0 2 1 2 0 0 2 0 0 1 1 1 1 2 0 3 0 1

 #name attr 0 0 1 1 0 2 0 0 0 0 0 0 0 0 1 1 1 2 0 3 0 1

 #src relation 0 0 1 1 0 2 1 2 0 0 2 0 0 1 1 1 1 2 0 3 0 1

 #dest relation 0 0 0 0 0 0 1 2 0 0 2 0 0 1 1 1 1 2 0 3 0 1

#Attribute 1 0 0 0 2 0 0 0 2 1 0 1 1 0 4 3 3 3 2 3 3 2

 #is_primary attr. 1 0 0 0 0 0 0 0 2 1 0 1 1 0 4 3 3 3 2 3 3 2

 #name attr. 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 3 3 3 2 3 3 2

 #type relation 0 0 0 0 0 0 0 0 2 1 0 1 1 0 4 3 3 3 2 3 3 2

#PrimitiveDataType 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1

 #name attr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Total #concept 4 7 9 7 7 9 8 8 9 10 12 5 6 8 38 29 30 33 18 37 21 25

Total #concept per set 109 231of partial models: of models:

set of complete models to kill live mutants. We repeat this process until test models
generated from partial models give a 100% mutation score.

For instance, to kill a mutant we extract a partial model P3 inFigure 4 (a) from the
human-made model M1 in Figure 5. The human-made model contains many concepts
(classes, classes’ attributes and relationships), it satisfies the invariants of the meta-
model and the pre-conditions of the model transformation under testclass2rdbms. The
class on top of the partial model matches class B of the reference model, the class on
the left matches class D (both are persistent), the class on the right matches class C
(name, ispersistent, attrs are not concerned with this matching), and the association of
the partial model matches association assoDC. Then the partial model P3 matches the
model M1. We notice that the completed model illustrated in Figure 4 (c) doesn’t match
the model M1 (both subclasses are persistent for instance).

We apply this iterative process to obtain 14 partial models that when completed give
a 100% mutation score. In Table 3, we list the partial models,the reference human-made
models they were extracted from, and the objects they contained. We notice that partial
models do not need specification of all attribute values. Forinstance, the partial model
P3 (Figure 4) has three classes but ispersistent attribute is set to true for only one
of them (true or false or nothing in different partial models). Moreover, thanks to the
relaxed metamodel, we do not have to instantiate the root container class ClassModel
for the partial model. In the right hand side of Table 3, we describe the elements in the
8 human-made reference models. We do not list the abstract classesclassifiersince it is
never instantiated and the propertyattrswhich is redundant for all models.

4.4 Test Sets Comparison

The set of 14 partial models is made of 109 elements while the set of reference models
contain 231 elements which is more than twice. We express less information in the
partial models, considering only testing information based on potential faults simulated
in the mutants. We also need to specify fewer meta-classes and properties in partial



Table 4.Summary of Mutation Analysis

Human‐made

model

Mutation 

Score

of the

model

Partial models

matching

the human‐made

model

Mutation Score

of the 

completed 

partial models

Mutant killed 

by model

also killed by 

completed 

partial models

Additional mutants

killed by the 

completed 

partial models

(% total #mutants)

M1 57.2% P2, P3, P13 87.1% 100% 29.9%

M2 57.2% P1, P12 28.9% 50.5% 0%

M3 49% P1, P4, P7, P10, P12 74.2% 89.3% 39.7%

M4 57.2% P1, P8, P11, P12 85.6% 98.2% 29.4%

M5 35.6% P1, P5, P12 39.7% 100% 4.1%

M6 61.3%
P1, P2, P4, P6, P8, 

P12, P13, P14
83% 100% 21.6%

M7 47.4% P1, P9, P12 56.2% 100% 8.8%

M8 58.2% P1, P12, P14 75.8% 100% 17.5%

8 models 100% 14 partial models 100% 100% 0%

models. Our tool generates complete test models form partial models while satisfying
the metamodel specification, well-formedness rules, pre-conditions, and a finite scope.
In case a partial model violates a pre-condition the tester is notified such that he/she
can modify the partial model to satisfy the constraints. Theconcise size of a partial
model facilitates this process. From these results we deduce that creating partial models
is simpler compared to creating complete human-made modelshence addressingQ2.

In a second experiment, in order to study the resilience in quality (in terms of muta-
tion score) irrespective of solver technology (Alloy and SAT in our case) in our method-
ology, we generate 100 complete models for 14 partial modelsgiving rise to 1400 test
models.

A sample of a completed model is illustrated in Figure 4 (c) for a partial model in
Figure 4 (a). The time taken to generate a complete test modelwas almost instantaneous.
Setting up a problem in CNF for a SAT solver takes about 400 ms for our case study. The
scope to generate complete models is controlled such that the models are structurally
minimal. The integer scope was set to±210, and the number of objects per class was
adjusted such that it either equals the number of objects in the partial model or the
scope is incremented such that a consistent solution is generated. For instance, all Class
objects require a primary Attribute object hence the numberof Class and Attribute
objects were equal or the number of Attribute objects was higher if required by the
partial model.

We compute the mutation score of the human-made models and compare it to the
score obtained by completing partial models. The results ofmutation analysis are sum-
marized in Table 4. The time taken for mutation analysis using 1400 models to detect
200 mutants was about 6 hours and 1 minute.

In Table 4, Column 1 lists the human-made models and column 3 lists the partial
models that match parts of the human-made models. In Column 2, we present the mu-
tation score obtained for a human-made model lets sayMx. In Column 4, we present
the mutation score obtained by the set of completed partial models that matchMx. For



instance, M1 kills 57.2% of all mutants, while its set of completed partial models from
P2, P3, and P16 (3*100 completed models) kills 87.1% mutants. The column 5 lists the
percentage of the mutants killed by reference human-made model that are also killed
by the completed models. In column 6, we also present the mutants additionally killed
by the completed partial models that were not killed by theirreference human-made
model. The decomposition in different lines comparing eachhuman-made model with
its partial models illustrates that (i) a partial model can match several models and that
(ii) a set of several partial models matching one model is more efficient than it. The most
important line is the last one where the results of the entireset of human-made models
and the entire set of completed partial models are the same : both 100 %. A general
conclusion is that both human-made models and completed partial models give a 100%
mutation score hence addressing questionQ1. An in-depth analysis reveals that for 6
human-made models among 8, more than 98% of the mutants killed by the reference
model are also killed by the completed partial models. The completed models from P1,
P12, P14 kill 89.3% of the mutants killed by M3. Only completed models from P1, P12
have a lower score of 28.9% compared to the score of M2 viz. 57.2%.

Despite generating different solutions for the same partial model our mutation scores
remain consistent and comparable to human-made models. We illustrated that a set of
partial models has the same efficiency in revealing bugs thanthe set of human-made
models they match. It is not necessary to write complicated human-made models since
partial models have the same efficiency.

5 Related Work

The work in this paper integrates some contributions comingfrom previous work. In
[26] Sen et al. have introduced a tool CARTIER (now called PRAMANA ) based on the
constraint solving system ALLOY to resolve the issue of generating models such that
constraints over both objects and properties are satisfied simultaneously. PRAMANA

does not integrate a way to translate existing models to ALLOY since it’s thought for
model synthesis, and does not have any support for partial models. In this work we are
able to apply PRAMANA to model completion by feeding it with a suitable translation of
the partial models. The idea of generating test models from partial knowledge developed
from our previous work in [28]. In [28], we present the idea ofgenerating suggestions
to complete models in a domain-specific model editor. We qualify our approach using
our previous work [21], where we extend mutation analysis toMDE by developing
mutation operators for model transformation languages.

We explore two main areas of related work : specifying partial models and test
model synthesis.

The notion of a partial model in MDE has been previously developed for various
objectives. In [14], the authors present the notion ofmodel fragmentsthat are essentially
partial models with test coverage criteria. Similarly, in [24] the authors propose the
notion of model snippets. Model snippets are partial models that are specified on a
relaxed version of the original metamodel. In this paper, weuse the notion of model
snippets to define partial models. In [20], the authors propose partial models as a way



to represent uncertainty and variation in an already available complete model. They use
ALLOY to generate variable complete models.

The second area of related work is about model generation or using partial knowl-
edge to synthesize models for applications such as testing.Model generation is more
general and complex than generating integers, floats, strings, lists, or other standard
data structures such as those dealt with in the Korat tool of Chandra et al. [8]. Korat
is faster than ALLOY in generating data structures such as binary trees, lists, and heap
arrays from the Java Collections Framework but it does not consider the general case of
models which are arbitrarily constrained graphs of objects. The constraints on models
makes model generation a different problem than generatingtest suites for context-
free grammar-based software [18] which do not contain domain-specific constraints.
Models are complex graphs that must conform to an input meta-model specification, a
transformation pre-condition and additional knowledge such as a partial model to help
detect bugs. In [9], the authors present an automated generation technique for models
that conform only to the class diagram of a metamodel specification. A similar method-
ology using graph transformation rules is presented in [13]. Generated models in both
these approaches do not satisfy the constraints on the metamodel. In [27], we present
a method to generate models given partial models by transforming the metamodel and
partial model to aConstraint Logic Programming (CLP). We solve the resultingCLP to
give model(s) that conform to the input domain. However, theapproach does not add
new objects to the model. We assume that the number and types of models in the partial
model is sufficient for obtaining complete models. The constraints in this system are
limited to first-order horn clause logic. Previous work exists in mapping UML to AL-
LOY for a similar purpose. The tool UML2Alloy [2] takes as input UML class models
with OCL constraints. The authors present a set of mappings betweenOCL collection
operations and their ALLOY equivalents.

6 Conclusion

Manually creating test models that conform to heterogeneous sources of knowledge
such as a metamodel specification, well-formedness rules, and testing information is a
tedious and error-prone operation. Moreover the developedtest models are often un-
readable, since their complexity obfuscates the testing intent.

In this paper, we present methodology based on models from partial knowledge
to simplify the development of effective test models. The emphasis in this paper is to
push towards the development of partial models by analyzingrequirements, existing
test models [7], the transformation under test [16], or fault locations [12]. We provide a
semi-automated tool [25] to support the development of partial models and completing
them by automatic solving. We show that the specification of partial models is concise,
they can detect the same bugs that a human-made model can detect, and they precise
capture testing intent. We also perform experiments show that partial models are effec-
tive irrespective of the underlying solver (which is Alloy in this case). Different non-
isomorphic complete models obtained by solving a single partial model consistently
detect the bug the partial model was initially targeted to kill.



We believe our work reinforces a human-in-the-loop testingstrategy that sits in be-
tween two prominent schools of thought: manual test case specification and automated
test generation. Partial models are an effective way to insert human testing knowledge
or sophisticated analysis in a purely automated generationmethodology. The approach
presented in the paper contains steps that are automated andthose that are not. For in-
stance, the transformation of a partial model to ALLOY could be automated to a certain
degree. The scoping strategy can be improved using various heuristics to synthesize
a diverse set of complete models. We would also like to explore strategies to combine
mutually consistent partial models to generate a smaller set of complete test models. Fi-
nally, we would like to see the creation of industry-strength tools that allow convenient
ways to specify partial models with fully automated complete test model synthesis.
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