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Abstract

The real-time operation of a fleet of vehicles introduces challenging optimization prob-
lems researches in a wide range of applications, thus, it is appealing to both academia and
practitioners in industry. In this work we focus on dynamic vehicle routing problems and
present an event-driven framework that can anticipate unknown changes in the problem
information. The proposed framework is intrinsically parallelized to take advantage of mod-
ern multi-core and multi-threaded computing architectures. It is also designed to be easily
embeddable in decision support systems that cope with a wide range of contexts and side
constraints. We illustrate the flexibility of the framework by showing how it can be adapted
to tackle the dynamic vehicle routing problem with stochastic demands. Computational
results show that while our approach is competitive against state-of-the art algorithms, it
still ensures greater reactivity and requires less assumptions (e.g., demand distributions).

Keywords: dynamic vehicle routing, event-driven framework, multiple scenario ap-
proach, online stochastic optimization, DVRPSD, DVRP
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1 INTRODUCTION

1 Introduction

The problem of operating a fleet of vehicles arises in many contexts, from pickup and delivery of
goods to relocation of trucks in carrier companies. More specifically, Vehicle Routing Problems
(VRPs) deal with the design of a set of minimal-cost vehicle routes that serve the demand for
goods or services of a group of geographically spread customers, satisfying a group of operational
constraints. From an information perspective, such problems generally include two dimensions:
evolution and quality of information [48]. Information evolution relates to the fact that in some
problems the information available to the planner may change during the execution of the routes,
for example, with the arrival of new customer requests. Information quality reflects possible
uncertainty on the available data, for instance, when the demand of a customer is only known
as a range estimate of its real demand. In addition, depending on the problem and the available
technology, vehicle routes can either be designed a-priori or online. Based on these dimensions,
Table 1 identifies four categories of routing problems.

Information quality

Deterministic input Stochastic input

Information

evolution

Input known

beforehand
Static and deterministic Static and stochastic

Input changes

over time
Dynamic and deterministic Dynamic and stochastic

Table 1: Taxonomy of vehicle routing problems by information evolution and quality.

The static and deterministic category includes the classical Vehicle Routing Problem (VRP)
as defined by Dantzig [13] in which all information is known beforehand and with certainty.
In contrast, problems from the static and stochastic class are characterized by input partially
known as random variables, which realizations are only revealed during the execution of the
routes. Additionally, it is assumed that routes are designed a-priori and only minor changes
are allowed afterwards. A common example is the VRP with Stochastic Demands (VRPSD), in
which customer demands are uncertain. We refer the interested reader to the surveys by Cordeau
et al. [11], Baldacci et al. [2], Laporte [29, 30], and Toth and Vigo [56], for a recent review of
these two classes of problems.

In dynamic and deterministic problems, also referred to as online problems, part or all of the
input is unknown and revealed dynamically and unpredictably during the design or execution
of the routes. On the other hand, dynamic and stochastic problems include partial stochastic
knowledge on the dynamically revealed information. For these problems, vehicle routes are
redefined in an ongoing fashion, requiring technological support for real time communication
between the vehicles and the decision maker (e.g., mobile phones and global positioning systems).
Techniques for both classes are reviewed in the studies by Ichoua et al. [25] and Pillac et al. [42].

Dynamism in routing can emerge from different aspects of the problem. The most common
source of dynamism is the arrival of new customers with a demand for goods [22, 24, 36] or
services [4, 17, 19]. Other researchers consider dynamically revealed demands for a set of known
customers [40, 51, 52], dynamic travel times [33, 43, 54], and vehicle availability [31, 32].

Fig. 1 illustrates the Dynamic Vehicle Routing Problem (DVRP), in which new customers
appear while the vehicle is executing its route. Before the vehicle leaves the depot (at time t0),
an initial route plans to visit the currently known customers (A,B,C,D,E). While the vehicle
executes its route, two new customers (X and Y ) appear at time t1 and the initial route is
adjusted to accommodate them. Finally (at time tf ), the executed route is (A,B,C,D, Y,E,X).
This example reveals that dynamic routing requires to adjust the routes in an ongoing fashion,
which implies real-time communication between vehicles and the dispatching center.

Until recently, the lack or high costs of real-time communication technologies steered vehicle
routing research away from dynamic problems [14]. Nevertheless, recent advances in communi-
cation and geolocation technologies now allow companies to economically track their fleet in real
time. These new technologies lead to the development of Intelligent Transport Systems (ITS),
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Figure 1: Example of dynamic vehicle routing

and more precisely Advanced Fleet Management Systems (AFMS), that combine hardware and
software solutions to provide real time information on the fleet, customers, and road networks.

The development of ITS and AFMS creates new challenges and opportunities for operations
research. The advent of these systems demands a new class of efficient optimization algorithms to
handle various difficult aspects of fleet management. Nevertheless, Crainic et al. [12] suggest that
while the hardware part of ITS has considerably evolved, the corresponding Decision Support
Systems (DSSs), and optimization models in particular, have not yet reached their maturity.

From a practical perspective, we can identify the following desirable characteristics of a
dynamic routing DSS:

• Event-driven. Advances in technology also mean that organizations are now able to react
quickly to changes in their environment. Having a DSS which is periodically updated
implies longer reaction delays. Thus, a DSS should be driven by the same transactional
events that keep the business operating (e.g., customer requests).

• Parallelized. As dynamic routing requires fast decisions, the underlying optimization al-
gorithms should be parallelized [12, 25], taking advantage of the now ubiquitous parallel
(and distributed) computing architectures able to perform several tasks in parallel.

• Flexible. The landscape of vehicle routing problem variants is vast [14]. Thus, a DSS should
be easily extensible to account for specific aspects of different applications in a continuously
evolving environment.

In this paper, we propose an application-oriented optimization framework for dynamic and
stochastic vehicle routing that is event-driven, parallelized and flexible. The rest of this docu-
ment is organized as follows. Section 2 reviews the literature on dynamic routing optimization
techniques and related decision support systems. Section 3 describes the proposed framework,
Section 4 illustrates its application to the dynamic VRPSD, and Section 5 presents experimen-
tal results. Finally, Section 6 concludes this paper and discusses how the framework can be
generalized and extended to other dynamic optimization settings.

2 Literature review

A growing body of research has been carried out on dynamic routing, leading to new optimization
techniques and innovative DSSs. In this section we will review some of the most significant
contributions in the dynamic routing field.

2.1 Dynamic routing

A wide range of techniques have been developed to address the dynamic nature of routing
problems. Dynamic methods can be divided in two categories: non-anticipative, which only
react to updates in the problem data; and anticipative, which take into account knowledge
on the dynamically revealed information to anticipate the future. Non-anticipative methods
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2 LITERATURE REVIEW 2.1 Dynamic routing

are designed for dynamic and deterministic problems. They generally are a direct adaptation
of static methods such as integer programming [28, 59], large neighborhood search [19], tabu
search [4, 17, 23], genetic algorithms [7, 20, 57], and ant colony optimization [16, 39]. Conversely,
anticipative methods often make better decisions by using stochastic information available in the
form of probability distributions. Anticipative methods are further classified into one of two
families: stochastic modeling or sampling.

Anticipative methods based on stochastic modeling accurately describe the problem’s stochas-
ticity. In an early work, Powell et al. [44] formulated the DVRP as a Markov Decision Process
(MDP). Nevertheless, the exponential growth of the state and action spaces causes traditional
MDPs to stall. This problem has led to the development of Approximate Dynamic Program-
ming (ADP). The main idea behind ADP is to decompose the time in decision epochs. At each
decision epoch the goal is to minimize the current deterministic cost plus an approximation of
the expected future cost. This technique has been successfully applied to different dynamic fleet
management problems [18, 47, 53], freight transport problems [45, 46], and vehicle routing with
stochastic demands [40]. The strength of ADP is that it accurately encapsulates stochastic in-
formation in the model, but at the expense of a higher complexity and stronger assumptions on
the probability distributions.

On the other hand, anticipative methods based on sampling are to some extent simpler, but
require more effort to capture the problem’s stochasticity. These methods sample the probability
distributions to generate scenarios that are used to make decisions. Such approaches include
the dynamic sample scenario hedge heuristic proposed by Hvattum et al. [21], the tabu search
heuristics proposed by Ichoua et al. [24] and Attanasio et al. [1], and the Multiple Scenario
Approach (MSA) proposed by Bent and Van Hentenryck [6].

Among the anticipative methods based on sampling, MSA is unique in the sense that it pro-
vides a more general framework for dynamic problems. In particular, MSA maintains a pool of
scenarios with realizations of the problem random variables and a solution to the corresponding
deterministic problem. A distinctive feature of MSA is that the next customer to visit is selected
based on the whole scenario pool by means of a decision process. Fig. 2 presents a high level

Start
(t=0)

Initialize pool

t=t+1

t=tf?
NO

YES

Decision Next customer
to visit

Generate & optimize
 scenarios

End

Update pool

Figure 2: Overview of the original MSA algorithm

flow diagram of MSA. The algorithm starts by initializing the scenario pool based on the cur-
rently known information. At time step t, MSA updates the scenario pool to reflect the current
environment state, selects the next customer, and optimizes the scenarios. As new information
is disclosed, some scenarios might become obsolete and are removed from the pool, leaving space
to new ones.

The strength of MSA is that optimization is performed on scenarios and only requires to
solve a static and deterministic problem. Therefore this approach is very flexible as it can
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3 PROPOSED FRAMEWORK 2.2 Decision support systems for dynamic routing

virtually be adapted to any problem, provided an optimization algorithm for its static and
deterministic version. Nonetheless, its integration in a real-world context is far from trivial,
especially considering communication between the method and its environment. Additionally,
the fact that it relies on time epochs induces delays between the arrival of new information and
its processing.

2.2 Decision support systems for dynamic routing

Zak [60] surveyed a wide range of DSSs for static vehicle routing. With our focus being on
dynamic routing, this section reviews the body of research in this area.

The operation of a fleet of vehicles in an urban area is a key component of city logistics [55],
and the core subject of various DSSs developments. For instance, Fleischmann et al. [15] pre-
sented an event-based DSS that takes into account changing travel times and the arrival of new
customers in the context of a local area courier service. The framework continuously optimizes
a single routing plan in which new customers are inserted either with an assignment model
or insertion algorithms. A similar problem was addressed by Attanasio et al. [1] who showed
that the proposed DSS allows for an efficient operation (low administrative cost) as the fleet
size (couriers) increases, a key competitive advantage in this sector. Likewise, Barcelo et al. [3]
presented a flexible DSS for vehicle routing and scheduling in city logistics and its application
to the delivery of goods in two Italian cities. Their DSS includes a real time traffic simulator,
connection to common GIS systems, and various routing models and optimization modules. In
a different context, Zeimpekis et al. [61] developed a DSS that takes into account unexpected
events such as traffic conditions or vehicle breakdowns to re-optimize an existing distribution
schedule. Li et al. [31] also studied vehicle breakdowns in an application to waste collection in
Brazil. Dynamic DSSs generally rely on specific technology to ensure the communication be-
tween vehicles and the dispatching center [61]. In contrast Bieding et al. [8] propose a DSS based
on a WAP (Wireless Application Protocol) server and mobile phones to manage the delivery of
newspapers.

As pointed out by Crainic et al. [12], there is a gap between state-of-the-art optimization
techniques and the optimizers embedded in real-life DSSs. This may be explained by the com-
plexity and level of specialization of certain approaches, that render difficult their extension
and integration in an application-oriented context. To address this issue, we propose a flexible
optimization framework, based on MSA [58], easily embeddable in any DSS for dynamic routing.

3 Proposed framework

The framework, called jMSA, is a flexible, parallel, and event-driven Java implementation of
the multiple scenario approach. The proposed framework has been designed to facilitate and
accelerate the development and deployment of MSA-based algorithms embeddable in DSSs. This
section presents the proposed framework in detail.

3.1 Scenarios and decisions

Scenarios capture uncertainty in MSA. Each scenario contains a realization of the random vari-
ables, and a solution to the static and deterministic problem defined by this realization. For
instance, in the Dynamic VRPSD (DVRPSD), in which vehicles can be dynamically rerouted,
each scenario contains a realization of the customer demands; while in the DVRP, it contains
a set of sampled (potential) customers, aside from the known customers. An optimization al-
gorithm is used to solve the static and deterministic routing problem defined by both actual
and sampled data. Fig. 3 illustrates how scenarios are generated for the DVRP. Solely based on
the actual customers, the optimal tour would be (A,B,E,D,C), which ignores two zones (gray
areas) where customers are likely to appear. By sampling the customer spatial distributions,
customers X, Y and Z are generated, and the new optimal tour is (C,X, Y,B,A, Z,E,D). Re-
moving the sampled (potential) customers leads to the tour (C,B,A,E,D) which is suboptimal
based on a myopic cost evaluation, but leaves room to accommodate new customers at a lower
cost.
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Figure 3: Scenario generation in MSA

Another key element in MSA is the decision process, which defines how to select the next
customer to serve based on the information of the scenario pool. MSA’s accuracy relies to a
great extent on the decision process, being the most common algorithms expectation, consensus,
and regret. The expectation algorithm [9] evaluates the cost of visiting each customer first, by
forcing its visit and reoptimizing each scenario. The consensus algorithm [6] selects the customer
appearing first with the highest frequency. Finally, the regret algorithm [5] approximates the
cost of visiting each customer first.

The jMSA framework unifies these decision processes in the generic Algorithm 1, in which
a subset of candidate customers (line 1) is evaluated against the scenario pool (line 6) to select
the best one (line 9). The evaluation of each customer reflects how desirable it is to serve it first
depending on the objective. In most routing problems, the customer with the highest evaluation
should be the one that ensures the lowest expected routing distance when visited first.

Algorithm 1 A general algorithm for the decision process in jMSA

Input: scenario pool P, set of pending customers R
Output: r∗ the next customer to serve
1: C ← selectCandidates(R,P)
2: f∗ ← −∞, r∗ ← ∅
3: for all r ∈ C do

4: f ← 0
5: for all s ∈ P do

6: f ← f + evaluateRequestProfit(r, s)
7: end for

8: if f > f∗ then

9: f∗ ← f, r∗ ← r

10: end if

11: end for

12: return r∗

3.2 Event-driven interaction

The original description of MSA is implicitly based on the notion of time steps introduced by
Kilby et al. [27]. By design, this time discretization in intervals implies a time lag between
an update in the problem data, such as the arrival of a new customer, and the response of
the system, corresponding to the time before the next time step. Consequently, in jMSA we
propose a description of MSA from an event-driven perspective, suitable for its integration as a
component of a real-world decision support system.

Fig. 4 illustrates a typical sequence of events while routing a single vehicle in a dynamic
context. The environment refers to the real-world, the DSS is assumed to be based on the MSA
algorithm, and active (idle) times are represented with a continuous (dotted) segment. While
the vehicle is parked at the depot, the MSA procedure initializes a scenario pool based on the
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Figure 4: Time line of events for a the dynamic routing of a single vehicle

currently known customers. Once the vehicle is ready (first dotted arrow), MSA analyzes the
scenario pool and instructs the vehicle to service customer A (first double-headed arrow). While
the vehicle is traveling towards customer A, MSA generates and reoptimizes the scenario pool.
When the vehicle reaches its destination, an event is sent to the system (second dotted arrow)
and triggers an update of the scenario pool. The remaining service time is used by MSA to
reoptimize the pool until the vehicle is ready to depart. This event (third dotted arrow) triggers
the decision procedure, which recommends visiting customer B (second double-headed arrow).
At some point in time while the vehicle is traveling to B, an event (last dotted arrow) triggers
an update of the scenario pool. Such event could be the arrival of a new customer in the DVRP,
or an update in the traffic information in the case of routing with dynamic travel times.

The main advantage of this event-driven interaction between the environment and the system
is that it increases the responsiveness of the DSS by feeding real-time information to the system
and communicating decisions without delay.

3.3 Framework design

As illustrated in Fig. 5, the proposed framework is divided in two layers: a kernel, common to
all dynamic combinatorial optimization problems; and a problem layer, with problem-specific
components.

Problem layer

Kernel

MSA 

Procedure

Event 
Handler 
Manager

Callback 
Manager

Component 
Manager

Scenario 
Pool

Global 
Parameters

Generate 
Handler

Optimize 
handler

Decision 
Handler

Scenario 
Generator

Scenario 
Optimizer

Decision Scenario

DVRP 
Scenario 
Generator

VRP 
Scenario 
Optimizer

Consensus 
VRP

Scenario

jMSA framework

Callback

ComponentInterface Inheritance AssociationCore componentLegend:

Event 
Queue

Figure 5: Design overview of the jMSA framework
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The central component of the kernel is the MSAProcedure, which contains the logic of the al-
gorithm and instantiates all other components. The MSAProcedure is configured via the Global-
Parameters that can be set programmatically or via a configuration file.

The event-driven behavior is modeled using two elements: events and event handlers. Fig. 6
shows how events drive the framework. The MSA procedure continuously dequeues events from
the event queue, and then processes them by using the corresponding event handler in the event
handler manager.

Events are designed to increase the framework responsiveness. To ensure that important
events are handled first, events are prioritized and the event queue is sorted accordingly. Addi-
tionally, some events are preemptive, meaning that handling of a non-preemptive event is always
aborted in favor of a preemptive event.

MSA procedure

Initialize 
scenario pool

Handle 
event

End

Start
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NOEnd of 
the day?
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next event

Event handler manager

Generate handlerGenerate handler

NO

Optimize scenario

Add scenario 
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Generate scenario

YES

Pool
full?

Scenario 
Optimization

Decision handlerDecision handler

Evaluate
scenarios
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to be served

Optimize handlerOptimize handler

Optimize scenarios

Scenario 
Generation

… (other handlers)

Event queue

New 
Customer

Resource

Pool 
Update

Decision

Scenario 
Generation

Scenario 
Optimization

Legend: Process Event 
(non-preemptive)

Event
(preemptive)

Figure 6: Event-driven MSA framework

Event handlers define at a very high level what actions are triggered by a given event. By
design, these handlers do not contain any problem-specific logic which is rather delegated to
components. The component manager contains references to all components and acts as an
interface between event handlers and problem-specific implementations.

Fig. 7 illustrates how event handlers and components interact by means of the Scenario-

Generation event. First, GenerateHandler calls the generateScenariomethod of the Component-
Manager that internally uses the registered ScenarioGenerator. Then it calls the optimize-

Scenariomethod, delegated to the instance of ScenarioOptimizer in use, and adds the scenario
to the pool. The process repeats until the pool is full, moment when the event handling ter-
minates by raising a ScenarioOptimization event that is further pushed to the event queue.

The framework includes a callback system that provides users with further control over the
MSA procedure. Users may implement a callback simply by extending the generic Callback

provided in the framework, and registering it in the MSA procedure. User-defined callbacks
are automatically invoked at specific points of the procedure and allow customized uses such as
logging to a file or dynamic parameter tunning.

Tied, yet decoupled to the kernel, the jMSA framework offers a problem-specific layer con-
taining components that provide ready-to-use functionalities for common dynamic combinatorial
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ComponentManager ScenarioGeneratorGenerateHandler ScenarioOptimizer

generateScenario

optimizeScenario

addToPool

scenario

scenario

While pool not full

generateScenario

handleEvent

raise(ScenarioOptimization)

MSAProcedure

Figure 7: Interaction between the GenerateHandler and the different components.

optimization problems. Fig. 5 illustrates some components that could be combined for the DVRP.
Consensus is an implementation of the consensus algorithm that is common to many dynamic
problems solved under MSA; VRPScenario is an implementation of Scenario for routing prob-
lems containing a set of routes; VRPScenarioOptimizer is a generic solver for the VRP; and
finally DVRPScenarioGenerator is the only component specific to the DVRP that is responsible
for the generation of new scenarios.

This two-layer architecture ensures flexibility and extensibility. While kernel elements are
defined at a high level and are designed to be problem independent, the problem layer provides
implementations for specific problems. Thus, users only have to define or extend components, in
particular for scenario generation and optimization, without worrying how they will be integrated
in the MSA procedure.

3.4 Parallelization via multi-threading

The ubiquitous presence of multi-core processors can be exploited in parallelizable algorithms
such as MSA. Nevertheless, parallelization often comes at the price of a higher (implementa-
tion) complexity. The jMSA framework offers multi-threaded parallelization of the most time-
consuming tasks, hiding it from the user. That is, under jMSA, users do not have to explicitly
write a parallel algorithm, but simply rely on the ComponentManager which internally distributes
tasks among different threads.

Fig. 8 illustrates how threads interact within the jMSA framework. At time t0 theMSA thread
dequeues an OptimizePool event, and processes it with the corresponding OptimizeHandler. In
parallel to the MSA thread, two other threads are started by the ComponentManager to optimize
the scenarios of the pool. At t1, a preemptive NewCustomer event is pushed by the environment,
causing the MSA thread to prematurely abort the optimization. To avoid inconsistencies, the
main thread waits for the pool executor to terminate, sends a signal to the callback thread
to notify that the OptimizePool event was handled, and raises a GenerateScenarios event.
Finally, the procedure dequeues the NewCustomer event, which has a higher priority than the
Decision event, and processes it.

It is worth noting that aside from time-consuming tasks such as scenario generation and
optimization, parallelization is also used to execute callbacks. Callbacks can be particularly useful
when writing files or updating the state of a user interface as it does not affect the performance
of the main algorithm. This behavior can be overridden using synchronous callbacks.
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4 Application to the dynamic VRP with stochastic de-
mands (DVRPSD)

This section illustrates the flexibility of the jMSA framework on the dynamic VRP with Stochas-
tic Demands (DVRPSD).

4.1 Problem description

The VRPSD consists in designing a-priori a minimal expected-cost routing plan composed of
K routes, such that each customer is visited exactly once. The fundamental difference between
the classic VRP and the VRPSD is that in the latter customer demands are known as random
variables. The randomness in the VRPSD implies that a customer demand realization might
exceed the vehicle remaining capacity, leading to a route failure that requires a recourse action.
An intuitive recourse action is for the vehicle to go back to the depot to restore its initial capacity
and then resume its route [34], or to allow the service of additional customers before returning to
the depot [41]. It is important to stress that in this context all customers are known beforehand
and the only dynamically revealed information is the realization of the customer demands.

Uncertainty in the VRPSD has been addressed by various solution approaches, of which the
two most studied are the Chance Constrained Programming (CCP) and the Stochastic Program-
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4 APPLICATION TO THE DVRPSD 4.2 Scenarios and decisions

ming with Recourse (SPR). Both methods are based on a two-stage approach: the first phase,
builds robust routing plan; while the second phase takes place, takes recourse (corrective) actions
as the realizations of the customer demands are unveiled. The conceptual difference between the
two approaches lies in the objective of the first-stage optimization: in CCP, the goal is to ensure
an upper bound on the probability of a failure, regardless of the expected cost of the second
phase; while SPR seeks the minimization of the total expected cost, including recourse actions.

Henceforth, we focus on the single-vehicle Dynamic VRPSD (DVRPSD) (K = 1), where it is
possible to reroute the vehicle upon new demand realizations, allowing more complex recourse
actions. Literature on the DVRPSD is scarce, with the main contributions being the work by
Novoa and Storer [40], Secomandi [51], and Secomandi and Margot [52]. All of them consider
the case where customer demands are discrete and uniformly distributed. We now show how
the jMSA framework can be adapted to tackle this problem. Also, we illustrate how under the
proposed approach we can easily relax the assumptions on the demand distributions, thus leading
us to the solution of a more general problem with jMSA.

4.2 Scenarios and decisions

In the context of the DVRPSD, the only unknown data is the customer demand realization.
Thus, scenarios contain different realizations of the customer demands, along with a feasible
routing for these values. As the vehicle can go back to the depot during its service, a scenario
can contain different routes that will be executed in a sequential order by the same vehicle.

The fact that customer locations are identical across scenarios suggests that different scenarios
might have similar routes. Thus, we decided to use the consensus algorithm to select the next
customer to visit. Let us consider the scenario pool of Fig. 9. The customers who have already
been served (4 and 1) appear first in all scenarios, while customers 2, 3, 5, and 6, appear in varying
order depending on the scenario sampled demands. Considering that customer 2 appears first
in 2 out of 4 scenarios, by consensus it is selected as the next customer to visit. As shown
in Algorithm 1, the function selectCandidates (line 1) returns the set of unserved customers
while evaluateRequestProfit (line 6) returns 1 if customer r appears first in the scenario; 0,
otherwise.
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Figure 9: Example of the decision process by consensus in a 4-scenario pool. Each scenario
contains customers who have been visited (in white) and customers yet to be visited (in gray).

4.3 Optimization

To optimize scenarios we use an Adaptive Variable Neighborhood Search (AVNS), which is an
extension of the Variable Neighborhood Search (VNS) [38]. The main difference between AVNS
and VNS is that neighborhoods are not explored sequentially, but randomly selected weighted
by their previous performance. Our implementation uses an average ratio of the improvement
to time as a metric of neighborhood performance, and maintains this information between calls
of the optimization procedure. Neighborhoods with a better performance are more likely to be
explored first, leading to a self-tuning algorithm. Our MSA scheme benefits from this automatic
self-tuning behavior as the optimization procedure is called numerous times on similar instances
(i.e., scenarios).

Algorithm 2 presents an outline of the AVNS algorithm. The algorithm initializes with the
whole set of neighborhood structures (line 2), then it selects a neighborhood (line 4) to randomly
perturb the current solution (line 5), and improves it by applying a local search procedure (line 6).
If the new solution is accepted (line 8), then the new solution becomes the current solution
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(line 9), and the set of active neighborhood structures is reset (line 10). Otherwise, the current
neighborhood is removed from the set of active neighborhoods (line 12). At each iteration, the
performance of the current neighborhood is updated (line 7). This process iterates until all
neighborhoods have been explored with no improvement.

Algorithm 2 The Adaptive Variable Neighborhood Search algorithm

Input: feasible solution x, evaluation function z , and set of neighborhood structures N =
{N1, .., NK}

Output: best solution found x∗

1: x∗ ← x

2: Nc ← N
3: while Nc 6= ∅ do
4: N ← selectNeighborhood(Nc)
5: x′ ← shake(N,x)
6: x′ ← localSearch(x′)
7: updatePerformance(N ,x,x′)
8: if accept(x′,x) then
9: x← x′

10: Nc ← N
11: else

12: Nc ← Nc \ {N}
13: end if

14: if z(x′) < z(x∗) then
15: x∗ ← x′

16: end if

17: end while

18: return x∗

In our experiments we used the two neighborhoods structures Or-opt and string-exchange
for the perturbation, and a Variable Neighborhood Descent (VND) based on swap and 2-opt
as local search (line 6). A more detailed description of these neighborhoods can be found in
the paper by Irnich et al. [26]. The initial solution is obtained by a Clarke and Wright (CW)
heuristic [10] in which the saving list is randomized, as presented in Mendoza et al. [35], leading
to the CW+AVNS algorithm.

4.4 Failure handling

A route fails when a customer demand exceeds the vehicle’s remaining capacity. Thus, the MSA
procedure becomes aware of a route failure as soon as a Resource event is raised upon the arrival
at the customer location. As a consequence, the route failures handling must be defined at the
event handler level, by checking if the demand of the current customer is larger than the vehicle
remaining capacity, and updating the scenario pool accordingly.

4.5 User interface

To illustrate the use of callbacks we developed a user interface shown in Fig. 10. The main panel
(right) presents in real time the unserved (white) and served (dark gray) customers, the vehicle
destination (light gray), and the executed route (arrows). The left panel, displays a log of events
of jMSA and echoes the configuration settings. By means of a callback registered in the MSA
procedure, all the information in the interface is updated in real time.
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t = 1 mint = 0 min

t = 2 min t = 3 min

Figure 10: A graphical user interface for jMSA

5 Computational experiments

5.1 Instances

The benchmark instances for the DVRPSD used in this work were initially proposed by Novoa [41]
and later used in Novoa and Storer [40]. In this work we consider the larger problems with 30,
40 and 60 customers uniformly distributed in a 1×1 square grid with discrete uniform demands.
For each problem size, there are ten combinations of five different demand distributions by two
vehicle capacities, leading to a complete testbed of 30 instances.

For each original instance (combination of problem size, demand distribution, and vehicle
capacity) we generated 100 possible realizations of the customer demands, creating a complete
testbed of 3000 instances. Each instance was solved to optimality using the COIN-OR Symphony
VRP solver [49, 50].

5.2 CW+AVNS

To assess the optimization component in isolation we conducted an experiment on the 3000
instances derived from the Novoa [41] benchmark. Fig. 11 presents the distribution of gaps to
optimal values for the CW+AVNS algorithm and a CW+2-opt heuristic used as comparison.
Note that CW+AVNS clearly dominates CW+2-opt, with 90% of all instances solved with a gap
of less than 4%. Additionally, CW+AVNS runs relatively fast, with average CPU times between
50 ms and 650 ms for the larger instances.

5.3 DVRPSD

Our experimental setting is comparable to the one presented in Novoa and Storer [40]. For each
instance we ran a simulations using the jMSA framework as a black box. This means that an
external simulator was used to send events to the MSA procedure simulating the vehicle route
execution.

For easier comparison we report results in terms of value of information [37]. The value of
information for instance I, namely V(I), is the gap between the cost of the final solution returned
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Figure 11: Optimal gap distribution of the CW+AVNS algorithm vs. CW+2-opt for all
Novoa [41] instances

by the algorithm z(I) and the a-posteriori optimal solution z∗(I), and it is calculated as follows:

V(I) =
z(I)− z∗(I)

z∗(I)
(1)

Instance set (size,capacity)
Algorithm (30,137) (30,87) (40,183) (40,116) (60,274) (60,175) Average
1s n2 r [51] 12.3% 11.8% 11.1% 12.9% 13.9% 19.6% 13.6%
1s stostat r [40] 4.7% 5.1% 3.7% 5.3% 3.5% 12.3% 5.8%
2s stostat r [40] 3.5% 3.6% 3.0% 5.4% 2.8% 10.7% 4.8%
jMSA 0.9% 4.1% 3.5% 6.3% 2.9% 2.0% 3.3%

Table 2: Comparison of average value of information.

Table 2 presents the results for problems from the Novoa testbed [41]. Because of the aggre-
gated results reported by Novoa and Storer [40], we report the average value of information by
using average solution values in Eq. 1. MSA dominates the algorithm proposed by Secomandi [51]
(1s n2 r), and outperforms the best performing algorithms reported by Novoa and Storer [40]
(1s stostat r, 2s stostat r) for instances with 30 and 60 customers, and a vehicle capacity of 137
and 175. Additionally, MSA shows better overall results with an average gap of 3.3% against
4.8% for 2s stostat r, 5.8% for 1s stostat, and 13.6% for 1s n2 r. Aside from the performance
in terms of value of information, it is important to stress that MSA runs continuously, and the
next customer to visit is selected in a fraction of a second, while the other algorithms can take
up to several minutes to make such decision, limiting their deployment and applicability in a
real-world online DSS.

Aside from direct numerical comparison, the strength of our approach relies on the lack of
strong assumptions on demand distributions. To illustrate this point, we adapted the testbed
instances by converting demand discrete uniform distributions into left-truncated normal distri-
butions (NLT≥0) as follows:

Uint (a, b)→ NLT≥0

(

a+ b

2
,
b− a+ 2

6

)

(2)

Note that Eq. 2 ensures that the demand will be between a− 1 and b+1 with probability 0.997,
and truncates negative values.

Table 3 highlights the robustness of MSA which shows consistent performance when demand
distributions are changed from uniform (discrete) to normal (continuous). Further, the results are
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Instance set (size,capacity)
Algorithm (30,137) (30,87) (40,183) (40,116) (60,274) (60,175) Average
Uniform 0.9% 3.9% 3.5% 6.3% 2.9% 2.0% 3.3%
Normal 0.7% 3.6% 3.4% 6.2% 2.2% 1.9% 3.0%

Table 3: Comparison of average VI for discrete uniform and normal distributions.

as expected slightly better, with a reduction of 0.3% in the overall average value of information,
which is due to the smaller variance. It is important to stress that to conduct this experiment
the only change required was to use a different random number generator, which illustrates the
flexibility of our approach. Other approaches based on stochastic modeling, like those of Novoa
and Storer [40], are not as flexible and heavily depend on distributional assumptions.

6 Conclusions

In this paper we presented the design and implementation of jMSA, an object-oriented event-
driven framework for the Multiple Scenario Approach (MSA). By doing a high-level abstraction
of MSA to a problem independent level, we modeled it as an event-driven process that allows
high reactivity to changes occurring in online and highly dynamic operational environments. We
implemented jMSA as a flexible framework that is easily embeddable in decision support systems.
By design, jMSA includes a callback system that gives the user further control over MSA and
allow complex interactions with third party components. Additionally, we integrated into the
framework the parallelization of time consuming tasks with no compromise for the framework
user, which is a key aspect considering the wide availability of multi-core personal computers.

We illustrated the use of jMSA on the DVRPSD. The optimization of scenarios is performed
by an Adaptive Variable Neighborhood Search (AVNS) which improves an initial solution gen-
erated with a randomized Clarke and Wright heuristic. The strength of AVNS is that it auto-
matically adjusts its search scheme depending on the problem’s structure by keeping track of
the neighborhood performance throughout the execution of the MSA procedure. Computational
experiments show that our approach is competitive with state-of-the-art algorithms that take
full advantage of the stochastic aspects, while it provides a more flexible scheme that can be
used to tackle problems with more general demand distributions.
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