
A GRASP FOR REAL LIFE INVENTORY ROUTING

PROBLEM: APPLICATION TO BULK GAS

DISTRIBUTION

Hugues Dubedout, Pierre Dejax, Nicoleta Neagu, Thomas Yeung

To cite this version:

Hugues Dubedout, Pierre Dejax, Nicoleta Neagu, Thomas Yeung. A GRASP FOR REAL LIFE
INVENTORY ROUTING PROBLEM: APPLICATION TO BULK GAS DISTRIBUTION.
9th International Conference on Modeling, Optimization & SIMulation, Jun 2012, Bordeaux,
France. 2012. <hal-00728664>

HAL Id: hal-00728664

https://hal.archives-ouvertes.fr/hal-00728664

Submitted on 30 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50616385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00728664

9th International Conference of Modeling, Optimization and Simulation - MOSIM’12
June 06-08, 2012 – Bordeaux - France

“Performance, interoperability and safety for sustainable development”

A GRASP FOR REAL LIFE INVENTORY ROUTING PROBLEM:
APPLICATION TO BULK GAS DISTRIBUTION

Hugues DUBEDOUT1 2, Pierre DEJAX2, Nicoleta NEAGU1, Thomas YEUNG2

1Air Liquide/ Centre de recherche Claude et Delorme
Jouy-en-Josas - France

hugues.dubedout@airliquide.com,
nicoleta.neagu@airliquide.com

2Ecole des Mines de Nantes / IrCCyN
Nantes - France

Thomas.Yeung@mines-nantes.fr
Pierre.Dejax@mines-nantes.fr

ABSTRACT:

In this paper we propose two versions of a GRASP algorithm for solving a real life Inventory Routing Problem (IRP)
arising in bulk gas distribution and we show their benefits by comparison to an efficient existing specialized heuristic.
The first approach uses a deterministic greedy heuristic and generates parallel solutions using an existing local search,
and the second one is based on a randomized implementation of a greedy algorithm in order to find multiple initial so-
lutions.
We perform a computational study in which the two procedures are applied on 16 real-life test cases. The outcome of
the tests is promising as the proposed methods show improvement relatively to a state of the art local search algorithm.
The tests show that our procedures yield a 5% average improvement of the objective function, whereas using the
existing local search alone leads only to a 1.6% improvement with similar computation time and in comparable running
conditions.

KEYWORDS: Real-life inventory routing problems, local search, grasp, parallelization, bulk gas distribution

1 INTRODUCTION

The competition in local and global markets is pushing
companies to look for reduction in their logistic costs as
they represent an important part of the final cost of
goods. To that aim, more centralized supply chain man-
agement systems are needed and thus, a recent approach
in seeking logistic cost reductions is to consider the inte-
gration of transportation and inventory decisions.

In this paper we address the so called “Inventory Rout-
ing Problem” (IRP), see Bertazzi et al. (2008). This
problem can be placed within the general framework of
planning and optimizing the supply chain (supply chain),
see Dejax, (2001) and Kok and Graves, (2003). The IRPs
are among the most challenging extensions of vehicle
routing problems and they present high interest as they
occur often in real-life settings. The IRPs problems are
twofold: inventory management at customer site, and
vehicle routing, The IRP problems differ from vehicle
routing problem by the fact that they coordinate the ve-
hicles routing with the decision on customers’ invento-
ries, so called Vendor Management Inventory (VMI).

We consider the IRP problem in the context of the bulk
gas distribution application. The production of liquid gas
is realized in plants and the products are distributed from
the stocks of these plants by vehicles which travel from

"bases" and carry the products to customers. The cus-
tomer delivery should be planned over several days to
avoid breaking customer's stock and is based on a system
of inventory management and customer forecasting
models assumed to be reliable. The distribution is made
either based on forecasts or on customer orders and
obeys several constraints, including geographical and
temporal. It takes place over a planning horizon (e.g.,
two weeks). It is based on the quality of demand fore-
casts and the availability of product inventory in plants.

For solving this IRP problem, a heuristic algorithm has
been proposed by Benoist et al. (2011). It combines a
greedy construction algorithm followed by a local search
and is described in the next section. These procedures
are be called "the original heuristic", the “greedy algo-
rithm" and "the local search" respectively all throughout
this paper.

In order to improve the solutions quality of this “local
search” for solving the rich IRP problem, we propose
two different designs of a GRASP framework for IRP
problems in the context of a real-life setting of bulk gas
distribution. We imbed the “local search” heuristic
within the GRASP frameworks. The two GRASP meth-
ods are tested on 16 real-life test cases and compared to
the results provided by the initial “local search”. Exten-
sive testing validates the efficiency of our procedure.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

The paper is organized as follows: Section 2 describes
the specificities of the IRP studied in this paper; Section
3 gives a state of the art on both the IRP and GRASP
meta-heuristic. Section 4 describes the two GRASP im-
plementations we propose. Section 5 describes the meth-
odology used for testing as well as the test cases used.
Section 6 presents the results and gives some insight on
the influence of computation time. Lastly, Section 7 con-
cludes this paper.

2 PROBLEM SETTING

In this section, we describe the real life IRP problem as it
occurs in bulk gas distribution. Gases are produced at the
vendor's plants and are consumed at customer sites. Both
plants and customers store the product in tanks. Reliable
forecast of production at plants is known over a short-
term horizon.
The supply management provided by the vendor at the
customer site can be of two types:

 The first one, called the “Vendor Managed Inven-
tory”, corresponds to customers for which the supplier
decides the delivery schedule. For most of these custom-
ers, a consumption forecast is available over a short-term
horizon. The inventory of each customer must be replen-
ished by tank trucks so as to never fall under its safety
level.

 The second one, called “Order-based resupply",
corresponds to customers who send orders to the vendor,
specifying the desired quantity and the time window in
which the delivery must be done.
The constraints that consist of satisfying orders (no
missed orders) and maintaining inventory levels above
safety levels (no stock outs) are defined as soft, since the
existence of an admissible solution is not ensured in real-
life conditions. Three hierarchical objectives are used.
The most important one is to minimize the number of
customer orders that were not met. The second is to
minimize the time spend by customers with an inventory
below their safety level. Lastly the cost per unit of prod-
uct delivered is minimized.
In order to solve this problem, a local search solution
was designed. This local search focuses on testing as
much ‘moves’ as possible during the allowed computa-
tion time. We refer the interested reader to Benoist et al.
(2011) for more detail on the heuristic. However, as all
local search heuristics, it can get stuck within local op-
tima. When this happens, even increasing significantly
the number of iterations performed does not allow find-
ing good improvement to the solution. In order to keep
improving the solution, one has to find another way to
explore the solution space. One approach is to generate
various solutions constructed with different methods and
then select the best one.
Therefore, in this paper we explore for new approaches
based on parallel computing as well as a GRASP heuris-
tic in order to find better solutions.

3 STATE OF THE ART

This section presents the state of the art on the Inventory
Routing Problem and GRASP. Firstly, it focuses on the
deterministic version of the Inventory Routing Problem,
reviewing previous solving method, heuristic or exact.
The second part of the state of the art focuses on previ-
ous applications of the GRASP metaheuristic.

3.1 The inventory routing problem

In this section, we give a description of the work already
done in the Operations Research community on the In-
ventory Routing Problem (IRP).

3.1.1 Heuristics

The first inventory routing model appeared in the 1980s.
These papers are, for the most part, inspired by applica-
tion of the vehicle routing where inventory has to be
considered. In order to overcome the high complexity of
IRP models, most papers only take into consideration
short term planning. For example Golden et Al. 1984,
focuses on maintaining a “good” level of inventory at the
customer on a single day while minimizing the costs.
Their heuristic computes the urgency of each customer
in order to decide which customers need to be delivered.
Customers are then iteratively added into shifts until the
time limits for all shifts are reached. In this model, each
day is treated as a different entity.
Chien et Al. (1989) also use a single day model, but con-
sider a multiple-day time horizon. After the decisions are
made for the first day, the result is passed to the next day
in order to compute the profit for the next days. A MIP is
used for both the inventory and routing decision and a
Lagrangean dual ascent method is used to solve the pro-
gram.
In 2000, Bertazzi, Speranza and Ulkovich propose a
model based on previous work of Speranza and Ulk-
ovich. They consider a supplier and several customers
with given production rate and demand. The specificity
of their model is that the shipment from the supplier to
any customer can only occur within a given set of fre-
quencies. E.g. a customer would be delivered every 5
days. Even with a single customer, this problem is NP-
Hard, and thus, a local search based heuristic is used to
find good solutions.
Bertazzi et al (2005) focus on the order up to level pol-
icy. They consider a single vehicle model, with inven-
tory costs, both at the supplier and the customer site. The
inventory cost is computed at each time step, and is
equal to the quantity of product stored times an inven-
tory cost, which is a parameter for each customer. They
use a two-step heuristic, the first step being a greedy
algorithm to create a feasible solution. After that, they
improve the solution by removing a pair of customers
and then reinserting them in the current solution. If a
better solution is created, then they repeat the whole im-
provement phase, if not, then they continue until all pairs

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

of customers have been removed and reinserted. This
algorithm is a local search with no random parameters.
Bertazzi et al. (2005) go further and propose solution for
different delivery policies, and also compare the Vendor
Managed Inventory (VMI) policy with the Retailer Man-
aged (RMI), in which the retailers place orders to be
delivered. The specificity of their model is that the deci-
sion variables include the production to be made for each
time period. The production cost includes a fixed set up
cost, and a variable cost that is charged for each unit
produced. Two different VMI policies are studied. The
first one is the Order-up-to level policy where the quan-
tity shipped to the retailer fills the tank capacity, the sec-
ond one is the fill-fill-dump policy, in which the order-
up-to level quantity is shipped to all but the last retailer
of each route, and the quantity delivered to the last cus-
tomer is the minimum between the order-up-to level pol-
icy and the remaining capacity of the vehicle. Bertazzi et
al. decomposed the problem into two sub problems: the
distribution sub problem and then the production sub
problem. Two approaches are suggested. In the first one,
the distribution sub problem is solved first, assuming
that all retailers are served every day. After the distribu-
tion is solved, the production problem is solved again.
The other approach consists of solving first the distribu-
tion sub problem and then the production sub problem.
Both approach show similar results.
The RMI policy is simulated with the following rule:
each customer that will have a run out at time t+1 is vis-
ited at time t. The tests were run on a set of instances
with 50 customers and a time horizon of 30 days. The
results clearly indicate that the VMI based heuristic
yields much better results than the RMI policy, with an
average 60% total cost decrease.
Savelsbergh and Song (2008) study an industrial real life
problem. A randomized greedy heuristic is used to solve
the IRP with continuous moves, whereas the volume to
be delivered is being computed via linear programming.
They also propose a discrete time mathematical model,
solved with a Branch and Cut algorithm. The results are
presented on instances with a 5 days time horizon with 2
plants and 50 customers and 1 hour time step. The
branch and cut algorithm manages to find the optimal
solution with 30 min average computation time. How-
ever, with bigger time steps (2 hours for the first 2 days,
then 4 hours for the next 3) , computation time can be
reduced to less than 2 minutes with a solution quality
decrease of 3%. On larger instances (3 plants,3 vehicles,
100 customers), the computation time increases to an
average of 2 days, thus making the use of the exact
model unusable in practice. However, the proposed heu-
ristic manages to find solutions with less than 5% opti-
mality gap in less than 5 minutes.
Abdelmaguid et al. (2009) propose a mixed integer pro-
gramming formulation for a single depot, multi vehicle,
backlogging model. However, even with less than 15
customers and 2 vehicles, they did not manage to obtain
the optimal solution within a one hour time limit, thus
motivating a heuristic approach. As with many heuristic
approaches, the approach proposed by Abdelmaguid et

al. consists of a constructive phase in which a solution is
built, and an improvement phase in which the solution is
further improved. The constructive heuristic is an Esti-
mated Transportation Cost Heuristic, in which all deci-
sions are taken based on an estimation of the transporta-
tion costs. Then, a local search is performed in order to
improve the solution found. The local search focuses on
modifying the quantities delivered and on delivery ex-
changes. For large instances, the heuristic gives better
results than the CPLEX solver. However, precise com-
putation time for the heuristic is not given.
Boudia and Prins (2007) propose a memetic algorithm
with population management to solve an integrated pro-
duction-distribution problem. They apply their algorithm
to instances with up to 200 customers and 20 periods,
and compare the results obtained to the improved
GRASP presented in Boudia et al. (2006). They show
that better results are obtained at the cost of a reasonable
computation time increase.
Due to the extensive research done on the Inventory
Routing Problem, it would be impossible to have an ex-
haustive literature survey here. We refer the interested
reader to the survey made by Andersson et al (2010) for
additional references on the Inventory Routing Problem.

3.1.2 Exact Methods

Due to the complexity of the inventory routing problem,
very few effective exact methods have been developed.
Some papers gives a standard MIP formulation (e.g. Ab-
delmaguid and Dessouky (2009)) and solve it within a
given time limit in order to obtain lower and upper
bounds for the cost of the optimal solution. These
bounds are then used as benchmark for heuristic. Most of
these MIP formulations are computationally intractable
for large instances. However, several recent papers have
developed good algorithms for finding the optimal solu-
tion of the inventory routing problems.
The first one is a paper of Archetti et al. (2009). They
consider a model with a single vehicle and deterministic
demand, an order-up-to-level policy and do not allow
backlogging at the customers. A branch-and-cut algo-
rithm is used. The second paper is from Solyali and
Süral(2011). They improved the results of Archetti et al.
(2009) by proposing a strong MIP formulation within a
branch and cut algorithm. While both use a two-index
vehicle flow formulation for the routing decision, Ar-
chetti et al.(2009) decided to use standard inventory bal-
ance constraints where Solyali and Süral(2011) used a
shortest path formulation which seems to yield better
results.
Another MIP formulation was proposed by Solyali, Cor-
deau and Laporte (2010) for a single vehicle, determinis-
tic demand model with backlogging penalty. Using a
thigh formulation for inventory decisions and a two-
index flow formulation for the routing decisions, they
propose a branch and cut algorithm that yields better
results than Abdelmaguid and Dessouky’s (2009) MIP
formulation.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Oppen et al. (2010) propose a column generation method
to solve a rich Inventory Routing Problem in the field of
meat industry. They present results on multiple in-
stances, with 20 to 27 orders. While solutions are found
for problems with less than 25 customers, the computa-
tion time ranges from several minutes to few hours de-
pending on the characteristics of the instance.
Due to the intrinsic complexity of the inventory routing
problem, most solutions developed for the deterministic
version are heuristic approaches. Such heuristics include
lagrangian relaxation, local search, and decompositions
into sub problems.

3.2 Greedy Randomized Adaptative Search Proce-
dure

The Greedy Randomized Adaptative Search Procedure
(GRASP) is a multi-start meta-heuristic that was first
described by Feo and Resende (1989, 1995). Each itera-
tion of the procedure consists of two phases: a construc-
tion phase and an optimization phase. During the con-
struction phase, a feasible solution is iteratively con-
structed, using a randomized greedy algorithm (see Sec-
tion 5.2). Then, during the optimization phase, this feasi-
ble solution is improved, often by the use of a local
search procedure.
The GRASP methodology has been used in many differ-
ent problems with great success. Resende and Ribeiro
(2003) as well as Festa and Resende (2001) present ap-
plication in fields such as Routing, Assignment prob-
lems, Scheduling and telecommunication. An example of
application of the GRASP methodology to an Inventory
Routing Problem can be found in Grellier et al (2004).
Parallelization approaches are very appropriate for
GRASP methodology, as explained in Cung et al (2001).
Because each iteration can be run in a different thread
with no need of interacting with each other, the gain in
time for using parallelism is close to linear on the num-
ber of processor used.
Boudia et al. (2006) use the GRASP for solving a com-
bined production-distribution problem. The GRASP
methodology they proposed is improved using either a
reactive mechanism or path relinking. The reactive
mechanism optimizes the value of one parameter after
each iteration, trying to obtain the value that gives the
best results on average. The path relinking is used as a
post optimization process, where the path between sev-
eral elite solutions found by the GRASP is explored, thus
potentially finding better solution. Results show that
both the reactive GRASP and the path relinking method
provide better results than a simple GRASP.

Our goal in this paper is to improve the performance of a
local search by upgrading it to a meta heuristic and by
using parallelism. GRASP seemed the appropriate meta-
heuristic for solving our problem as it allows to easily
imbed an existing heuristic, and is can be easily parallel-
ized.

4 GRASP DESIGN AND IMPLEMENTATION
METHODOLOGY

In this section, we describe the design of the GRASP,
and its implementation. We propose two different
GRASP approaches which are based on the integration
of the specialized heuristic proposed by Benoist et al
(2011).

The GRASP algorithm, as described by Feo and Resende
(1995), consists of multiple iterations of two successive
phases: a construction phase, in which an initial solution
is constructed, using a randomized greedy algorithm, and
an improvement phase, during which a local search algo-
rithm is used to further optimize the solution previously
constructed.

As a first approach, we do not include the multi-start
component of the GRASP meta-heuristic. Instead, the
construction phase is only run once before any iteration.
Then during each iteration, the local search optimization
is performed from start using a different random seed.
Thus, the final solution found by each iteration is differ-
ent from each other.
The second approach includes the multi start component,
as it is usually done within a GRASP meta-heuristic. In
the following sections, we are going to describe the algo-
rithms used for each approach.

4.1 Single start GRASP

In this implementation, the construction phase is only
run once, and the feasible solution found is used as the
starting solution for each optimization iteration.

4.1.1 Construction phase

In the construction implemented, we integrated the
greedy algorithm originally use in the heuristic of pre-
sented in Figure 1 shows the main methodology de-
scribed by to Benoist et al. (2011):

Procedure Greedy

1 Solution
2 List all demands and orders

3 while Solution is not completed do
4 Select the demand d with the
earliest deadline;
5 Create the cheapest delivery to

satisfy d;
6 Update the Solution to include
this delivery;
7 Update the list of demands and
orders;
8 end;
9 return Solution;
End Greedy

Figure 1 : Deterministic Greedy Algorithm.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

This algorithm starts with an empty solution, and lists all
the demands and order to satisfy. Then, the demand with
the earliest deadline is selected, and the incremental
costs of all possible insertions into the current solution
(insertion within an existing shift, or creation of a new
shift) are evaluated. The best insertion is then selected,
and both the solution and the list of demands are up-
dated.

4.1.2 Improvement phases

As described in Cung et al (2001), the GRASP meta-
heuristic is easy to parallelize as all iterations are inde-
pendent from each other; i.e. they do not depend of the
result of the previous iteration. Therefore, each im-
provement phase can be executed in a separate thread.
The algorithm used for the improvement phase within
each thread is the local search component of the original
heuristic presented in Benoist et al. (2011). A large set of
moves are used: The insertion, deletion and ejection
moves apply to a customer within a shift. Swap and
Move movements are defined both within routes, and
between different routes. A mirror move is also present.

Figure 2 presents the pseudo code used for the paralleliz-
ing local search. At first, an array for storing all the solu-
tions is created. Then, all the local searches are launched
into separate threads, with different random seed. Once
all the threads have finished, the best solution found is
returned.

Procedure Single_Start_GRASP (NbItera-
tions)
1 Read Input();
2 Solution_init Greedy(Input)
3 Create array Results of size NbIt-
erations
4 for nsNbIteratiok ::1 do
5 Launch new thread;
6 Set seed = k;
7 Results[k] Local_Search(

seed, Solution_init);
8 end thread
0 end;
10 Wait for all threads to end;
11 Solution Best_Solution (Results)
12 Return Solution;
End Single_Start_GRASP.

Figure 2 : Parallel local search pseudo code.

4.2 Multi start GRASP

In this section, we describe the implementation of the
GRASP algorithm, including the multi-start component.
It uses a randomized greedy algorithm in order to pro-
vide multiple initial solutions for a local search heuristic.
The best solution found by the local search is kept as the
result.

4.2.1 Construction Phase

In order to generate multiple start solutions, Resende and
Ribeiro, (2002) suggested the use of a randomized
greedy algorithm. Figure 3 presents the pseudo code of
the generic Greedy_Randomized_Construction as they
suggest it. It starts with an empty solution. The incre-
mental cost of each candidate element (e.g., insertion
place within route planning) is evaluated, and a re-
stricted candidate list (RCL) is created with the candi-
date having the smallest incremental cost. This list can
be limited either by the number of element (i.e., the k
better candidates are selected for the RCL) or by a
threshold value (i.e. all candidates whose incremental
cost is smaller than Max_Value are selected).

Once the RCL is constructed, the candidate element to
be added to the solution is randomly selected. The solu-
tion is updated to include this element. This constitutes
the randomized part of the procedure. The list of candi-
date elements is then updated and the incremental cost of
each element is re-evaluated. This constitutes the adap-
tive part of the procedure. A new RCL is then created,
and the procedure continues until the solution is com-
pleted.

Procedure
Greedy_Randomized_Construction (Seed)

1 Solution
2 Evaluate the incremental costs of
the candidate elements;

3 while Solution is not completed do
4 Build the restricted candidate
list (RCL)
5 Select and element s from the RCL
at random;

6 sSolutionSolution ;

7 Reevaluate the incremental cost
8 end;
9 Return Solution;
End GRASP

Figure 3 : Pseudo code of the generic randomized greedy
procedure

Note that the procedure described in Figure 3 is already
very close to the greedy algorithm described in Section
4.1.1. One approach for changing it from a deterministic
procedure to a randomized procedure is to not always
select the cheapest delivery. Instead, the delivery to be
included in the solution is selected from the k cheapest
possible deliveries. In order to do this a restricted candi-
date list of k elements is built during the evaluation of
the cost of all possible deliveries.

Procedure Randomized_Greedy (k, seed)

1 Solution
2 List all demands and orders;

3 while Solution is not completed do

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

4 Select the demand d with the earli-
est deadline;
5 Create the RCL with the k cheap-

est deliveries that satisfy d;
6 Randomly select one delivery

from the RCL;
7 Update the Solution to include this
delivery;
8 Update the list of demands and or-
ders;
9 end;
10 Return Solution;
End Randomized Greedy

Figure 4 : Pseudo code of the randomized greedy proce-
dure.

4.2.2 Improvement phase

Unlike the single start GRASP described in Section 4.1.2
the multi-start GRASP executes both the construction
phase and the improvement phase during each iteration
of the algorithm. This creates different starting solution
for the improvement phase, and thus can explore a larger
range of the solution space. One drawback of this
method is that the improvement phase must compensate
for potentially worse starting solution.
Figure 5 describes the overall multi-start GRASP proce-
dure. For each of the NBIteration iterations, a random
initial solution is created, using the randomized greedy
procedure. Then, this initial solution is optimized using
the local search procedure. Each iteration being run in a
separate thread. If the solution found by the local search
is better than the current best solution, the new found
solution is kept as the new best solution.

Procedure Multi_Start_GRASP (NbItera-
tions)
1 Read Input ();
2 Create array Results of size NbIt-
erations

3 for nsNbIteratiok ::1 do
4 Launch new thread;
5 Set seed = k;
6 Solution_init Random-

ized_Greedy (seed, Input)
7 Results[k] Local_Search

(seed, Solution_init);
8 end thread
0 end;
10 Wait for all threads to end;
11 Solution Best_Solution (Results)
12 return Solution;
End Multi_Start_GRASP.

Figure 5: Pseudo Code for the GRASP meta-heuristic.

5 TESTING & RESULTS

In this section, we describe the methodology used to test
and compare the different approaches aforementioned in
Section 4.
The algorithm is implemented in C# and tested on a 16-
core; 8GB RAM computer running windows server.
Testing is performed on 16 different instances adapted
from real life data. 3 different heuristics are compared.
The first one is based on the basic deterministic greedy
and local search heuristic. The second one is the single
start GRASP. Lastly, the third heuristic is the multi-start
GRASP methodology as described in Section 4.2.

5.1 Testing methodology

The parameter with the most influence on the quality of
the result is the computation time. Before our study, a
single run of the original heuristic algorithm performed 4
millions local search iterations, which took an average of
264 seconds to perform. Section 6 provides an example
of how the local search sometimes keeps steadily im-
proving the solution until up to 7 minutes of computation
time before getting stuck in local optima. This also
means that for both implementations the time needed for
a single GRASP iteration would be over 4 minutes.

In order to show a fair comparison of all the three
algorithms, we decided after preliminary testing to use
the following parameters for each algorithm:

 16 Million Iterations for the Local search.
 20 Iterations for the two GRASP

implementations. Each optimization phase of
the GRASP performs 4 Million local search
iterations.

Please note that the computation time needed for each
algorithm is similar, the 16M iterations local search
requiring an average of 1111 seconds to find a solution,
and the 20 threads GRASP needs an average of
respectively 1290 and 1295 seconds.

The original results heuristic, obtained using 4 Million
local search iterations, are used as benchmark for
comparison of the other 3 methods.

5.2 Test instances

16 different test cases were used for the evaluation of the
three methods. All instances cover a 15 day horizon.
Note that the computation time needed does not only
depends on the size of the test case (i.e., the number of
customers to be delivered), but also on its composition
and the difficulty to satisfy the constraints such as the
compatibility of the resources, the ratio between the
quantity produced and the demand of the customers.

 C area test cases

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

These test cases contain 4 sources and 165 customers.
The resources used to deliver products consist of 23
drivers, 6 trailers and 10 tractors. Data from 6 different
time periods were used, resulting in 6 different instances.

 B area test cases
These test cases consist of 6 sources and 75 customers.
The resources available for the deliveries are 35 drivers,
20 tractors and 4 trailers. Once again, data from 5 differ-
ent time periods were used resulting in 5 different in-
stances

 B_L performance test case
This test is based a 15 day horizon real life test case. It
consists of 6 different sources and 175 customers. The
resources available for the deliveries are 35 drivers, 20
tractors and 12 trailers.

 A1 performance test cases
This is a randomly generated instance that was initially
created for performance testing of the local search
solver. It consists of 2 sources and 83 customers, deliv-
ered by 20 drivers, 20 trailers and 10 tractors.

 A2 performance test cases
This is a randomly generated instance that was initially
created for performance testing of local search solver. It
consists of 1 source and 73 customers, delivered by 10
drivers, 10 trailers and 10 tractors.

 A3 performance test cases
This is a randomly generated instance that was initially
created for performance testing of the local search
solver. It consists of 4 sources and 149 customers, deliv-
ered by 20 drivers, 20 trailers and 20 tractors.

 A4 performance test cases
This is a randomly generated instance that was initially
created for performance testing of the local search
solver. It consists of 5 sources and 250 customers, deliv-
ered by 30 drivers, 30 trailers and 30 tractors.

6 RESULTS OBTAINED

6.1 Overall results

Table 1 shows the comparison between 4 million local
search iterations for the original heuristic and 16 Million
local search iterations. The two first lines show the value
of the objective function and the computation time for
the 4Million iteration local search for each instance. The
last three lines show the value of the objective function
for the 16 million iteration heuristic, the improvement
compared to the 4 millions iterations local search and the
tested heuristic. We see that even with 4 times the num-
ber of iterations and computation time, the results are
only improved by 1.66%.

Table 2 presents the results obtained using the single
start GRASP methodology. At the cost of a slightly
longer computation time, we see that the average im-
provement is significantly better than the improvement

obtained by simply increasing the number of iterations of
the local search. The single start GRASP obtains a
5.44% average improvement of the solution compared to
the heuristic.

Table 3 presents the results obtained using the Multi start
GRASP methodology. The size of the restricted candi-
date list for the randomized greedy procedure was set to
3. This allows finding good initial solutions while still
ensuring a high diversity amongst them. Tests were
made with a restricted candidate list of size 5, but this
led to an important deterioration of the initial solution,
which the local search was not able to overcome. With
these parameters, a 5.07% improvement of the objective
function is obtained.

As shown by these results the solutions obtained using
the both GRASP methodologies are similar in average.
They show a significant improvement over the result of
the heuristic alone. This proves that both methods suc-
ceed in exploring the solution space.

6.2 Result analysis

The results presented above can be completed with the
following remarks.

The original heuristic manages to obtained good results
for the C_5 and C_6 test cases. This indicates that it has
not reached local optima. Whereas, in the test cases B_2
and B_1, the original heuristic has reached a local op-
tima, and increasing the number of iteration does not
lead to better solutions.

Even in the case where the 16M local search had good
results (such as C_5 and C_6), the two implementations
of the GRASP still manage to find better solutions. As
expected, the best results for the GRASP are obtained on
instance where the local search got stuck early in local
optima. We also note the existence of instance where the
16M local search obtained better result that the single
start GRASP.

The multi-start GRASP methodology seems to be better
single start for all the C instances, with an average im-
provement of 6.5% in the logistic ratio, whereas the sin-
gle start GRASP has an average improvement of 4.5%.
In two different instance (A3 and B_LAR_3), the multi
start GRASP methodology only finds solutions worse
than the original solution. This is due to the fact that the
local search cannot compensate for the deterioration of
the original solution.

We see that on average, the single start heuristic seems
to be yielding the best results.
In the following section, we will detail the performance
of the single start compared to the original heuristic in
term of computation time.

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

Table 1 : Heuristic (Greedy + Local search) NbIteration increase

Iterations instances C_1 C_2 C_3 C_4 C_5 C_6 A1 A2

Value 0.030923 0.033268 0.030798 0.025052 0.030588 0.027956 0.022459 0.248066

4M Time(s) 307 321 345 303 329 286 367 460

Value 0.030618 0.032694 0.030291 0.024807 0.028854 0.026580 0.022359 0.247969

Time(s) 1289.2 1349.7 1450.9 1271.6 1381.6 1202.3 1544.4 1931.6

16M Impr(%) 0.99 1.73 1.65 0.98 5.67 4.92 0.44 0.04

instances A3 A4 B 1 B 2 B 3 B 4 B 5 B LIN Average

4M Value 0.276152 0.258490 0.065691 0.048508 0.068380 0.073294 0.076952 0.025241

Time(s) 406 386 222 149 143 129 135 365 290.4

16M Value 0.269808 0.249544 0.065691 0.048508 0.067690 0.071757 0.076952 0.024901

Time(s) 1706.1 1622.5 933.9 623.7 600.6 541.2 568.7 1534.5 1222.1

Impr(%) 2.3 3.46 0 0 1.01 2.1 0 1.35 1.66

Table 2 : Local Search vs. Single Start GRASP

Grasp
Iterations Instances C_1 C_2 C_3 C_4 C_5 C_6 A1 A2

Value 0.030923 0.033268 0.030798 0.025052 0.030588 0.027956 0.022459 0.248066

1 Time(s) 307 321 345 303 329 286 367 460

Value 0.030124 0.032256 0.029771 0.023638 0.028383 0.026412 0.022274 0.222454

impr (%) 2,59 3,04 3,33 5,64 7,21 5,52 0,82 10,32

20 Time(s) 1239 1295 1378 1123 1168 1197 1790 1859

Instances A3 A4 B 1 B 2 B 3 B 4 B 5 B LIN Average

Value 0.276152 0.258490 0.065691 0.048508 0.068380 0.073294 0.076952 0.025241

1 Time(s) 406 386 222 149 143 129 135 365 290.4

Value 0.273250 0.253299 0.056911 0.042754 0.065557 0.066613 0.072846 0.024800

impr (%) 1,05 2,01 13,37 11,86 4,13 9,12 5,34 1,75 5,44

20 Time(s) 1817 1668 1759 698 715 680 731 1527 1290

Table 3 : Local Search vs. Multi Start GRASP

6.3 Computation time sensitivity

In this section, we focus on two very different instances
(C_4 and B1) and analyze how the original heuristic and
the single start GRASP compares with different values
of computation time.

6.3.1 C_4 Test Case.

Figure 6 presents the global cost over time found by the
Local Search, as well as the global cost over time found

by the parallel Solution Generation Method. Please note
that as it takes 5 minutes to generate a single solution,
the solution generation method does not give any results
before the 5 minute mark. Also, as the average solution
generation time is close one minute (It takes 1290 sec-
onds to generate 20 solutions), the number of solutions
generated is a good estimate of the computation time.

In this case, we see that the local search converges in
about 5 minutes, and then struggles a lot to keep improv-
ing the solution. This is a good indicator that the local

GRASP
Iterations Instances C_1 C_2 C_3 C_4 C_5 C_6 A1 A2

1 Value 0.030923 0.033268 0.030798 0.025052 0.030588 0.027956 0.022459 0.248066

Value 0.029499 0.031435 0.028860 0.023705 0.028221 0.025425 0.022255 0.230067

impr (%) 4,60 5,51 6,29 5,38 7,74 9,05 0,91 7,26
20

Time(s) 1243 1299 1382 1127 1172 1201 1794 1867

Instances A3 A4 B 1 B 2 B 3 B 4 B 5 B LIN Average

1 Value 0.276152 0.258490 0.065691 0.048508 0.068380 0.073294 0.076952 0.025241

Value 0.281377 0.257066 0.056911 0.042754 0.071016 0.067851 0.072846 0.024837

impr (%) -1,89 0,55 13,37 11,86 -3,85 7,43 5,34 1,60 5,07
20

Time(s) 1825 1673 1765 702 719 685 735 1531 1295

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

search is stuck within local optima. On the other hand,
by generating solutions in parallel, we manage to find a
better solution within those 5 minutes, and also keep
finding better solutions over time.

0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

0.0265

0.027

0.0275

0 5 10 15 20 25

Time (min)

G
lo

b
a
l

C
o

s
t

TENOR Parallel Solution Geration

Figure 6 : Computation Time Influence: C_4.

Table 4 presents the improvement of the parallel local
search versus the basic local search over time. Please
note that it sometimes decreases as the local search man-
ages to improve the solution and the parallel generation
does not find a better solution. However, it mostly im-
proves over time.

Table 4 : Improvement over time
Time (min) Improvement(%)

5 2.47

6 2.39

7 2.04

8 2.36

9 2.33

10 2.23

11 2.21

12 2.16

13 2.15

14 3.02

15 2.97

16 2.96

17 2.95

18 3.69

19 3.45

20 3.43

6.3.2 B1 test case

Figure 7 also presents the global cost over time found by
the Local Search, as well as the global cost over time
found by the parallel solution generation method, but
this time on the B Instance. The B instance converges
very quickly into local optima, as there is almost no im-
provement to the solution after the first 30 seconds of
computation time. However, we can see that the solution
found is still far from optimal as the parallel solution
generation method is able to find a much better solution
in the same time.

0.056

0.057

0.058

0.059

0.06

0.061

0.062

0.063

0.064

0.065

0.066

0.067

0 5 10 15 20 25

Time (min)

G
lo

b
a
l

C
o

s
t

Local Search Parallel Solution Generation

Figure 7 : Time Influence over time: B _1

Table 10 shows the average improvement of the parallel
local search over the basic local search. We show here
that the improvement goes from 10% in 5 minutes to
13% over a computation time of 20 minutes.

Table 5: Average Improvement over time
Time (min) Improvement (%)

5 10.24

6 10.24

7 10.24

8 10.24

9 10.24

10 10.80

11 10.80

12 10.80

13 10.80

14 10.80

15 10.80

16 10.80

17 13.36

18 13.36

19 13.18

20 13.18

We see here that even for shorter computation time, the
GRASP methodologies can yield better result than the
original heuristic. In the cases where the original heuris-
tic is stuck early in local optima, it also keeps improving
over time, while the original heuristic doesn’t.

7 CONCLUSIONS AND FUTURE WORK

In this paper we proposed two versions of the GRASP (a
single start and a multi-start version) for the rich real life
Inventory Routing Problem, as it occurs in bulk gas dis-
tribution. Our procedures imbed an existing specialized
heuristic for this problem. We also used parallelization
to reduce the time needed to perform all GRASP itera-
tions. We conducted extensive texting on 16 data set
representative of real life data set. We show that within
reasonable computation time (less than 25 minutes) we
manage to reduce the objective function value by 5.44%
on average. This increase is much more significant than
just letting the current heuristic run for about 20 minutes,
which only gives an average reduction of 1.6% in objec-

MOSIM’12 - June 06-08, 2012 - Bordeaux - France

tive function value. Achieving high performance in a
limited amount of time is crucial in an industrial opera-
tional context. The obtained improvement represents
considerable cost saving considered the scale of this
large scale industrial problem.
Detailed analysis of our results does not show a signifi-
cant difference between the results obtained by both
GRASP implementations. However, the results produced
by the multi start GRASP algorithm seem to be less sta-
ble than the parallel local search, and bears less warranty
on the results of the final solution.
Possible future work include testing different randomiza-
tion methods for the greedy algorithm, as well as looking
at other known meta heuristics such as simulated anneal-
ing and/or tabu search. Another perspective would be to
adapt to this real life problem other existing high per-
formance IRP algorithm for generic problems.

8 ACKNOWLEDGMENT

This research was partially sponsored by a CIFRE con-
tract by the ANRT (French National Agency for Techni-
cal Research).

REFERENCES

Abdelmaguid T.F., M.M. Dessouky, F. Ordóñez 2009:
Heuristic approaches for the inventory routing distribu-
tion problem Computers Industrial Engineering 56, pp
1519-1534

Archetti A., L. Bertazzi, A. Hertz, M.G. Speranza 2009:
“ A Hybrid heuristic for an Inventory Routing Problem”
INFORMS journal of computing Accepted Paper.

Benoist T., F. Gardi, A. JeanJean, 2011: “Randomized
Local Search for Real-Life Inventory Routing” Trans-
portation Science, Vol. 45, No. 3, Aug., pp. 381-398.

Bertazzi L., M.G. Speranza, W. Ukovich 2000: “Mini-
mization of Logistic cost with Given Frequency” Man-
agement Science 46, pp 973-988

Bertazzi L., G. Paletta, M.G. Speranza 2002: “Determi-
nistic Order-Up-To Level Policies in an Inventory Rout-
ing Problem” Transportation Science 36, pp 119-132

Bertazzi L, G. Paletta, M.G. Speranza 2005: “Minimiz-
ing the Total Cost in an Integrated Vendor managed In-
ventory System ” Journal of heuristics 11, pp 393-419

Bertazzi L., M. Savelsbergh et M.G. Speranza 2008: «
Inventory routing », in The vehicle Routing Problem:
Latest Advances and New Challenges, B. Golden and E.
Wasil edts., Springer, pp. 49-72.

Boudia M., M.A.O Louly, C.Prins 2006: “A reactive
GRASP and pat relinking for a combined production-
distribution problem” Computers and operation Re-
search 34 pp. 3402-3419.

Chien T., A. Balakrihnan, R. Wong 1989: “An integrated
inventory allocation and vehicle routing problem”
Transportation Science 23 pp 67-76

Cung V-D, S.L. Martins, C.C Ribeiro, C.Roucairol 2002:
“Strategies for the parallel implementation of Metaheu-
ristics”, Essays and Surveys in Metaheuristics, pp. 263-
308, Kluwer Academic Publisher.

Dejax P. 2001: "Stratégie et implantation et Implantation
du Système Logistique", ch.13 dans "La Maîtrise des
Flux", J.-P. CAMPAGNE, coordonnateur, Editions Her-
mès.

Feo T.A., M.G.C Resende 1989: A probabilistic for a
computationally difficult set covering problem. Opera-
tion Research 8 pp 67-71

Feo T.A., M.G.C Resende 1995: Greedy randomized
Adaptative Search Procedures. Journal of Global Opti-
mization 6 pp 109-133

Festa P, M.G.C Resende 2001: GRASP an annotated
bibliography. Essays and Surveys in meta-heuristics
Kluwer.

Golden B., A. Assad, R. Dahl 1984: “Analysis of a large
scale vehicle routing problem with an inventory compo-
nent”, Large Scale Systems 7 pp 181-190

Grellier E, N. Brahimi, P.Dejax 2004: “GRASP for an
Inventory Routing Problem: Design and implementa-
tion.” Research Report, Ecole des Mines de Nantes.

De Kok A.G. et S.C. Graves edts. 2003, « Supply chain
management: design, coordination and operations »,
Handbooks in Operations Research and Management
Science, Vol.11, Elsevier, 765 pp.

Oppen J.,A. Lokketangen, J. Desrosiers 2010: ”Solveing
a rich vehicle routing and inventory routing problem
using column generation” Computers and operation Re-
search 37 pp. 1308-1317.

Resende M.G.C, C.C. Ribeiro 2002 : Greedy randomized
Adaptive Search Procedure. State of the Art Handbook in
Metaheuristics, F.Glover and G.Kochenberger, eds.,
Kluwer

Savelsbergh M.W.P. and J.-H. Song 2008: An Optimiza-
tion Algorithm for the Inventory Routing with Continu-
ous Moves, Computers and Operations Research 35, pp.
2266-2282.

Solyali, O., H. Süral 2011: “A branch and cut Algorithm
Using a Strong Formulation and an A Priori Tour Based
Heuristic for an Inventory-Routing Problem” Transpor-
tation Science 45 n° 3 pp. 335-345.

Solyali, O., J-F. Cordeau, G. Laporte 2010: Robust In-
ventory Routing under Demand Uncertainty. Submitted
Paper.

Resende M.G.C, C.C Ribeiro 2003: Greedy Randomized
Adaptative Search Procedures. Handbook of Metaheuris-
tics 57 pp. 219-249

