
A parallel matheuristic for the technician routing and

scheduling problem

Victor Pillac, Christelle Gueret, Andrés Medaglia

To cite this version:

Victor Pillac, Christelle Gueret, Andrés Medaglia. A parallel matheuristic for the technician
routing and scheduling problem. Optimization Letters, Springer Verlag, 2013, 7 (7), pp.1525-
1535. <10.1007/s11590-012-0567-4>. <hal-00739778>

HAL Id: hal-00739778

https://hal.archives-ouvertes.fr/hal-00739778

Submitted on 9 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50616351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00739778


A Parallel Matheuristic for the Technician

Routing and Scheduling Problem

Victor PILLAC1,2 , Christelle GUÉRET∗ ,3, and Andrés L. MEDAGLIA2

1LUNAM Université, École des Mines de Nantes, IRCCyN UMR 6597, Nantes, France
2Universidad de Los Andes, COPA & CEIBA, Bogotá, Colombia
3LUNAM Université, LISA - IUT Angers-Cholet, Angers, France

September 2012

The present work has been accepted for publication in Optimization Letters

doi:10.1007/s11590-012-0567-4

The orginal publication is available at springer.com

Abstract

The Technician Routing and Scheduling Problem (TRSP) consists in routing

staff to serve requests for service, taking into account time windows, skills, tools,

and spare parts. Typical applications include maintenance operations and staff

routing in telecoms, public utilities, and in the health care industry. In this paper,

we present a formal definition of the TRSP, discuss its relation with the Vehi-

cle Routing Problem with Time Windows (VRPTW), and review related research.

From a methodological perspective, we describe a matheuristic composed of a con-

structive heuristic, a parallel Adaptive Large Neighborhood Search (pALNS), and

a mathematical programming based post-optimization procedure that successfully

tackles the TRSP. We validate the matheuristic on the Solomon VRPTW instances,

where we achieve an average gap of 0.23%, and matched 44 out of 55 optimal solu-

tions. Finally, we illustrate how the matheuristic successfully solves a set of TRSP

instances extended from the Solomon benchmark.

1 Introduction

The Technician Routing and Scheduling Problem (TRSP) deals with a limited crew of

technicians K that serves a set of requests R. In the TRSP, each technician has a set

of skills, tools, and spare parts, while requests require a subset of each. The problem is

then to design a set of tours of minimal total duration such that each request is fulfilled

exactly once, within its time window, by a technician with the required skills, tools,

and spare parts. It is important to note that the departure of technicians may be delayed

∗Corresponding author: gueret@mines-nantes.fr

1

http://dx.doi.org/10.1007/s11590-012-0567-4
http://www.springer.com


to minimize the waiting time at each visited request, thus reducing the duration of

tours. The TRSP naturally arises in a wide range of settings, including telecoms, public

utilities, and companies planning maintenance operations. The TRSP can be seen as

an extension of the Vehicle Routing Problem with Time Windows (VRPTW), where

technicians play the role of vehicles and requests are made by clients. Thus, it belongs

to the class of NP-Hard problems.

A distinctive feature of this problem is the presence of compatibility constraints

between technicians and requests. While skills are intrinsic attributes, technicians may

carry different tools and spare parts over the planning horizon. Technicians start their

tour from their home, with a set of tools and spare parts that allows them to serve

an initial set of requests. They also have the opportunity to replenish their tools and

spare parts at a central depot at any time to serve more requests. Tools can be seen

as renewable resources, while spare parts are non-renewable and consumed once the

technician serves a request.

The remainder of this paper is organized as follows: Section 2 reviews the litera-

ture on problems related to the TRSP; Section 3 introduces the proposed matheuristic;

Section 4 presents experimental results; and finally, Section 5 concludes this work and

outlines directions for future research.

2 Literature review

The technician scheduling problem is closely related to the TRSP, but does not con-

sider the routing aspects, nor the tool and spare part constraints. It was featured in

the 2007 French Operational Research Society (ROADEF) challenge. We refer the

reader to the work by Cordeau et al. [4] and Hashimoto et al. [6] for two solution ap-

proaches to a multi-day variant in which teams are assembled to serve requests. Kovacs

et al. [7] studied an extension of this problem, namely, the Service Technician Rout-

ing and Scheduling Problem (STRSP), which considers routing costs, skills, and team

building.

Bredström and Rönnqvist [3] present a generic mixed integer programming formu-

lation for a Vehicle Routing and Scheduling Problem with Time Windows (VRSPTW)

in which some clients must be visited simultaneously by two or more vehicles. The

authors do not explicitly consider skills, but the proposed model accounts for compati-

bility constraints between vehicles and requests. Parragh [8] also tackled a variant with

synchronization between technician visits.

A practical consideration in technician routing is that it may not be possible or

desirable to serve all requests. Xu and Chiu [20] studied a variant of the TRSP in

which the objective is to maximize the number of requests served while accounting for

skill constraints and request urgency. Tang et al. [16] also considered requests with

different urgency levels. The authors use a multi-period maximum collection problem

formulation with time-dependent rewards modeling customer preferences. Tsang and

Voudouris [17] solved a problem faced by British Telecom where technician skills

affect the time required to serve a request.

Finally, home care routing and scheduling problems are related to the TRSP in the

sense that they consider patients that need to be visited by staff with specific skills and

2



within a given time frame. We refer the interested reader to the case studies by Bertels

and Fahle [2], Eveborn et al. [5], and Akjiratikarl et al. [1].

In summary, technician routing problems have received limited attention and to the

best of our knowledge, no work considers tools or spare parts, two important compo-

nents of real-world applications. The present work, based on a real problem, addresses

this aspect and proposes a parallel matheuristic approach for the TRSP.

3 The proposed matheuristic

This section outlines the proposed matheuristic that comprises a fast constructive heuris-

tic, a parallel adaptive large neighborhood search, and a mathematical programming

based post-optimization.

3.1 Regret constructive heuristic

Regret heuristics [11] are constructive heuristics that incorporate a look ahead compo-

nent. At each iteration the algorithm inserts the request with the greatest regret value at

the best position, where the regret value is an estimation of the additional cost incurred

if a request is not inserted at its best position.

More formally, let U be the set of requests to be inserted and δ k
i be the cost of

inserting request i at its best position in its k-th best route. The regret-q heuristic

inserts at its best position request i∗ = argmaxi∈U

{

∑
q
k=2

(

δ k
i − δ 1

i

)}

(ties are broken

by choosing the request with the lowest δ 1
i value). It is worth noting that regret-1

corresponds to the well-known best insertion heuristic.

When evaluating the insertion of a request in a tour we need to consider the possi-

bility to plan a trip to the main depot to pick up additional tools and spare parts. The

procedure first checks for the best feasible insertion without considering trips to the

depot. If no feasible insertion is found, it then considers each possible combination

of request and main depot insertions. Insertion feasibility and cost are evaluated in

constant time using the concepts of waiting time and forward time slack introduced by

Savelsbergh [13].

We use a regret-3 heuristic to design an initial set of K solutions that will then be

improved by the parallel adaptive large neighborhood search.

3.2 Parallel Adaptive Large Neighborhood Search

Shaw [14] introduced the Large Neighborhood Search algorithm (LNS), which works

by successively destroying and repairing a current solution. Pisinger and Ropke [10]

extended LNS by using several destroy and repair operators and adding an adaptive

layer to select them, leading to the Adaptive LNS algorithm (ALNS). In this work, we

propose a parallel version of ALNS, namely pALNS, that takes advantage of parallel

architectures to achieve significant speedups.

Algorithm 1 presents the outline of pALNS. The algorithm maintains a pool P of

N promising solutions that are optimized in K subprocesses (note that N ≥K). For each

master iteration, a subset of K promising solutions is selected randomly (line 4) and

3



Algorithm 1 Parallel Adaptive Large Neighborhood Search (pALNS) algorithm

Input: P , initial solutions; z, evaluation function; Θ−/Θ+, set of destroy/repair op-

erators; N, maximum size of the solution pool; K, number of subprocesses; Im,

number of master iterations; I p, number of iterations performed in parallel.

Output: Π∗, the best solution found; Ω′, the pool of tours for the post-optimization.

1: Ω′← /0

2: Π∗← argminΠ∈P {z(Π)}
3: for Im iterations do

4: P ′← selectSubset(P,K) ⊲ Select a subset of K solutions

5: parallel forall Π in P ′ do

6: Πp←Π ⊲ Current solution for this subprocess

7: for I p iterations do

8: d← select(Θ−) ;r← select(Θ+) ⊲ Select destroy/repair

9: Π′← r(d(Πp)) ⊲ Destroy and repair current solution

10: if accept(Π′,Πp) then

11: Πp←Π′ ⊲ Π′ is accepted as current solution

12: end if

13: if z(Π′)< z(Π∗) then

14: Π∗←Π′ ⊲ Π′ is the best solution found so far

15: end if

16: updateScore(d,r,Π′) ⊲ Update d and r scores

17: Ω′←Ω′∪{~π}~π∈Π′ ⊲ Add tours from Π′ to the set-covering tour pool

Ω′

18: end for

19: P←P ∪{Πp} ⊲ Add Πp to the pool P

20: end forall

21: P ← retain(P,Π∗,N) ⊲ Retain at most N solutions in the pool P

22: end for

23: return Π∗,Ω′

4



distributed among independent subprocesses. Then for I p iterations, each subprocess

selects destroy and repair operators with a roulette wheel mechanism that adaptively

reflects their past performance (line 8). The current solution is then successively de-

stroyed and repaired, producing a temporary solution (line 9). The temporary solution

is either accepted as the subprocess current solution or rejected according to a simu-

lated annealing criterion (line 10) The weights of the destroy and repair operators are

updated depending on their performance (line 16) and the tours from the solution are

stored for the post-optimization (line 17). The final current solution of each subpro-

cess is added to the pool of promising solutions (line 19). When all subprocesses have

terminated, a filtering procedure ensures that the pool contains at most N solutions,

including the best solution found so far (line 21). The algorithm stops after Im master

iterations, which corresponds to I = Im× I p×K ALNS iterations. What follows is a

detailed description of the main components of pALNS.

3.2.1 Destroy

Destroy operators remove a random number of requests from the current solution. We

used three destroy operators originally proposed by Pisinger and Ropke [10]: random,

critical, and related. The random destroy operator removes requests randomly from

their current tours; the critical destroy operator removes requests that are among the

most costly in the current solution; finally, the related destroy removes requests that

share common characteristics by first selecting a seed request, and then removing re-

lated requests. It is important to note that all three destroy operators are randomized.

We propose two relatedness metrics tailored for the TRSP that define two new de-

stroy operators. The a priori relatedness is a precalculated metric that does not depend

on the current position of the requests in the tours and combines three components:

geographic distance, difference of due dates, and number of technicians that can serve

both requests. On the other hand, time relatedness measures the difference between the

service time of two requests in the current solution.

3.2.2 Repair

Repair operators attempt to insert requests that are currently unserved. If requests can-

not be reinserted, a penalty proportional to the number of unserved requests is added

to the objective function. This penalty approach allows infeasible solutions to be con-

sidered as the current solution during the search, and can be interpreted as the possible

outsourcing of some requests. Our implementation is based on three repair heuristics:

best insertion, regret-2, and regret-3.

3.2.3 Adaptive layer

At each iteration, the pALNS algorithm selects a destroy and a repair operator using a

roulette wheel mechanism. Operator θ is selected with probability wθ . Let Θ� be either

the set of destroy (Θ−) or repair (Θ+) operators. As in the original ALNS algorithm,

probabilities are initialized with value 1
|Θ�| . However, they are then updated every l

iterations as follows: wθ ← (1− ρ)wθ + ρ sθ
∑θ∈Θ�

sθ
, where ρ ∈ [0,1] is the reaction

5



factor which defines how quickly probabilities are adjusted, and sθ is the score of

operator θ in the last l iterations. Note that this formula ensures that ∑θ∈Θ� wθ = 1 at

all time. The scores sθ are maintained at the master level. They are reset to 0 every l

iterations and updated at the end of each iteration depending on the new solution Π′: a

score of σ1 is granted for a new best solution, σ2 for an improving solution, σ3 for a

non-improving but accepted solution, and σ4 for a rejected solution.

3.2.4 Acceptance criterion

The pALNS algorithm relies on a simulated annealing acceptance criterion: a new so-

lution Π′ is accepted with probability e
z(Π)−z(Π′)

T , where T is the temperature parameter.

T is initialized with value T0 and reduced at each iteration by a cooling factor c. Pa-

rameters T0 and c are fixed depending on the initial solution and the target number of

iterations [10].

3.2.5 Promising solution pool

The solution pool acts as a shared memory and allows subprocesses to collaborate

efficiently. The method retain ensures that P contains at most N solutions: if

|P| > N then the method retains the N best solutions according to the fitness func-

tion f (Π) = rankz(Π)+ rankd(Π), where rankz(Π) is the rank of solution Π according

to its objective value and rankd(Π) is the rank of Π according to a diversity metric. For

the latter metric, we use the average broken pairs distance [12] to measure the diversity

of solution Π relative to the other solutions in P . This fitness function is inspired by

the biased fitness introduced by Vidal et al. [18] in a genetic algorithm with diversity

management. It allows the preservation of solutions that are both diverse and promis-

ing in terms of cost. In addition, we ensure that P always contains the best solution

found so far.

3.3 Set-covering based post-optimization

The pALNS algorithm generates one solution per ALNS iteration, but only keeps the

best one. However, good solutions may contain poor tours, and conversely poor so-

lutions may contain good tours. The proposed approach overcomes this limitation by

solving a Set Covering model (SC) that combines the tours generated throughout the

search to assemble a better solution. Note that a similar approach was for instance

used by Villegas[19] to solve the Truck and Trailer Routing Problem (TTRP) showing

excellent results.

3.3.1 Tour pool

Throughout the pALNS algorithm, we store in a pool Ω′ the tours ~π that make up

the temporary solutions Π′ found by the algorithm (see Algorithm 1, line 17). Tours

are either stored in a single hash table when solving the CVRPTW, or in a separate

hash table per technician for the TRSP. We associate a 32-bit integer to each tour using

6



the hash function hash(~π) = ⊕i∈~π R[i], where R is an array associating a random 32-

bit integer to each request and ⊕ is the XOR bit-wise operator. It is important to note

that this hash function only considers the subset of requests in tour ~π , ignoring their

sequence which is not relevant for the set-covering model. Preliminary experiments

revealed that the probability of having a hash collision was under 10−3. Therefore, we

ignore hash collisions and always keep the tour with the lowest cost, without checking

if tours actually contain the same requests.

3.3.2 Mathematical model

Let Ω′k ⊆ Ω′ be the subset of tours associated with technician k, ct be the duration of

tour t, and ati a binary parameter that takes the value of 1 if tour t visits request i and

0 otherwise. We denote by xt a decision variable that takes the value of 1 if tour t is

selected, and 0 otherwise. We can then formulate the TRSP on the subset Ω′ of all

feasible tours as follows:

min ∑
t∈Ω′

ctxt (1)

s.t., ∑
t∈Ω′

ati · xt ≥ 1 ∀i ∈R (2)

∑
t∈Ω′

k

xt ≤ 1 ∀k ∈K (3)

xt ∈ {0,1} ∀t ∈Ω′ (4)

where the objective (1) minimizes the total routing duration, constraints (2) ensure

that each request is served at least once, and constraints (3) guarantee each technician

performs at most one tour.

Considering that requests must be served exactly once, one could argue that a set-

partitioning formulation fits better. However, our model only contains a reduced subset

of tours (columns), and therefore, we might not be able to find a good combination of

tours that visit all requests exactly once. The drawback of this formulation is that the

solution may visit a request more than once. In such event, the solution is repaired by

removing the most costly duplicated visits.

4 Computational results

In this section we report computational results for the proposed matheuristic. All ex-

periments were run using Java 7 and Gurobi 4.60 on an Ubuntu 11.10 64-bit machine,

with an Intel i7 860 processor (4× 2.8GHz) and 6GB of RAM, using K = 8 subpro-

cesses. The pALNS algorithm was run for 25600 iterations (I p = 100, Im = 32) and a

time limit of 30 minutes was enforced for the set-covering model. Because the destroy

operators are randomized, pALNS is a non-deterministic algorithm, therefore we run

it 10 times for each instance. The detailed parameter settings are shown in [9].

7



4.1 Validation on the VRPTW

The TRSP being a natural extension of the VRPTW, we validate our matheuristic on

the 56 VRPTW instances from the Solomon benchmark [15]. The instances contain

100 requests located randomly (R), in clusters (C), or combining both (RC); with ei-

ther a short (type 1) or long (type 2) planning horizon. These instances are organized

combining location and horizon (i.e., C1, C2, R1, R2, RC1, and RC2), each group

containing between 8 and 12 instances. For the VRPTW, we consider the minimiza-

tion of the traveled distance1 and replace constraints (3) from the set covering model

by ∑t∈Ω xt ≤ 25 to model the 25-vehicle homogeneous fleet defined in the Solomon

instances [15].

Improvement Gap to BKS/Opt Best known solutions Time (s)

Group ∆pALNS ∆SC pALNS pALNS+SC #Opt. #BKS pALNS SC |Ω′|

C1 37.89% 0.00% 0.00% 0.00% 9/9 - 14.6 0.4 11550

C2 26.41% 0.02% 0.02% 0.00% 8/8 - 26.5 0.2 3479

R1 24.28% 0.44% 0.59% 0.14% 10/12 - 13.1 27.2 27303

R2 32.21% 0.25% 0.76% 0.51% 5/10 1/1 24.5 2.1 14161

RC1 25.06% 1.21% 1.38% 0.15% 6/8 - 12.6 25.1 25327

RC2 36.56% 0.43% 0.99% 0.55% 6/8 - 21.3 1.3 11822

All 30.20% 0.38% 0.62% 0.23% 44/55 1/1 18.6 10.1 16293

Table 1: Computational results for the Solomon [15] instances (average over 10 runs).

Table 1 summarizes the average results for each instance group. The first col-

umn defines the instance group, the second column contains the relative improve-

ment between the initial solution and the solution returned by pALNS (∆pALNS), the

third column reports the relative improvement between the pALNS solution and the

pALNS+SC solution (∆SC). The fourth and fifth columns contain the average gap to

the optimal or best known solution for pALNS and pALNS+SC. The sixth column re-

ports the number of optimal solutions found (Opt.) over the number of known optimal

solutions, while the seventh column reports the number of best known solutions (BKS)

found over the number of heuristic BKS. Columns eight and nine show the average

computational times for the pALNS and SC, and the last column reports the average

size of the tour pool.

The overall average gap for pALNS+SC is just 0.23%, while Pisinger and Ropke

[10] report a value of 0.36% using an ALNS with a larger number of destroy and

repair operators2. This illustrates the importance of the post-optimization step of the

matheuristic, which is able to divide the gap by a factor of 3.4 in 10s on average. On

the other hand, the parallelization of the algorithm allowed for speedups of 3.5 times

relative to a sequential implementation, leading to running times of 19s on average.

1Note that we truncate the distances to one decimal, as it is common practice when solving the Solomon

instances [15] with the distance minimization as solely objective.
2In addition, it is important to note that 7 optimal solutions were not known at the time of their study,

using the same values the average gap for our approach is of 0.16%.

8



4.2 Results on the TRSP

After validating our algorithmic building blocks on the VRPTW, in this section we

analyze the performance of our matheuristic on randomly generated instances of the

TRSP. Our testbed is composed of 56 instances of the TRSP based on the Solomon [15]

benchmark. For each instance, we considered a crew of 25 technicians with different

home locations, skills, initial set of tools and spare parts. In addition, we generated

requests by adding skill, tool, and spare part information to each customer. These

instances and our detailed solutions are publicly available at [9].

Improvement Gap to BKS Time (s)

Group ∆SC pALNS pALNS+SC pALNS SC |Ω|

C1 0.97% 1.22% 0.23% 24.0 388.9 67020

C2 0.35% 0.78% 0.42% 27.8 23.6 39334

R1 3.62% 4.96% 0.82% 28.9 500.2 30783

R2 0.23% 1.69% 1.46% 31.0 42.1 24396

RC1 3.06% 3.90% 0.68% 27.9 185.8 18638

RC2 0.49% 1.93% 1.43% 27.9 15.6 16917

All 1.53% 2.54% 0.86% 28.1 210.1 32858

Table 2: Computational results for 56 randomly generated TRSP instances.

Table 2 reports our results for the six groups of instances. Note that in this case we

do not report the improvement of pALNS over the initial solution as the regret heuristic

is not always able to insert all requests. In addition, the third and fourth columns report

average gap to the best solution found in our experiments.

The SC post-optimization improves by 1.5% the pALNS solution, which is larger

than the 0.38% improvement found for the VRPTW. This can be explained by the fact

that the TRSP is harder for pALNS than the VRPTW, so further improvements can be

found in the post-optimization phase. It is worth noting that on average the tour pool

contains twice as many tours as in the VRPTW experiments. This can be explained by

the fact that in the TRSP identical tours may be associated with different technicians.

However the problem being overly constrained, it expectedly admits fewer feasible

tours. In terms of running times, the post-optimization engine requires 20 times more

computational effort to solve the TRSP than the VRPTW. This is due to the larger

size of the tour pool and the presence of resource constraints (3) that destroy the set-

covering structure, thus demanding more effort from the linear optimization engine

which is likely to embed specific heuristics for pure set-covering models.

5 Conclusions and research perspectives

In this study we introduced a new challenging routing problem with numerous applica-

tions, namely the Technician Routing and Scheduling Problem. Distinctive features of

this problem are the presence of compatibility constraints between technicians and re-

quests; an initial set of tools and spare parts available to the technicians; the possibility

for technicians to visit a main depot to pick up additional tools and spare parts; and the

scheduling aspects introduced by the objective of minimizing the total tour duration.

9



We proposed a parallel matheuristic, which comprises three components: a regret

constructive heuristic, a parallel adaptive large neighborhood search (pALNS), and

a set-covering post-optimizer (SC). The parallelization of the ALNS allows a speed

increase by a factor of 3.4 on a quad-core computer, while the post-optimization phase

assembles a better solution by using tours gathered during the search. The resulting

matheuristic maintains the flexibility of the ALNS, while improving its performance

and reducing the need for complex operators.

We validated and measured the performance of the proposed matheuristic on the

Solomon VRPTW benchmark, showing a negligible gap of 0.23% to the optimal and

best known solutions (BKS), and finding 44 of the 55 optimal solutions in under 30s.

Results on randomly generated instances of the TRSP illustrate the improvement that

pALNS and SC bring over a constructive heuristic solution.

Future work will focus on the extension of the problem to a dynamic setting, in

which unexpected delays and new requests may occur. To this end, we are focusing

our research efforts on developing fast optimization procedures able to react in real

time to changes in the problem information.

Acknowledgements Financial support for this work was provided by the CPER (Con-

trat de Projet Etat Region) Vallée du Libre (France); and the Centro de Estudios Inter-

disciplinarios Básicos y Aplicados en Complejidad (CEIBA, Colombia). This support

is gratefully acknowledged. The authors would also like to thank Olivier Péton from

the Ecole des Mines de Nantes and the anonymous reviewers for their insightful com-

ments and suggestions.

References

[1] Akjiratikarl, C., Yenradee, P., Drake, P.R.: PSO-based algorithm for home care

worker scheduling in the UK. Computers & Industrial Engineering 53(4), 559 –

583 (2007)

[2] Bertels, S., Fahle, T.: A hybrid setup for a hybrid scenario: combining heuristics

for the home health care problem. Computers & Operations Research 33(10),

2866 – 2890 (2006)

[3] Bredström, D., Rönnqvist, M.: Combined vehicle routing and scheduling with

temporal precedence and synchronization constraints. European Journal of Oper-

ational Research 191(1), 19–31 (2008)

[4] Cordeau, J.F., Laporte, G., Pasin, F., Ropke, S.: Scheduling technicians and tasks

in a telecommunications company. Journal of Scheduling 13(4), 393–409 (2010)

[5] Eveborn, P., Flisberg, P., Ronnqvist, M.: LAPS CARE - an operational system for

staff planning of home care. European Journal of Operational Research 171(3),

962–976 (2006)

10



[6] Hashimoto, H., Boussier, S., Vasquez, M., Wilbaut, C.: A GRASP-based ap-

proach for technicians and interventions scheduling for telecommunications. An-

nals of Operations Research 183, 143–161 (2011)

[7] Kovacs, A., Parragh, S., Doerner, K., Hartl, R.: Adaptive large neighborhood

search for service technician routing and scheduling problems. Journal of

Scheduling pp. 1–22 (2011). DOI 10.1007/s10951-011-0246-9

[8] Parragh, S.N.: Solving a real-world service technician routing and scheduling

problem. In: Proceedings of the Seventh Triennial Symposium on Transportation

Analysis (TRISTAN VII) (2010)

[9] Pillac, V., Guéret, C., Medglia, A.L.: A parallel matheuristic for the technician

routing and scheduling problem: supplementary material (online) (2011). URL

http://hdl.handle.net/1992/1145

[10] Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Com-

puters & Operations Research 34(8), 2403–2435 (2007)

[11] Potvin, J.Y., Rousseau, J.M.: A parallel route building algorithm for the vehicle

routing and scheduling problem with time windows. European Journal of Opera-

tional Research 66(3), 331 – 340 (1993)

[12] Prins, C.: Two memetic algorithms for heterogeneous fleet vehicle routing prob-

lems. Engineering Applications of Artificial Intelligence 22(6), 916–928 (2009)

[13] Savelsbergh, M.: The vehicle routing problem with time windows: minimizing

route duration. INFORMS Journal on Computing 4(2), 146–154 (1992)

[14] Shaw, P.: Using constraint programming and local search methods to solve vehi-

cle routing problems. In: Principles and Practice of Constraint Programming –

CP98, Lecture Notes in Computer Science, vol. 1520, pp. 417–431 (1998)

[15] Solomon, M.M.: Algorithms for the vehicle-routing and scheduling problems

with time window constraints. Operations Research 35(2), 254–265 (1987)

[16] Tang, H., Miller-Hooks, E., Tomastik, R.: Scheduling technicians for planned

maintenance of geographically distributed equipment. Transportation Research

Part E: Logistics and Transportation Review 43(5), 591 – 609 (2007)

[17] Tsang, E., Voudouris, C.: Fast local search and guided local search and their

application to British Telecom’s workforce scheduling problem. Operations Re-

search Letters 20(3), 119–127 (1997)

[18] Vidal, T., Crainic, T., Gendreau, M., Prins, C.: A hybrid genetic algorithm with

adaptive diversity management for a large class of vehicle routing problems with

time windows. Tech. Rep. 2011-61, CIRRELT (2011)

[19] Villegas, J.G.: Vehicle routing problems with trailers. 4OR: A Quarterly Journal

of Operations Research (2012). DOI 10.1007/s10288-011-0186-4

11

http://hdl.handle.net/1992/1145


[20] Xu, J., Chiu, S.: Effective heuristic procedures for a field technician scheduling

problem. Journal of Heuristics 7(5), 495–509 (2001)

12


	Introduction
	Literature review
	The proposed matheuristic
	Regret constructive heuristic
	Parallel Adaptive Large Neighborhood Search
	Destroy
	Repair
	Adaptive layer
	Acceptance criterion
	Promising solution pool

	Set-covering based post-optimization
	Tour pool
	Mathematical model


	Computational results
	Validation on the VRPTW
	Results on the TRSP

	Conclusions and research perspectives

