
A Model Driven Reverse Engineering Framework for

Extracting Business Rules out of a Java Application

Valerio Cosentino, Jordi Cabot, Patrick Albert, Philippe Bauquel, Jacques

Perronnet

To cite this version:

Valerio Cosentino, Jordi Cabot, Patrick Albert, Philippe Bauquel, Jacques Perronnet. A Model
Driven Reverse Engineering Framework for Extracting Business Rules out of a Java Application.
RuleML, Aug 2012, Montpellier, France. 2012. <hal-00755010>

HAL Id: hal-00755010

https://hal.inria.fr/hal-00755010

Submitted on 21 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00755010


A Model Driven Reverse Engineering
Framework for Extracting Business Rules out of

a Java Application

Valerio Cosentino1,2, Jordi Cabot1, Patrick Albert2, Philippe Bauquel3 and
Jacques Perronnet3

1 AtlanMod, INRIA & EMN, Nantes, France
2 IBM CAS France

3 IBM, France
{albertpa, bauquel.p, jacques perronnet, valerio.cosentino}@fr.ibm.com,

jordi.cabot@mines-nantes.fr

Abstract. In order to react to the ever-changing market, every organi-
zation needs to periodically reevaluate and evolve its company policies.
These policies must be enforced by its Information System (IS) by means
of a set of business rules that drive the system behavior and data. Clearly,
policies and rules must be aligned at all times but unfortunately this is
a challenging task. In most ISs implementation of business rules is scat-
tered among the code so appropriate techniques must be provided for
the discovery and evolution of evolving business rules.
In this paper we describe a model driven reverse engineering framework
aiming at extracting business rules out of Java source code. The use
of modeling techniques facilitate the representation of the rules at a
higher-abstraction level which enables stakeholders to understand and
manipulate them.

1 Introduction

Today market needs oblige organizations to change periodically their policies
expressed as a set of business rules. A business rule represents a relevant ac-
tion or procedure aiming at defining or constraining some precise aspect of a
business. Business rules are a key component of the Information System (IS) of
the company. Unfortunately, they are not usually implemented as a single and
easily identifiable component in the IS but are generally scattered in many parts
of the IS source code. This makes it very difficult to quickly and safely evolve
the organizational policies.

To tackle this issue we propose a new Business Rule Extraction (BREX)
framework. BREX [1] is the process of extracting business rules out of an IS,
isolating the code segments which are directly related to business processes.
BREX includes three major activities: Variable Classification, Business Rule
Identification (mainly based on Program Slicing [2] techniques) and Business
Rule Representation.



Variable Classification is used to reduce the number of variables to analyse.
It aims at finding variables that represent domain/business concepts and hint at
business rules. The set of domain concepts represent the sphere of non-technical
knowledge embedded in the application.

Business Rule Identification aims at identifying business rules by slicing the
source code [3] to focus on the chunks of code that are relevant to the domain
variables, identified in the previous step. A set of chunks related to the same
variable conforms a business rule.

Business Rule Representation consists of presenting the extracted business
rules through artifacts (graphs, text, . . . ) amenable to human comprehension.

A further activity in BREX is the traceability of business rules from the
source code. This task is not always present in BREX frameworks but we believe
is a key component to explain and justify the origin of the extracted business
rules.

In this sense, this paper describes a model-driven framework for extracting
business rules out of a Java application. We show that Model Driven Engineering
(MDE) applied to reverse engineering/BREX approaches offers some important
benefits with respect to previous works. MDE allows working on an abstract
homogeneous representation of the system that avoids technological problems
and provides a non-intrusive solution, since the extraction process is performed
by working with the model of the system and not the system itself. Moreover,
when representing the system as a model we can benefit from the plethora of
MDE tools available to manipulate the (model of the) system.

MDE allows us to build a framework composed by independent and modular
steps, since each of them is related to the others by its input and output models.
In this way, the user can stop the BREX process at any moment, selecting the
level of output that better fits his needs.

The framework is fully automatic but allows user intervention at the end
of each sub-step. This allows users to complement the automatic process in
order to refine and improve the results of our extraction heuristics, e.g. users
could provide information about the company “coding style” to facilitate the
identification of rules.

This paper is structured as follows: Section 2 presents a running example;
Section 3 introduces the overall approach; Section 4 illustrates Traceability in
the framework, which describes how the entities composing the artifacts in the
framework are related to the source code; Section 5 analyses the result of this
framework; Section 6 discusses the related work and Section 7 closes the paper
with conclusion and future work.

2 Running Example

In order to illustrate our framework, we will use as running example a Java
application that belongs to the simulation software category and that contains
several business rules.



The application simulates the behavior of animals and humans in a meadow,
where each actor, animal or human, can act and move according to its nature.
Two different functionalities are implemented in this application: one represents
the business logic and describes how predator-prey interactions affect population
sizes. The second one is used to store statistical information about the actors
participating in the simulation.

A schema of the application classes and their relationships is shown in Fig.1.
GUI class shows the graphical interface of the application; Simulator simulates
the predator-prey game and it stores information for statistical analysis; Sim-
ulatorView, AnimatedView and FieldView represent the graphical views of the
game. Counter provides a counter for each participant in the simulation; Grass
models the grass on the field; Field is a rectangular grid of field positions. Each
position is modelled as a Location. Actor is an interface containing methods to
modify the actor’s location and to perform the actor’s daily behavior. Human
and Animal implement Actor. Human provides the common features to all hu-
mans (get/set location). Animal stores the actual age, the location in the field
and the food level. It contains also a boolean variable for determining if the an-
imal is alive, the maximum and the breeding age, the breeding likelihood and
the maximum number of births which an animal can have.

Fig. 1. Class dependencies



2.1 Rules modeling the application

A manual inspection of the source code of these classes reveals the existence of
several business rules.

Rules modelling hunter behaviours are:

– Hunters never die
– Hunters hunt animals

Rules modelling bird and rabbit behaviors are:

– Rabbits/Birds can die by being eaten by foxes, hunted by hunters, because
of starvation, old age or overcrowding

– Rabbits/Birds can breed when they reach their breeding age
– Rabbits/Birds eat grass

Rules modelling the fox behaviors are:

– Foxes can die by being eaten by hunters, because of starvation, old age or
overcrowding

– Foxes can breed when they reach their breeding age
– Foxes eat rabbits or birds

Fig.1 shows also the inheritance rules, but to detect them it’s not necessary
to perform an analysis like the one presented in this paper. The application is
composed by 2 packages and 16 classes. The presentation and the domain layers
are clearly separated.

3 Framework Description

As written in Section 1, a BREX is typically composed of three operations: Vari-
able Classification, Business Rule Identification and Business Rule Representa-
tion. A new operation, Model Discovery, is added to the framework in order to
move the global BREX process from a grammarware technological space to the
modelware one. Fig. 2 depicts these four phases together with the input/output
artfacts of each phase.

Fig. 2. Overall approach



Model Discovery takes as input the source code of a Java application and
generates a Java model that has a one-to-one correspondence with the code (i.e
there is no information loss; all classes, methods, behavior,... of the Java code is
represented as part of the model). We will refer to this Java model as Platform
Specific Model (PSM) in the remainder of the paper since model discoveries are
available for several languages and could be reused in other BREX processes.

Variables Classification identifies the domain variables together with their
containing classes. The input of this operation is the PSM and the output is a
model containing all domain’s classes and their inner variables.

Business Rule Identification provides the means to identify the business rules
related to a domain variable. This operation takes as input the PSM and a
variable i contained in the Domain Variable Model. It returns two models: a
model containing the internal representation of the business rules belonging to i
and a global domain model with the set of classes, method signatures and class
attributes relevant for the union of domain variables models.

Business Rule Representation provides artifacts for representing business
rules. This operation takes as input the Business Rule Model for the variable i
and returns human-understandable artifacts that ease the comprehension of the
business rules for i.

The model discovery phase is implemented with MoDisco[4]. MoDisco is a
tool offering a set of model-based components to facilitate the creation of reverse
engineering solutions. MoDisco includes already a Java metamodel and a full
Java discovery that instantiates this Java metamodel with based on the source
code of a set of Java files.

The other three phases, which are the ones strictly corresponding to a BREX
process, are described in detail in the next subsections. They have all been imple-
mented by means of a chain of model-to-model transformations that manipulate
the input and output models as described in the text. All transformations have
been implemented using Atlas Transformation Language (ATL) [5], which is a
model transformation language specified as both a metamodel and a textual
concrete syntax.

In the field of MDE, ATL provides developers with a means to specify the
way to produce a number of target models from a set of source models by writing
rules that define how to create target models from source model elements.

3.1 Variable Classification

Variable Classification is used to reduce the number of variables to analyse by
filtering out those variables which are not representing (or relevant for) domain
information. This phase takes as input the PSM and returns a model with the
Java classes and variables modeling business concepts. These variables are used
as starting point to identify business rules.

To identify the relevant variables we have developed a set of heuristics based
on a sample of Java programs. For instance, for the running example, the heuris-
tics help to distinguish between classes belonging to the business layer and classes



belonging to the presentation layer based on the package and import directives
in the class definition.

All classes in the presentation layer are collected and used as starting point
to find classes handling domain concepts. Since several functionalities can be
implemented in an application, the domain classes are organized in groups. The
classes composing a group contain one or more type dependencies of other classes
in the same group. Groups having the same classes are merged together.

The computation of calculating a group starts by creating the set of classes
using graphical imports (GUI, Simulator and AnimatedView, FieldView; while
SimulatorView is not considered because it is an interface). From each of these
classes three lists are generated: a list (output) containing the classes already
analysed, a list (temp) containing the classes which have a type dependency to
the current analysed class and a static list (forbidden) of classes that can not be
part of the group. The computation ends when the temp list is empty.

The variables in the classes of the output list are classified in three categories:
single-access, multi-access and potentials.

– Single-access variables are all the class attributes that occur at most once
on the left side of an assignment. In this group we can find final and static
variables and variables that are initialized in the constructor.

– Multi-access variables are all the class attributes occurring more than once
on the left side of an assignment.

– Potential variables are all the variables that are declared in methods and
occur on the left side of an assignment.

Single-access variables point at business rules modelling the initializations of an
application; whereas Multi-access and Potential variables point at business rules
modelling more complex behaviors.

Fig. 3. Variable Classification metamodel

The metamodel in Fig.3 is used to store the variables information. The meta-
model is composed by a root entity Model containing zero or more groups. Each
Group stores a set of classes related to it. A Class is a subtype of Element. Class



is described by three lists of Variables: single-access, multi-access and potentials.
Variable is described by three properties: name, storing the name of the variable;
type, storing the type name of the variable and link. The latter is used to store a
reference to the entity in the PSM that corresponds to the variable declaration
statement in the code.

3.2 Business Rule Identification

Business Rule Identification, described in Fig.4, is composed of several sub-
steps: Domain Model Extraction, Slicing Operation and Business Rule Model
Extraction. It takes as input the PSM model and the Domain Variables Model
and generates two models (Domain Model and PSM enriched with slicing an-
notations (PSMA)). The first one stores a map between the domain concepts
expressed as class names, method signatures and class attributes pointed by the
domain variables and a customizable verbalization of these elements (to improve
the quality of the natural language explanation of the rules); whereas the second
one contains all the business rules related to a domain variable i selected by the
user.

Fig. 4. Business Rule Identification process

Domain Model Extraction This operation allows extracting method signa-
tures and class attributes from the classes containing the domain variables iden-
tified in the variables classification step, providing a default vocabulary for these
entities to be reused in the description of the business rules. The default verbal-
ization consists in simply splitting the names of classes, variables and methods
according to the common way to define them in Java (for example, for static
and final method or variable names: ABC DEF ->ABC DEF; in the other cases:
abcDef ->abc Def). Nevertheless, the user can tune the process and define its
own rule verbalization (or directly change the verbalization of some methods).

The input of this operation is the PSM model and the Domain Variables
Model. The output of this step is a model conforming to the Business Object
Model/Vocabulary Model (BOM/VOC) metamodel of IBM WebSphere ILOG
JRules BRMS4.
4 http://www-01.ibm.com/software/integration/business-rule-management/jrules-

family/



In Fig.5, a part of the BOM/VOC model concerning the class Grass is shown.
All the method signatures and class attributes belonging to Grass are stored in
a model conforming to the BOM metamodel. This model is used to generate an
instance of the VOC metamodel containing a default verbalization for all the
BOM elements. The name of the class is translated as a concept, while variables
and method signatures are translated as phrase in which the word this is used
to refer to concept.

Fig. 5. Example of the BOM/VOC model for the class Grass

Slicing Operation The slicing operation is a variation of block slicing[6]. The
inputs of this step are the PSM and a variable i contained in the Domain Vari-
ables Model; whereas the output is the PSM enriched with annotations (PSMA)
on all the statements, variable declarations and methods relevant for i. Each
annotation for any of those elements concerns the granularity index, the name
of the slicing variable, the unique rule number and the type of relation with the
slicing variable i.

The granularity index is the position of a method (containing one of the
elements relevant to i) inside the ordered set of methods we cross in a program
from the main entry execution point to the statement that actually modifies the
value of the variable i. This ordered set of methods is defined as granularity set.

A relevant statement can be annotated as rule or related. All the statements
that allow passing from a method in the granularity set to another one in the
same set are annotated as rule. A statement is marked as related if it contains
a rule statement or contains a variable declaration used inside a related or rule
statement.

Two types of relations are defined for variable declarations. A variable dec-
laration is marked as sliced-variable if it is the selected slicing variable i. A
variable declaration is marked as related-variable if it is used inside a related or
rule statement.



Relevant methods can be annotated as related if they contain at least one
related or rule statement or as reachable if one of its invocations occurs in a
related statement or in another reachable method.

All this information is then used to extract the business rule. The result of
the annotation can be visualized by the user if desired. The previously mentioned
MoDisco Eclipse plug-in can take the annotated model and transform it back
into a Java application where all annotations will appear as comments.

Fig. 6. Example of a slicing operation on foodLevel variable

In Fig.6 an example of slicing is presented. Line 9 contains the rule statement
of the slicing variable foodLevel for granularity zero. The if condition at line 7 is
annotated as related since it contains the rule statement. The statement at line
6 is annotated as related because the statement at line 7 cannot exist without it.
The statements at line 5 and 4 follow the same logic. The variable declaration
statement at line 3 is annotated as related, since the defined variable is used as
argument at line 4. The while statement at line 2 is marked as related, because
it contains statements that are related to the slicing variable. The statement at
line 1 is annotated as related, because it is used in the condition of the next



while statement. The method is marked as related, since it contains related and
rule statements.

The method findfood is invoked from the body of the method act, which
contains elements related to the slicing variable with granularity 1. The two
methods are in the same class Fox.

The method act is invoked in simulateOneStep of the class Simulator. The
body of this method contains elements with a granularity value of 2.

Analysing where the related methods are invoked, it is possible to go back
until the method that starts the application.

Business Rule Model Extraction The goal of this step is to extract from the
PSMA only those entities that are annotated and domain-related to the variable
i.

As seen in Fig.6, the slicing operation allows tracking all the methods and
statements for a specific domain variable. Since a part of those methods are
outside the domain layer, we use the information collected during the Domain
Model Extraction step to identify and remove them.

The input of this transformation is the PSMA and the Domain Model; the
output model contains all the business rules for the variable i. Each business
rule contains statements, methods and variable declarations annotated during
the slicing operation that have references to the domain concepts stored in the
Domain Model.

Fig. 7. Business Rule metamodel

The output model conforms to the metamodel shown in Fig.7. The Where en-
tity stores the class and method names from which the Slice has been extracted.
An Action entity represents a rule statement that can be a method invocation,



an assignment, an object creation statement or a variable declaration. The pre-
Actions list contains Structures related to the Action. A Structure can be a loop
statement, a variable declaration or an if statement. Each Structure can store
zero or more Expressions. ReachableMethod and RelatedVariable entities contain
the methods and the variables that are invoked in Structures and Action. Ex-
pression, Action, Where and MethodDeclaration are Trace entities used to store
links pointing to the PSMA elements from which they have been generated.

Slice entities are related each other by following and follower list, that allow
creating a graph of slices. For each slice s, the first list contains slices which store
rule statements having the same id number of s and the immediately superior
granularity index. The second list contains slices storing rule statements having
the same id number of s and the immediately lower granularity index.

3.3 Business Rule Representation

Business Rule Representation, shown in Fig. 8, provides human-understandable
artifacts describing the extracted business rules for the slicing variable i.

This process takes as input the Business Rule Model for the variable i and
optionally the Domain Model. The latter is used if the user wants a verbalization
not completely based on the source code. It generates textual and graph artifacts
for easing the analysis of the extracted business rules.

Fig. 8. Business Rule Representation process

Text Generation The text generation takes as input the Business Rule Model
and the Domain Model if selected. It generates a textual output where the sen-
tences contain the verbalization of the entities stored in the Business Rule Model
(Fig.10).

Generic Graph Generation Since several types of graph exist and since each
of them can be used to emphasize some topology features; the framework allows
transforming the Business Rule Model into a generic graph model, that collects
edges, nodes, their labels and dependencies.

This step takes as input the Business Rule Model and the Domain Model
and generates a model conforming to the Portolan metamodel [7], that allows
bridging the gap between data of a given domain and its graph visualization.



Specific Graph Generation Thanks to Portolan [8] , we can delegate the
selection of a particular type of graph to a dedicated step.

This step takes as input the Portolan model and produces as output a specific
graph model, which currently conforms to a metamodel representing a GraphML
graph5.

4 Traceability support in the framework

Traceability in BREX can be defined as the ability to tie the source code elements
to those composing the extracted business rule [9]. Our approach offers full
traceability support between all the steps.

Our traceability implementation benefits from the key importance of the
traceability concept in MDE where generation of traces is already part of the
features offered by several model manipulation tools (e.g. in transformations [10],
to relate the target elements with the source elements that originated them; see
[11] for a survey of traceability approaches in MDE).

Given that our framework is MDE-based, we can implement BREX Trace-
ability through MDE Traceability using non-intrusive methods. This is an im-
portant difference with respect to other methods that must use more intrusive
actions (e.g. modifying the compiler to instrument the code to generate traces)
to collect the needed information.

Fig. 9. Traceability Metamodel

Traceability information is stored in a traceability model conforming to the
trivial metamodel of Fig. 9). Traceability entity stores the sets of linked source
and target elements (generic EObjects) for all the rules executed in the ATL
transformations implementing the different steps of our method. Therefore, each
transformation rule creates not only the elements of the target model but also
links each target element with the source element that matched the rule and
triggered its execution.

5 Analysis of the Result

To validate our method we analyzed that the business rules returned at the end
of the BREX process for the running example coincide with the ones that we

5 http://graphml.graphdrawing.org/



discovered after a manual inspection. For the running example, we were able to
generate both graphical and textual representations of all the identified rules,
facilitating this way the comprehension of the application.

As an example of the results obtained on the application described in Section
2, we show some of the extracted business rules.

Fig. 10. Causes of death of a bird

Fig 10 presents a textual-based explanation of all possible causes of death for
birds. Each box is automatically generated and summarizes a different business
rule controlling the birds’ death: a bird can die hunted by a fox or by a hunter,
because of starvation, old age and overcrowding.

Currently we are testing our framework on a bigger case study provided by
IBM, but due to lack of space we can report only a part of the new result.

Thanks to our approach we have been able to discover uncovered rules that
the users were not aware of.

The IBM case study has allowed us to analyse the efficiency of our framework.
The most time-consuming step is the Slicing Operation (Section 3.2), since it is
based on recursive heuristics, which identify the relevant input elements for a
given variable and write annotations on them.



In order to optimize this step, we are implementing a pruning component
that will allow reducing the input size of the slicing operation for any given
variable.

We have remarked that the expressiveness of the inferred rules decreases
as long as the complexity of the application domain increases. In the example
described in this paper, the default verbalization allows going up towards a
language that is not programming-related. Unfortunately, this does not happen
for the complex case study, where the default verbalization adds more complexity
to the rule expressiveness.

6 Related Work

BREX has been extensively studied in the literature but we believe our approach
provides some additional benefits with respect to previous work.

First of all, the output of the framework is flexible. Thanks to the modularity
provided by the use of MDE techniques, we can separate the internal represen-
tation of the rules from their external visualization. This separation makes it
possible to create different verbalizations for the same business rule. In previous
work like [1], [12], [13] and [14] the verbalization step and a separation between
the internal and the external representations are not provided.

Traceability is also missing in most of the approaches [12], [13], [1], [15]. [16]
includes partial traceability support implemented by means of adding start line
number, end line number and annotations to the business process that facilitate
identifying the parts of the code relevant to the process. Instead, thanks to the
explicit relationships between the business rule model and the Java model, we
can navigate from one to the other and retrieve the exact code excerpt relevant
to the rule.

Regarding approaches specific for Java, [17] proposes an intrusive approach
based on the byte-code instrumentation. Our approach is non-intrusive, since we
work on an abstraction of the system.

In all of those papers the Granularity of the extracted business rules is not
treated or mentioned.

7 Conclusion & Future Work

This paper describes a MDE framework for extracting BRs out of a Java appli-
cations. The BRs extracted out of the source code are stored in a model-based
internal representation that can be externalized in several ways to fulfill the
needs of different users (business analysts, developers, . . . ). Moreover, our inte-
grated traceability mechanism allows to link back the rules to the corresponding
part of the source code that justifies their extraction.

The four steps composing the framework have been explained at hight de-
scription level, since we have preferred to discuss their heuristics, their input and
output instead of entering in details for each of them.



The example used along this article has been selected in order to develop a
framework that could be used for understanding a generic application.

We are now applying our framework on a real use case provided by IBM and
composed by more than 5000 Java classes. This will help us to develop additional
heuristics for the framework and test its scalability. Moreover, we plan to extend
the framework to other technologies beyond Java. In particular, we will focus our
attention to the identification and consolidation of business rules enforced as part
of the presentation and persistence (e.g. as part of checking conditions in triggers)
layers. Finally, we would like to integrate machine-learning capabilities so that
the framework becomes able to learn both about the coding and implementation
style used by the company (so that the heuristics can be refined based on the
corrections provided by the users in previous projects) and about the domain
itself (i.e. the business rules extracted for the domain can be used as auxiliary
information when extracting business rules of another software for the same
domain).

References

1. Sneed, H.M., Erdös, K.: Extracting business rules from source code. In: WPC.
(1996) 240–

2. Weiser, M.: Program slicing. IEEE Trans. Software Eng. 10(4) (1984) 352–357
3. Tip, F.: A survey of program slicing techniques. Journal of Progr. Lang. 3(3)

(1995) 121–189
4. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: Modisco: a generic and extensible

framework for model driven reverse engineering. In: ASE. (2010) 173–174
5. Link: Atlas transformation language. http://www.eclipse.org/atl
6. Korel, B., Yalamanchili, S.: Forward computation of dynamic program slices. In:

ISSTA. (1994) 66–79
7. Mahe, V., Martinez Perez, S., Doux, G., Brunelière, H., Cabot, J.: Portolan: a

model-driven cartography framework. Technical Report RR-7542 (2011)
8. Link: Portolan. http://code.google.com/a/eclipselabs.org/p/portolan/
9. Baxter I., H.S.: A standards-based approach to extracting business rules.

http://www.semdesigns.com/Company/Publications/ExtractingBusinessRules.pdf
10. Jouault, F.: Loosely coupled traceability for atl. In: ECMDA. (2005) 29–37
11. Galvão I., Goknil, A.: Survey of traceability approaches in model-driven engineer-

ing. In: EDOC. (2007) 313–
12. Huang, H., Tsai, W., Bhattacharya, S., Chen, X., Wang, Y., Sun, J.: Business rule

extraction from legacy code. In: COMPSAC. (1996) 162 –167
13. Putrycz, E., Kark, A.W.: Recovering business rules from legacy source code for

system modernization. In: RuleML. (2007) 107–118
14. Barbier, F., Deltombe, G., Parisy, O., Youbi, K.: Model driven reverse engineering:

Increasing legacy technology independence. In: IWRE. (2011) –
15. Fu, G., Shao, J., Embury, S.M., Gray, W.A., Liu, X.: A framework for business

rule presentation. In: DEXA. (2001) 922–
16. Zou, Y., Lau, T., Kontogiannis, K., Tong, T., McKegney, R.: Model-driven business

process recovery. In: WCRE. (2004) 224–233
17. Felix Lsch, J.L., Schmidberger, R.: Instrumentation of java program code for

control flow analysis (2004)


