
Discovering Implicit Schemas in JSON Data

Javier Cánovas, Jordi Cabot

To cite this version:

Javier Cánovas, Jordi Cabot. Discovering Implicit Schemas in JSON Data. International
Conference on Web Engineering, Jul 2013, Aalborg, Denmark. 2013. <hal-00818945>

HAL Id: hal-00818945

https://hal.inria.fr/hal-00818945

Submitted on 29 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50616084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00818945

Discovering Implicit Schemas in JSON Data?

Javier Luis Cánovas Izquierdo, Jordi Cabot

AtlanMod, École des Mines de Nantes – INRIA – LINA, Nantes, France
{javier.canovas,jordi.cabot}@inria.fr

Abstract. JSON has become a very popular lightweigth format for data ex-
change. JSON is human readable and easy for computers to parse and use. How-
ever, JSON is schemaless. Though this brings some benefits (e.g., flexibility in
the representation of the data) it can become a problem when consuming and in-
tegrating data from different JSON services since developers need to be aware
of the structure of the schemaless data. We believe that a mechanism to discover
(and visualize) the implicit schema of the JSON data would largely facilitate the
creation and usage of JSON services. For instance, this would help developers to
understand the links between a set of services belonging to the same domain or
API. In this sense, we propose a model-based approach to generate the underlying
schema of a set of JSON documents.

1 Introduction

With the emergence of the Web 2.0, asynchronous-based web technologies are becom-
ing mainstream mainly thanks to their ability to provide richer, faster and more inter-
active web experiences [1]. AJAX-based web applications (e.g., Google Maps, Gmail
or Facebook to cite some popular ones) are good examples of such technology. For a
long time, these applications have been using XML as interchange format, however,
in the last years the JavaScript Object Notation (JSON1) has been gaining in popular-
ity since it provides a lightweigth data exchange format with a significant performance
improvement [2].

JSON is a human readable format consisting in sets of objects (i.e., types or con-
cepts) described by name/value pairs (i.e., fields or attributes). JSON is schemaless,
i.e., there is no a schema specifying the internal structure of JSON objects, instead the
schema is implicit. Schemaless data is particularly interesting in cases dealing with
non-uniform data (e.g., non-uniform types or custom fields) or in schema migration [3],
however, it can become a burden in data integration scenarios (e.g., consuming JSON-
based APIs) where it becomes necessary to discover at least partially the underlying
structure in order to properly process the data.

Therefore, web developers must often interact with APIs publishing a set of JSON-
based services and face the problems of undertanding and managing the JSON doc-
uments returned by those services. The problem gets worse when developers need to

? This work has been supported by the European Commission under the ICT Policy Support
Programme, grant no. 317859.

1 www.json.org

compose several JSON-based services since their implicit structure can differ. For in-
stance, digesting the data returned by a query service to call another service later on.

A first attempt to formalize JSON data is being performed by the JSON schema
initiative [4], but it is still far from a wide adoption. So far, most APIs are only docu-
mented by means of natural language explanations and a few use case examples. Thus,
developers must invest a lot of time to grasp the kind of information an API provides
and how to use the API services to get that information. We believe that a mechanism
able to provide a (visual) higher-level view of the data provided by the API services
would be a significant improvement.

In this sense, this paper proposes a discovery process for JSON-based services.
Given a set of JSON documents, our approach returns a model describing their im-
plicit schema. We follow an iterative process where new JSON documents (from the
same or different services within the API) contribute to enrich the generated model.
The model helps to both understand single services and to infer possible relationships
between them, thus suggesting possible compositions and providing an overall view
of the application domain. The use of a model-based approach enables to reuse the
plethora of existing model-driven engineering techniques for further processing of the
JSON model. An implementation of the approach is also provided.

The paper is organized as follows. Section 2 motivates the problem and presents a
running example. Sections 3 and 4 describes the approach and its application to discover
service dependencies, respectively. Section 5 describes the implemented tool. Finally,
Section 6 presents the related work and Section 7 ends the paper.

2 What is Behind JSON Data

Nowadays, a considerable number of web applications provide an external API con-
sisting in a set of JSON-based services (more than 40% of the APIs included in Pro-
grammableWeb2 return JSON data) where all services are interrelated. Indeed, each
service gives access to a subset of the application domain and developers must combine
them to build any kind of non-trivial functionality on top of that API. Since JSON data
is a schemaless format, deducing the right way of combining those services is not a
trivial task. Next we will illustrate this problem with the TAN running example that we
will use along this paper.

TAN is the public transportation entity of the city of Nantes, France, and provides
a REST API composed of a set of JSON-based services to query the bus/tram trans-
portation system (e.g., the nearest bus stop to a given geolocation, which buses stop
in a bus stop, etc.). Figure 1 shows the JSON output obtained when querying two of
services of the TAN API (meaningful strings have been translated into English for the
sake of comprehension). Figure 1a shows the JSON document coming from the first
service, which returns the bus/tram stops close to a position (i.e., latitude/longitude)
given as input. On the other hand, Figure 1b shows the JSON document coming from
the second service, which returns the waiting times for a particular bus/tram stop given
as input. To simplify, we will refer to the first service as closeStop and the second one
as waitingTime.

2 http://www.programmableweb.com/

[
 {

 "placeCode":"SNIC",

 "tag":"St-Nicolas",

 "distance":"208 m",

 "line":

 {

 "lineNum":"C3"

 }

 },

 {

 "placeCode":"CRQU",

 "tag":"Place du Cirque",

 "distance":"21 m",

 "line":[

 {

 "lineNum":"C2"

 },

 {

 "lineNum":"C1"

 },

 ...

]

 },

 ...

]

closeStop Service

(a)

Input parameter: 47.21661, -1.556754

[

 {

 "direction":2,

 "terminus":"Gare de Chantenay",

 "infotrafic":true,

 "time": 5,

 "line":{

 "lineNum":"C1",

 "lineType":3

 },

 "stop":{

 "stopCode":"CRQU"

 }

 },

 {

 "direction":1,

 "terminus":"Le Cardo",

 "infotrafic":true,

 "time":"Closest",

 "line":{

 "lineNum":"C2",

 "lineType":3

 },

 "stop":{

 "stopCode":"CRQU4"

 }

 },

 ...

]

waitingTime Service

(b)

Input parameter: CRQU
Description: Stops close to a position Waiting times in a stopDescription:

Fig. 1. JSON documents from two TAN API services: (a) the closeStop service, which returns the
closest bus/tram stops to a geolocation, and (b) the waitingTime service, which returns waiting
times for a particular bus/tram stop.

By looking at the JSON data we can quickly identify some concepts and relation-
ships of the domain, that is, the implicit structure of the data returned by each service.
Regarding the closeStop service, the returned data includes an array composed of sev-
eral objects (list of elements inside the square brackets surrounded by curly braces) with
a set of name/value pairs. Each object represents a bus/tram stop and includes a code
(see placeCode), a tag (see tag), the distance to the stop (see distance) from the
position given as input to the service and a set of bus/tram lines (see line) passing by
such a stop, which is a complex value composed by a set of objects, each one represent-
ing a line number (see lineNum). The waitingTime service returns an array of objects
describing the waiting time, expressed by means of a sequence of buses/trams passing
by the stop. Thus, each object describes a transport line (see line) and the time re-
maining (see time). For the sake of simplicity, we do not comment all the name/value
pairs. On the other hand, since the two service calls are part of the same application, it
is also possible to identify some relationships between the returned JSON objects. For
instance, both services include information about bus/tram lines (see line).

However, the concepts and relationships previously identified are only a partial view
of the underlying structure. Each call to a service provides some useful insight on that
structure and only by combining them we can get an approximation to the complete
picture of the application domain exposed through the API. For instance, one may think
that for each stop there is a single bus line passing by (if this happens to be the case
for the specific stop passed as input for the service call) while later calls may prove
this assumption wrong (see line in closeStop service). A similar thing happens with
the data type of the time value in the waitingTime service, which may look like as
an integer value until one call returns closest as a (string) value. Moreover, dealing
with several JSON documents is crucial to discover relationships between matching
concepts across different services. Different names in name/value pairs from two calls
may suggest unrelated concepts but a closer look may reveal that in fact those names
hold always an overlapping set of values. For instance, this happens with the stop code,
which is represented either as placeCode in the closeStop service or stopCode in
the waitingTime service.

Clearly, an automated discovery process is needed to reveal the whole domain
model behind the application. In the following sections we will describe such automatic
process and the benefits the generated model can bring to the developers interested in
working with the API.

3 Schema Discovery in JSON

To discover the schema information from JSON documents we propose a model-based
process composed of three phases: (1) pre-discovery phase extracting low-level JSON
models out of JSON documents, (2) single-service discovery phase aimed at obtaining
the schema information for a concrete service (inferred from a set of low-level JSON
models output of different consecutive calls to the service), and (3) multi-service dis-
covery phase in charge of composing the schema information obtained in the previous
phase in order to get an overall view of the application domain.

This schema information will be represented as a class diagram representing the
concepts (i.e., classes) and relationships (i.e., attributes and associations) of the do-
main. In particular, we will use the EMF framework3, which allows representing such
elements by means of Ecore models. Ecore models conform to the Ecore metamodel,
where concepts are represented as EClass elements while features are represented
as StructuralFeature elements, which can be either attributes (EAttribute
elements) or references (EReference elements).

Figure 2 illustrates the proposed process. Given an application with one or more
JSON-based services, the pre-discovery and single-service processes are applied to each
set of JSON documents returned by the services. The pre-discovery phase works at the
sintactical level, changing the representation format so that JSON documents can be
dealt as models, which are then analyzed by the single-service discoverer to obtain new
models describing the domain. Next, the multi-service discoverer takes those domain
models as input and combines them to obtain the application domain model. During the

3 http://www.eclipse.org/emf

Single-service
discovery

Pre-discovery
JSON
Model

Multi-service
discoveryService 2

Single-service
discovery

Pre-discovery
JSON
Model

Service 1

Domain
ModelApp

Domain
Model11

JSON
Document1

Domain
Model22

A
pp

lic
at

io
n

JSON
Document2

Fig. 2. Process of discovering schema information from JSON documents.

process, the discovery phases (i.e., single-service and multi-service) are performed by
means of model transformations. In the following sections, we describe in detail each
phase of the process.

3.1 Pre-discovery Phase

The pre-discovery phase can be seen as a bridge between the two involved technologies.
On the one hand, JSON documents conform to the JSON grammar (i.e., grammarware
technical space). On the other hand, models conform to metamodels, which represent
the modelware technical space. Thus, to obtain models out of JSON documents it is
required to build a bridge between the grammarware and the modelware spaces.

To build this bridge, we used Xtext4, which allows defining textual DSLs. From
a Xtext grammar-based language definition the tool automatically generates its meta-
model (i.e., the abstract syntax of the language) and the tooling required to obtain
models conforming to such metamodel (i.e., the injector) from a language instance.
Therefore, Xtext can take textual documents (conforming to a grammar G) as input and
generate models (conforming to a metamodel M which is derived from the grammar G)
representing those documents as output.

We have defined the JSON grammar in Xtext, which is shown in Figure 3a. As can
be seen, a JSON document (see Document rule) can be composed of either an object
or an array of objects. An object (see Object rule) is composed of name/value pairs
(see Pair rule). A name/value pair has a name (see Name rule) and the a value (see
Value rule) that can be either of primitive type (i.e., string, number, boolean or null)
or complex (i.e., array or object). The grammar rules also include annotations to guide
the generation of the language metamodel. Thus, from this grammar definition, the
corresponding metamodel of the language (see Figure 3b) and the JSON model injector
have been generated. Figure 3c illustrates the pre-discovery phase, where JSON models
conforming to the JSON metamodel are injected from JSON documents conforming
to the JSON grammar. From now on, any JSON document can be dealt as a model
whose elements conform to the JSON metamodel elements, which actually resemble
the JSON grammar elements. We will use the term “JSON document” to refer to both
the grammar-based view and the model-based view of the document indistinctely.

4 http://www.eclipse.org/xtext

(c)

(a) (b)

Document :

 objects+=Object

 | '[' objects+=Object (',' objects+=Object)* ']'

;

Object :

 '{' pairs+=Pair (',' pairs+=Pair)* '}'

;

Pair :

 name=STRING ':' value=Value

;

Value :

 StringValue | NumberValue | BooleanValue

 | ObjectValue | ArrayValue

;

ArrayValue :

 '[' values+=Value (',' values+=Value)* ']'

;

ObjectValue :

 value=Object

;

...

Document

Object Pair
name : EString

1..1 value

Value

0..* objects

0..*

pairs

Boolean
value : EBoolean

Array

Number
value : EInt

String
value : EString

ValueObject

0..*

values

object1..1

JSON Document

JSON Metamodel

Injector JSON Model

JSON Grammar

conforms conforms

Xtext
Generator

generates
uses

generates

JSON Xtext
Definition

Single-service
discovery

defines

Fig. 3. (a) Excerpt of the JSON grammar defined in Xtext. (b) Metamodel generated by Xtext. (c)
Pre-discovery process.

3.2 Single-service Discoverer

JSON documents include both metadata (i.e., the name of the object name/value pair
elements) and data (i.e., their value). Note that, however, two objects in the same or dif-
ferent JSON documents generated by a call to the same service do not necessarily have
the same exact structure, e.g., it is possible that some of them include only a subset of
the metadata/data, thus removing some name/value pairs (e.g., to reduce network traf-
fic). Therefore, the accuracy of the single-service discovery increases when a number
of JSON Object elements to infer their common structure are analyzed.

The single-service discovery process is therefore launched for each JSON Object
element and has two execution modes: creation and refinement. The former creates a
root concept from an Object representing a concept not yet existing in the service
schema created so far whereas the latter enriches/refines an already existing concept
with information coming from new Object elements representing such concept.

When a JSON Object element representing a new concept is considered, the fol-
lowing creation rules are applied to build the corresponding elements in the service
domain model:

C1 A JSON Object element included in a JSON Definition element generates
an Ecore EClass element. The EClass element is named after the JSON service
name. The structural features of the EClass element are created from the Pair
elements included in the Object element according to rules C3, C4 and C5.

C2 A JSON Object element included in a JSON Pair element generates an Ecore
EClass element. The EClass element is named after the name attribute of the
Pair element. The structural features of the EClass element are created from
the Pair elements included in the Object element according to rules C3, C4 and
C5.

C3 A JSON Pair element with a JSON Value element representing a primitive type
(i.e., String, Number or Boolean elements) generates an Ecore EAttribute
element. The name of the attribute is obtained from the name attribute of the Pair
element and the type is the Ecore one corresponding to the primitive type (i.e.,
EString corresponds to String, EInt corresponds to Number and EBoolean
corresponds to Boolean).

C4 A JSON Pair element with a JSON ValueObject element generates an Ecore
single-valued EReference element. The name of the reference is obtained from
the name attribute of the Pair element. If the JSON object referred by ValueObj
ect represents a new concept, the reference type will be the one resulting from
mapping the object reference by applying rule C2. Otherwise, the Object el-
ement has been previously mapped and the resulting EClass element must be
refined (see refining rules R1-R3 below).

C5 A JSON Pair element with a JSON Value element representing an array (i.e.,
JSON Array element) generates a multivalued structural feature applying the rules
C3 and C4 for the elements of the values reference.

Figure 4 shows the service domain models resulting from applying the previous
mappings to the injected models from the JSON documents provided by the two ser-
vices of the running example. For the sake of clarity and conciseness, we show the
JSON document textually (instead of showing the injected JSON model) for the closeS-
top service. In the closeStop service, the single-service discoverer receives the first
JSON Object of the resulting array as input (see Figure 1). As it is a new concept
which is included in a Document element (i.e., included in the root of the JSON doc-
ument), the rule C1 is applied, thus generating the Stop element. Next, each Pair
element of the Object is considered. The first three Pair elements generate the at-
tributes placeCode, tag, distance, all of them typed as String, according to rule
C3. The last Pair element includes a JSON ValueObject element so the rule C4 is
applied, thus generating a new reference called line. Since the JSON object referred
by the ValueObject element represents a new concept and is included in a pair, rule
C2 is applied, thus generating the element Line. Finally, each pair element of the ob-
ject included in the line pair is considered. In this case, there is only one pair, for
which the rule C3 is applied, thus generating the string-based attribute lineNum in

Stop

placeCode : EString
tag : EString
distance : EString

Line

lineNum : EString

0..1 lineC2

C4

closeStop Service

[
 {

 "placeCode":"SNIC",

 "tag":"St-Nicolas",

 "distance":"208 m",

 "line":

 {

 "lineNum":"C3"

 }

 },

 ...

]

C3

C3

C3

C3

C1

waitingTime Service

WaitingTime

direction : EInt
terminus : EString
infotraffic : EBoolean
time : EInt

Line

lineNum : EString
lineType : EInt

Stop

stopCode : EString

0..1 line 0..1 stop

Fig. 4. Ecore models created by the single-service discovery process from the JSON documents
shown in Figure 1

the element Line. Figure 4 also includes the model created from the JSON document
coming from the waitingTime service, which will be used later in Section 3.3.

When a JSON Object element represens a concept already created, the corre-
sponding concept (i.e., the EClass element) is recovered and enriched according to
the following refining rules:

R1 A JSON Pair element with a JSON Value element representing a primitive type
(i.e., String, Number or Boolean elements) refines the EAttribute named
after the name value of the Pair element. If the EAttribute does not exists in
the EClass element, it is included according to rule C3. If the EClass element
already includes an attribute with the same name, the specified attribute type is
compared with the one for the current object, if they do not match, the type of the
attribute will be refined to EString (the most generic type), otherwise nothing is
changed.

R2 A JSON Pair element contained in a JSON Object element with a JSON Value
Object element refines the EReference named after the name value of the
Pair element in the EClass obtained from such Object. If the EReference
already exists, do nothing. Otherwise the EReference is included into the EClass
definition according to rule C4.

R3 A JSON Pair element contained in a JSON Object element with a JSON Array
element refines a multivaluated feature, following the rules R1 and R2. If the feature
is already included in the EClass, the cardinality is updated to be multivaluated.
Otherwise, a new feature is created according to rules C3 and C4.

Figure 5 shows the refined models for the running example. As done before, we
show the JSON text for the first service. In the closeStop service, the single-service dis-
coverer receives the second JSON Object of the resulting array as input (see Figure
1). As the object represents a concept already considered in the process, it is used to
refine the existing concept. The element Stop is retrieved and the Pair elements of

WaitingTime

direction : EInt
terminus : EString
infotraffic : EBoolean
time : EString

Line

lineNum : EString
lineType : EInt

Stop

stopCode : EString

0..1 line 0..1 stop

closeStop Service waitingTime Service

0..*

R3

[
 ...

 {

 "placeCode":"CRQU",

 "tag":"Place du Cirque",

 "distance":"21 m",

 "line":[

 {

 "lineNum":"C2"

 },

 {

 "lineNum":"C1"

 },

 ...

]

 },

 ...

]

Stop

placeCode : EString
tag : EString
distance : EString

Line

lineNum : EString

line

Fig. 5. Ecore models refined by the single-service discovery process from the JSON documents
shown in Figure 1. Changes are highlighted in bold.

the Object are traversed to refine the concept. The first three Pair elements trigger
the rule R1, but no change is done because the attribute types match with the type of the
existing EAttributes. The last Pair element triggers the rule R3, which refines the
reference line to be multivaluated and retrieves the Line element to be refined. Rule
R1 is triggered for each lineNum pair element, but no change is done because the at-
tribute type matches with the type of the existing EAttribute. Figure 5 also includes
the refined metamodel for the waitingTime service, in which the type of the attribute
time of the class WaitingTime is refined to EString according to rule R1. Thus,
the refined version of these models complies with the data and metadata described in
the JSON documents. With these models, developers can see and understand easily the
domain accessible from each service.

3.3 Multi-service Discoverer

As commented before, many applications provide a complete JSON-based API, includ-
ing several complementary services, each one offering a distinct viewpoint on the appli-
cation data. In the previous section we described the process to discover the structural
information (represented as Ecore models) regarding a single service. In this section
we will show how to obtain a composite model including each single service view-
point. The resulting model will therefore provide a general overview of the application
domain.

To be able to compose a set of models coming from different services, it is neces-
sary that such models share some elements, thus allowing establishing semantic rela-
tionships among them.

The discovery of differences and similaritires (i.e., correspondences) between mod-
els is not an easy task since it relies on model matching, which can be reduced to
the problem of finding correspondences between two graphs (i.e., graph isomorphism).
This problem has been proved as NP-hard [5] and the available approaches can only

approximate the exact solution (several model matching approaches have been pro-
posed in [6]). However, in the context of this work, since we are dealing with services
defined in the same application domain, it is expected that the number of similarities
(i.e., concept, attributes and reference names matching) to be high, thus decreasing the
complexity of the process.

The multi-service discovery process starts by first creating a new model being
the union of all the service-specific models. From there, the following rules try to
link/merge the different submodels:

M1 Two classes c1 and c2 contained in different submodels represent the same concept
if c1.name = c2.name. The classes will be merged into a new one called c where
c.name = c1.name. The structural features of c will initially be the union of the
structural features of c1 and c2 (further matching rules on them may apply).

M2 Two attributes a1 and a2 are defined to be the same if they are contained in an
EClass representing the same concept (see rule M1) and a1.name = a2.name. The
two attributes will be merged into a new one called a where a.name = a1.name.
The type of a will be a1.type if a1.type = a2.type, or the more general other-
wise. Regarding the cardinality of a, the lower bound will be set to the lowest
of a1.lowerCardinality and a2.lowerCardinality while the upper bound will be set
to the highest of a1.upperCardinality and a2.upperCardinality.

M3 Two attributes a1 and a2, where a.name <> a1.name, are considered the same
if they are contained in an EClass representing the same concept (see rule M1)
and there are matching values in the JSON value/pair elements. The two attributes
will merged into a single one a where a.name = a1.name and both the type and
cardinality will be inferred as done in rule M2.

M4 Two references r1 and r2 are considered the same if they are contained in an
EClass representing the same concept (see rule M1) and r1.name = r2.name. The
type of r will be r1.type if r1.type = r2.type, otherwise an error will be raised. Re-
garding the cardinality of r, the lower bound will be set to the lowest of r1.lowerCar
dinality and r2.lowerCardinality while the upper bound will be set to the highest of
r1.upperCardinality and r2.upperCardinality.

Note that these rules apply merging heuristics and therefore may be manually adapted
to each specific scenario.

Figure 6 shows in the center the resulting model after applying the rules to the
models obtained in the previous phase (shown on the sides of the figure). The multi-
service discovery process begins with a model containing all the elements of the models
obtained from the single-service phase, thus repetitions may occur (e.g., Stop and
Line elements). The mapping rules are applied then, forcing some elements to merge.
For instance, Line elements are merged according to rule M1, the lineNum attribute
is merged according to rule M2 whereas the lineType attribute is simply added.
Stop elements are merged according to rule M1 while placeCode and stopCode
are merged according to rule M3 (some values of these attributes match in the JSON
document, as can be seen in Figure 1), and tag and distance attributes, and line
reference are added.

We refer to the resulting model as application domain model since it offers a clear
view of the domain accessible by the two JSON services of the running example. As

closeStop Service waitingTime Service

WaitingTime

direction : EInt
terminus : EString
infotraffic : EBoolean
time : EString

Line

lineNum : EString
lineType : EInt

Stop

stopCode : EString

0..1 line 0..1 stop

Stop

placeCode : EString
tag : EString
distance : EString

Line

lineNum : EString

0..* line

WaitingTime

direction : EInt
terminus : EString
infotraffic : EBoolean
time : EString

Line

lineNum : EString
lineType : EInt

Stop

placeCode : EString
tag : String
distance : String

0..1 line 0..1 stop

0..* line

Application Domain

M1

M2

M1

M3

Fig. 6. The multi-service discovery process where the Application Domain model is obtained
from the closeStop and waitingTime service domain models.

can be expected, these matching rules do not cover all the possible cases and may be
improved by other model matching approaches, as commented in Section 6. Note that
individual JSON documents can now be represented as instances of the application
domain model, thus promoting the integration of JSON with model-based applications.

4 Discovering Service Dependencies

We believe the generated application domain model offers a valuable and helpful view
to understand the information managed through and reachable from a set of JSON ser-
vices, thus facilitating the creation of applications and other services on top of them.

Nevertheless, this data-centric view is only part of the solution. Once developers
know what data is available the next question is how to query the services to get it. To
help in this task, we add coverage information to the application domain model. This
coverage information highlights the elements in the application domain model returned
by each services. Therefore, a developer could quickly identify the set of services that
could be potentially used to get the data he/she is interested in.

Furthermore, coverage models can be manually annotated to visualize not only the
output of the service but also the input parameters required to call them, when those
parameters are also part of the application domain model. This helps to automatically
discover dependencies between the services, for instance, possible execution chains (if
the input of a service X is covered by the output of a service Y, then they can be exe-
cuted in sequence). For instance, Figures 7a and 7b show in grey the coverage for the
two services of the running example. Figure 7b also highlights the input element of
the waitingTime service, which is the attribute placeCode of the class Stop. As can
be seen, there is an overlapping in the inputs/outputs of the services: the output of the
closeStop service includes the placeCode attribute, which is the input of the waiting-
Time service. Thus, it could be possible to chain both services by using the closeStop
service to find the closest stop to our position and then use the returned placeCode as
input of the waitingTime service to get the waiting time for that stop.

(a)

WaitingTime

direction : EInt
terminus : EString
infotraffic : EBoolean
time : EString

Line

lineNum : EString
lineType : EInt

Stop

placeCode : EString
tag : String
distance : String

0..1 line 0..1 stop

0..* line

(b)

WaitingTime

direction : EInt
terminus : EString
infotraffic : EBoolean
time : EString

Line

lineNum : EString
lineType : EInt

Stop

placeCode : EString
tag : String
distance : String

0..1 line 0..1 stop

0..* line

closeStop Service waitingTime Service

Fig. 7. Coverage model for the (a) closeStop and (b) WaitingTime services.

Service dependencies could even be used to create a dependency graph to identify,
given a set of available input data and a target output information, which is the shortest
path (i.e., the least number of chained service calls) to reach that output. The initial
candidate services would be those that can be executed using the starting input data and
from there the overlappings (the edges in the graph) would be taken into account to
calculate which services can be executed next.

5 Implementation

Our approach has been implemented in Java and distributed as an open source Eclipse
plug-in5. The tool includes both the pre-discoverer developed in Xtext and the two
discoverers (single and multi-service) mentioned in Section 3. Furthermore, the tool
can also instantiate the discovered models by using the set of initial JSON documents.

This plugin has been contributed to MoDisco6, an official Eclipse project aimed at
providing a common framework for Model-Driven Reverse Engineering (MDRE) pro-
cesses and tools. MoDisco includes a set of discoverers to obtain models from different
software artefacts such as Java or XML files. Our tool has therefore been incorporated
as a new type of discoverer dealing with JSON files. Figure 8 shows a snapshot of the
enviroment including the metamodels of the closeStop and waitingTime service, and the
application domain model.

Our implementation also supports the notion of coverage models (Section 4). Cov-
erage models have been defined as a new type of models consisting in a set of links that
relate the service domain model with the whole application domain model as a way to
know how the service contributed to the composed model. This is also useful to then
analyze the relationships among the different services, e.g., allowing inferring possible
services chain uses, as comented in Section 4.

Coverage models conform to the coverage metamodel, shown in Figure 9a. The
coverage of a service (Coverage metaclass and its service attribute) is defined by

5 https://code.google.com/a/eclipselabs.org/p/json-discoverer
6 http://www.eclipse.org/MoDisco

Fig. 8. Snapshot of the developed tool.

a set of coverage mappings (CoverageMapping metaclass), which link attributes
(AttMapping metaclass), references (RefMapping metaclass) and concepts (i.e.,
classes) (ConceptMapping metaclass) between the application domain model and
the service model. Optionally, the input of the service can also be represented (input
reference) regardless this input is part or not of the output JSON data itself.

Figure 9 shows the model representing the coverage of the closeStop service (i.e.,
illustrated in Figure 7a). For the sake of simplicity, Ecore models are represented as
class diagrams and not as instances of Ecore metamodel.

6 Related Work

JSON schema discovery is related to works aimed at the general problem of obtaining
structured information from unstructured data, such as [7]. Some of their ideas have
been integrated in our approach.

In the field of web engineering, there are a number of approaches to extract the
structure (e.g., navigational model, MVC pattern elements, etc.) from web sites [8–
11] but none of them focuses on the discovering/representing the structure of the data
those applications exchange with external services. Our tool could be integrated in these
approaches to improve their support for JSON-based data. Trang7 follows a similar
approach to ours but is restricted to XML documents.

On the pure modeling side, there are some tools such as Texo8, and the emfjson9 and
xmi-to-json10 GitHub projects, that provide a bridge between the two technical spaces,

7 https://code.google.com/p/jing-trang/
8 wiki.eclipse.org/Texo
9 www.github.com/dsevilla/xmi-to-json

10 www.github.com/ghillairet/emfjson

(a)

(b)

CoverageMapping

ConceptMapping

EClass
from Ecore

source target1..11..1

RefMapping

EReference
from Ecore

source target1..11..1

Coverage
service : String 1..*

mappings

EAttribute
from Ecore

source target1..11..1

input
0..1

AttMappingAttMapping

Stop

placeCode : String
tag : String
distance : String

Line

lineNum : int
lineType : int

WaitingTime

direction : int
terminus : String
infotraffic : boolean
time : String

0..1

line

0..1

stop

0..*

line

Stop

placeCode : String
tag : String
distance : String

Line

lineNum : int0..*

line

Application Domain
Model

closeStop Service
Model

: ConceptMapping

: AttMapping

: RefMapping

AttMapping: AttMapping

AttMapping: AttMapping

AttMapping: AttMapping

: ConceptMapping

source
source
source

source

target
target
target

target

target

target

target source

source

source

: Coverage
service = "closeStop"

Fig. 9. (a) Metamodel to represent coverage information. (b) Coverage links between the appli-
cation domain model and the closeStop service model.

thus allowing exporting models as JSON documents and viceversa. The functionality
provided by these tools correspond to our pre-discovery phase, i.e., the mapping is
always a one-to-one mapping applied on single elements, there is no attempt to infer
more complex data structures.

Finally, several works [12–17] cover the automatic matching of modeling elements.
These works could help us to improve our multi-service process discovery phase, en-
riching our set of heuristics to deal with very complex scenarios.

7 Conclusion and Future Work

Many web applications consume/publish JSON data coming from different sources. In-
tegrating such JSON services is a challenging task mainly due to the schemaless nature
of JSON which forces developers to peruse the (generally poor and little) available doc-
umentation to guess the best way to extract from those documents the data they need.

To improve this situation, we have presented an approach to automatically discover
an implicit schema from a set of JSON documents coming from the same or different
providers. We use model-driven techniques to devise a process where initial schema
excerpts are discovered from each individual service and then are combined to obtain
a composite model describing the underlying domain model of the application, which
facilitates the understanding of the JSON-based services to interact with. The approach
has been implemented in Java and contributed to the MoDisco open source Eclipse
reverse engineering framework.

As future work, we plan to improve the quality and precision of the generated mod-
els by means of allowing developers to enrich the partial schemas (e.g., by manually

adding links among them to be taken into account in the multi-service discovery phase)
and by reusing some ideas from database normalization theory (i.e., to evalute the rela-
tionships between the model elements) and from XML schema discovery approaches.
We find also interesting to define metrics to evaluate the discovery process (e.g., effec-
tiveness, coverage, etc.). Finally, we would like to explore additional applications of
the discovered schemas, e.g., by using them as basis for the generation of new service
mash-ups based on the discovered links between the services. In this context, our work
could complement existing approaches on API usage patterns [18–20].

References

1. Ying, M., Miller, J.: Refactoring legacy AJAX applications to improve the efficiency of the
data exchange component. Syst. Soft. 86(1) (2013) 72–88

2. Nurseitov, N., Paulson, M.: Comparison of JSON and XML data interchange formats: A
case study. In: CAINE conf. (2009) 157–162

3. Fowler, M.: Schemaless data structures. http://martinfowler.com/articles/schemaless
4. IETF: A json media type for describing the structure and meaning of json documents. Stan-

dard Draft v3
5. Lin, Y., Gray, J., Jouault, F.: DSMDiff: a differentiation tool for domain-specific models.

Europ. Inf. Syst. 16(4) (2007) 349–361
6. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for model

matching: An analysis of approaches to support model differencing. In: CVSM conf. (2009)
1–6

7. Nestorov, S., Abiteboul, S., Motwani, R.: Inferring structure in semistructured data. ACM
SIGMOD Record 26(4) (1997) 39–43

8. Chang, C., Kayed, M.: A survey of web information extraction systems. IEEE Trans. Knowl.
Data Eng. 18(10) (2006) 1411–1428

9. Arasu, A., Garcia-Molina, H., University, S.: Extracting structured data from Web pages. In:
SIGNMOD conf., ACM Press (2003) 337

10. Crescenzi, V., Mecca, G.: Automatic information extraction from large websites. Journal of
the ACM 51(5) (2004) 731–779

11. Hernández, I., Rivero, C.R., Ruiz, D., Corchuelo, R.: Towards Discovering Conceptual Mod-
els behind Web Sites. In: ER conf. Volume 7532., LNCS (2012) 166–175

12. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams. ACM
SIGSOFT conf. (2003) 227–236

13. Alanen, M., Porres, I.: Difference and union of models. In: UML conf. (2003) 2–17
14. Melnik, S., Garcia-molina, H., Rahm, E.: Similarity Flooding : A Versatile Graph Matching

Algorithm. In: DE conf. (2002) 117–128
15. Selonen, P., Kettunen, M.: Metamodel-Based Inference of Inter-Model Correspondence. In:

CSMR conf. (2007) 71–80
16. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large models. In:

ESEC/FSE conf. (2007) 295
17. Whang, S.E., Garcia-Molina, H.: Joint entity resolution. In: ICDE conf. (2012) 294–305
18. Xie, T., Pei, J.: MAPO: Mining API usages from open source repositories. In: MSR work-

shop. (2006) 54–57
19. Robillard, M.P., Bodden, E., Kawrykow, D., Mezini, M., Ratchford, T.: Automated API

Property Inference Techniques. IEEE Trans. Soft. Eng. (2012) 1–1
20. Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion

systems. In: ESEC/FSE conf. (2009) 213–222

