
Practical use of static composition of refactoring

operations

Julien Cohen, Akram Ajouli

To cite this version:

Julien Cohen, Akram Ajouli. Practical use of static composition of refactoring operations. ACM
Symposium on Applied Computing (SAC), Mar 2013, Coimbra, Portugal. ACM, pp.1700-1705,
2013, <10.1145/2480362.2480684>. <hal-00751304v2>

HAL Id: hal-00751304

https://hal.archives-ouvertes.fr/hal-00751304v2

Submitted on 13 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50616063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00751304v2


Practical use of static composition of
refactoring operations

Julien Cohen
ASCOLA team (EMN, INRIA, LINA)

University of Nantes
Julien.Cohen@univ-nantes.fr

Akram Ajouli
ASCOLA team (EMN, INRIA, LINA)

École des Mines de Nantes
Akram.Ajouli@mines-nantes.fr

ABSTRACT

Refactoring tools are commonly used for remodularization
tasks. Basic refactoring operations are combined to per-
form complex program transformations, but the resulting
composed operations are rarely reused, even partially, be-
cause popular tools have few support for composition. In
this paper, we recast two calculus for static composition of
refactorings in a type system and we discuss their use for in-
ferring useful properties. We illustrate the value of support
for static composition in refactoring tools with a complex
remodularization use case: a round-trip transformation be-
tween programs conforming to the Composite and Visitor
patterns.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms

Design, Theory, Experimentation

Keywords

Refactoring, Remodularization, Modularity, Program Trans-
formations, Static Analysis, Type Systems

1. INTRODUCTION
Most development environments now provide automatic

refactoring operations to support remodularization. A few
basic operations, such as rename or safe delete, are popular
because they are reliable. On the other side, more complex
operations are less used because they are unstable. Indeed,
building complex refactoring operations is hard. Complex
operations are often built by combining several base opera-
tions, but development environments do not provide support
to ensure that such combinations are coherent, and the re-
sulting operations are not more stable than monolithic ones.

ACM, 2012. This is the authors version of the work. It is posted
here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in Proceedings of the

28th Annual ACM Symposium on Applied Computing (SAC ’13), 2013.
http://doi.acm.org/10.1145/2480362.2480684

Automatically checking the properties of combinations of
operations would help for the design, the validation and the
maintenance of reliable, complex refactorings. Consider for
instance the four following properties:

Non-Failure: The operation ends without failure. A ba-
sic operation fails when one of its preconditions is not
satisfied. A composed operation fails when the pre-
condition of one of its components is not satisfied by
the program resulting from the previous operation.

Behavior Preservation: The operation does not change
the external behavior of the program. This is ensured
for instance when the preconditions of each base opera-
tion are strong enough to ensure that these operations
preserve the behavior.

Correctness of the Effect: The resulting program has the
expected architecture (when the operation succeeds).

Round-trip Transformation: Two operations provide in-
verse effects. Such pairs of operations can be used
to navigate between different architectures for a same
program [3].

We are interested in checking these properties statically on
composed operations (without performing the refactoring)
in order to help building and validating complex transfor-
mations. Some authors provide systems to compute differ-
ent properties of composed operations [11, 9]. The system

of Ó Cinnéide and Nixon [11] generates convenient post-
conditions from specified preconditions, while the system
of Kniesel and Koch [9] does the opposite. At first sight, it
is not clear whether these systems are equivalently power-
ful, and which system to use to check the properties given
above.

In this paper, we combine these two systems in a single cal-
culus, formulated as a static type system to show how they
are related to each other (Sec. 2). Then we show how the
properties given above are handled in that system (Sec. 3).
Finally, we present a case study to validate the system and to
illustrate its use to check the given properties: a Composite
↔ Visitor transformation in Java, based on the refactoring
capabilities of the popular IDE IntelliJ Idea (Sec. 4).

2. A TYPE SYSTEM FOR COMPOSITION
We reformulate the two considered composition systems in

an unified formalization. We use the vocabulary and nota-
tions of type systems for suitable concepts and mechanisms.



For instance, the type P → Q describes refactoring oper-
ations that produce programs with the property Q when
applied to programs with the property P .

2.1 Refactoring Operations

Formulas

Refactoring operations usually have preconditions. In refac-
toring tools, the preconditions are implemented by a static
analysis of the subject program. We abstract these analy-
ses by atomic propositions such as ExistsClass(”Foo”) (all the
examples hold for Java), which are also used to denote sets
of programs (for the example, the set of programs which
contain a declaration of a class named Foo, or which import
such a class).

To describe preconditions, we consider formulas of propo-
sitional logic on these atomic propositions, with usual con-
nectors for negation, conjunction and disjunction. For in-
stance, ExistsClass(”Foo”)∧ ExistsMethod(”Foo”,”bar”) is a for-
mula. We note ⇒ the logic implication connector.

Base Refactoring Operations

We consider a set R of base refactoring operations, such
as AddClass(”Foo”). Each base refactoring operation comes
with a precondition and two functions that describe its be-
havior. We reference these preconditions and behavior func-
tions by the means of a total function R on R such that, for
any base operation t, R(t) = (P, f, b) means that:

• The formula P is the precondition of t.

• The function f , called the forward description of t

(generalizing postcondition mappings of [11]), describes
the effect of the operation on programs: f(Q) = R

means that if the formulas Q and P hold before ap-
plying t then R will hold after. For instance, for Re-
nameClass(A,B), we have f(ExistsMethod(A,m)) =
ExistsMethod(B,m).

• The function b, called the backward description of t (we
consider backward descriptions of [9] as functions), also
describes the effect of t, in a different way: b(R) =
Q means that Q and P have to hold before apply-
ing t to ensure that R holds after. For instance, for
RenameClass(A,B), we have b(ExistsMethod(B,m)) =
ExistsMethod(A,m) and b(ExistsMethod(A,m)) = ⊥.

Of course, these descriptions of the refactoring operations
must be faithful to the underlying tool.

The functions f and b are usually not injective and there-
fore they are not invertible. Furthermore, it is possible to
provide only forward descriptions or only backward descrip-
tions in R (with the consequences explained later).

Soundness of the Operations

We say that a set of refactoring operations R with its de-
scription R is sound if its operations preserve the behavior
when their preconditions are satisfied.

Transformations/Refactoring Chains

A transformation based on a set of refactoring operations R
(or a refactoring chain) is a chain of base refactoring oper-
ations of R. The set of transformations is defined by the

following grammar where t denotes a refactoring operation
(t ∈ R, the semicolon is associative):

T ::= t | T ;T

Applying a transformation t1; t2; ...; tn to a program con-
sists in applying t1 if its precondition holds, and then ap-
plying t2 on the result of the application of t1, if the precon-
dition of t2 holds on that new program, and so on. If one
of the preconditions fails on the corresponding intermediate
program, the transformation fails on the initial program.

2.2 The Type System

Typing Judgments

For a transformation T based on a set of operations (R,R),
we write R ⊢ T : P → Q when the transformation T does
not fail on any program satisfying P and provides a program
satisfying Q.

As a particular case, we write R ⊢ T : P → ⊤ when the
transformation T does not fail on any program satisfying P

(⊤ is the true formula).

Typing Rules

The following rules are used to prove that type judgments
hold.

R(t) = (P, f, b) Q ⇒ P

R ⊢ t : Q → f(Q)
(forward-description)

R(t) = (P, f, b)

R ⊢ t : (b(Q) ∧ P ) → Q
(backward-description)

P ⇒ P ′ R ⊢ T : P ′ → Q′ Q′ ⇒ Q

R ⊢ T : P → Q
(weakening)

R ⊢ T1 : P → Q R ⊢ T2 : Q → R

R ⊢ (T1;T2) : P → R
(sequence)

The forward/backward-description rules directly reflect the
calculus of [11] and [9]. The weakening and sequence rules
are similar to corresponding rules in Hoare logic [7] (a trans-
formation boils down to a sequence of actions that change
the state of a source code). The weakening rule also ex-
presses the usual contravariance of types on the left hand
side of the arrow and covariance on the right hand side.
This kind of subtyping comes from the inclusion of sets of
programs denoted by ordered formulas.

The proofs of implications in the premise of the rules weak-
ening and forward-inference can be led by external solvers
for propositional logic.

Type Inference

Typing rules allow to check that a transformation has a given
type. Now, we are interested in generating (most general)
types for transformations.

Given a (pre)condition P and a refactoring chain T , for-
ward inference consists in applying the sequence and forward-
description rules to compute a Q so that R ⊢ T : P → Q

holds.
Inversely, given a (post)condition Q , backward inference

consists applying the sequence and backward-description rules
to compute a P so that R ⊢ T : P → Q holds.



This is the main difference in the use of the two calculi.
Finally, to prove R ⊢ T : P → Q for given P and Q, you

can use forward inference from P to find a postcondition Q′

and use the weakening rule with Q′ ⇒ Q, or you can use
backward inference from Q to compute a precondition P ′

and use the weakening rule with P ⇒ P ′.
Note that backward inference will generate the weakest

precondition you can prove with the given forward-descrip-
tions, and inversely for forward inference.

3. TRANSFORMATION PROPERTIES:

PRACTICAL USE

Non-Failure

Non-Failure is established by proving the type judgmentR ⊢
T : P → ⊤.

If you want to check Non-Failure for a given precondi-
tion P , you can either use forward inference and then the
weakening rule with the premise ⊤ ⇒ Q to check that the
computed postcondition Q is not empty, or use the backward
inference from ⊤ and the weakening rule with the premise
P ⇒ P ′ to compare the computed precondition P ′ to P .

If you don’t have a precondition to start with, backward
inference allows to compute a convenient one. If you don’t
have backward descriptions, you will still be able to prove
Non-Failure but you have to “guess” a convenient precondi-
tion.

Behavior Preservation

To ensure behavior preservation of refactoring chains, it is
sufficient to use only behavior preserving base operations.
However, refactoring operations of popular IDEs do not al-
ways preserve the semantics. The solution is to use more
restrictive preconditions for these operations to ensure that
they are always used in a context where they preserve the
behavior. The refactoring tool does not need to be modified,
it is sufficient to consider these restricted preconditions in R
(soundness of R).

Correctness of the Effect

To ensure the Correctness of the Effect, you have to specify
the expected target architecture with a formula Q, and to
prove the assertion R ⊢ T : P → Q for a non empty P .
Again, If you have backward descriptions in R, a convenient
precondition P can be computed by backward inference from
the specified postcondition Q.

Also, with backward and forward inference, you can com-
pute a weakest precondition P such that T : P → Q and
then compute the strongest postcondition Q′ from P such
that T : P → Q′ to have a more precise specification of
the reached architecture (if forward descriptions are precise
enough to compute a Q′ stronger than Q, i.e. Q′ ⇒ Q).

Round-Trip Transformation

A pair of transformations (T1, T2) provides a Round-Trip
Transformation between two sets of programs denoted by
the formulas R1 and R2 when the two following assertions
hold:

R ⊢ T1 : R1 → R2

R ⊢ T2 : R2 → R1

Such formulas R1 and R2 can be generated by apply-
ing backward or forward inference with a fix-point strategy.
Again, initial pre/postconditions possibly imposed are dealt
with the weakening rule and can be used as starting point
for the fix-point search.

Design and Maintenance of Transformations

Type inference, as for most static type systems, helps to
design correct transformations and is complementary to dy-
namic testing. Also, since the inferred types are the most
general possible (with respect to a given description of the
refactoring operations), type inference allows to discover
that a transformation is more general than expected. Types
can also be used for documentation.

In the following section, we use our type system to validate
a complex round-trip transformation.

4. CASE STUDY: COMPOSITE ↔ VISITOR

TRANSFORMATION
As a case study, we consider a Composite ↔ Visitor trans-

formation. Because the Composite and Visitor design pat-
terns have dual properties with respect to modularity, this
kind of transformation illustrates a complex remodulariza-
tion with deep changes in the micro-architecture. Also, such
transformations address the tyranny of the dominant decom-
position [3], a central problem for separation of concerns.
Such a Visitor→Composite transformation has been imple-
mented on a real interpreter [6]. In this section, we consider
the implementation of [1], based on the refactoring tool of
JetBrains IntelliJ Idea (free edition, version 11.0.2).

In [6] and [1], the transformations are validated by testing.
Here, using the composition calculus to assess the properties
discussed above provides an additional validation and a bet-
ter understanding of the round-trip transformation. That
use case also shows the type system and the practical prop-
erties in action.

4.1 Implementation
The difficult part of the implementation is not the typing

rules, it is the definition of a function R which describes
faithfully the underlying refactoring tool. Our description of
the base refactoring operations (preconditions and backward
descriptions) is given in our research report [2].

In this experiment, some aspects of the language are not
taken into account in R, such as method visibility.

In the rest of this section, R is left implied.

4.2 Composite → Visitor Transformation
We consider the Composite → Visitor algorithm of Fig. 2,

which is designed to be applied to recursive class hierarchies
(with composites) according to the Composite or Interpreter
pattern. That transformation has been successfully tested
on the program of Fig. 1 (the result program is given in [2]).

In that algorithm, S is the root class of the composite
hierarchy, LC is the list of classes in that hierarchy, LM is
the list of business methods, aux is a function to generate
fresh intermediate names, and V is a function to generate
visitor class names from method names.

Non-Failure

We first compute the minimum precondition that ensures
non-failure. That precondition is noted P⊤ (Fig. 3). Thus



a b s t r a c t c l a s s Graph i c {

a b s t r a c t p ub l i c vo id show ( ) ;

a b s t r a c t p ub l i c vo id f u l l p r i n t ( ) ;
}

c l a s s Square extends Graph i c{

pub l i c i n t s i d e ;

pub l i c vo id show ( ) {
System . out . p r i n t ( ”SQ : ” + s i d e ) ;

}

pub l i c vo id f u l l p r i n t ( ){
System . out . p r i n t l n ( ”squa r e ” + t h i s + ”. ” ) ;

}
}

c l a s s Conta i n e r extends Graph i c {

pub l i c Ar r a yL i s t<Graph ic> c h i l d s =
new Ar r a yL i s t<Graph ic> ( ) ;

pub l i c vo id show ( ) {
System . out . p r i n t ( ”CT: ” ) ;
f o r ( Graph i c g : c h i l d s ) g . show ( ) ;

}

pub l i c vo id f u l l p r i n t ( ){
System . out . p r i n t ( ”c o n t a i n e r ” + t h i s + ” with : ” ) ;
f o r ( Graph i c g : c h i l d s ) g . f u l l p r i n t ( ) ;
System . out . p r i n t l n ( ”( end ) ” ) ;

}
}

Figure 1: Tested initial program (subject program)

CompositeToVisitor(S,LC,LM,aux,V ) =

1. ForAll m in LM do
CreateEmptyClass(V (m))

2. ForAll m in LM do
CreateIndirectionInSuperClass(S,m, aux(m))

3. ForAll m in LM, c in LC do
InlineMethodInvocations(c, m, aux(m))

4. ForAll m in LM do
AddParameterWithReuse(S, aux(m), V (m),
”new {V (m)}()”)

5. ForAll m in LM, c in LC do
MoveMethodWithDelegate(c, aux(m), V (m), ”visit”)

6. ExtractSuperClass(LV, ”Visitor”)

7. ForAll m in LM do
GeneraliseParameter(S, aux(m), V (m), ”Visitor”)

8. Let LAUX = { aux(m) }m∈LM in

MergeDuplicateMethods(S, LAUX, ”accept”)

Figure 2: Composite→Visitor transformation [1]

the Composite→Visitor chain has the type P⊤ → ⊤.
From that precondition, we learn for instance that the

special identifier this must not be involved in an overloading
static resolution in the recursive business methods, which is
not stated by Ajouli [1]. The witness program of Fig. 1
satisfies that precondition P⊤.

¬ExistsMethodDefinition(Graphic, accept)
∧ ¬ExistsMethodDefinition(Square, accept)
∧ ¬ExistsMethodDefinition(Container, accept)
∧ ¬IsInheritedMethod(Graphic, accept)
∧ NotInvolvedInOverloading(Container, show, this)
∧ IsLocalInvokedMethod(Square, show, this,Graphic)
∧ NotInvolvedInOverloading(Square, show, this)
∧ ¬ExistsType(V isitor)
∧ ExistsClass(Square)
∧ ¬BoundVariableInMethodBody(Graphic, show, v)
∧ ¬BoundVariableInMethodBody(Graphic, fullprint, v)
∧ IsRecursiveMethod(Container, show)
∧ ExistsClass(Container)
∧ IsRecursiveMethod(Container, fullprint)
∧ ExistsMethodDefWithParams(Graphic, show, [ ])
∧ ExistsAbstractMethod(Graphic, show)
∧ ¬IsInheritedMethod(Graphic, showTmp)
∧ ¬IsInheritedMethodWithParams(Graphic, showTmp, [ ])
∧ ¬ExistsMethodDefWithParams(Graphic, showTmp, [ ])
∧ HasReturnType(Graphic, show, void)
∧ ExistsMethodDefinition(Graphic, show)
∧ ExistsMethodDefinition(Square, show)
∧ ExistsMethodDefinition(Container, show)
∧ ¬ExistsMethodDefinition(Graphic, showTmp)
∧ ¬ExistsMethodDefinition(Square, showTmp)
∧ ¬ExistsMethodDefinition(Container, showTmp)
∧ ¬IsOverloaded(Graphic, show)
∧ ¬IsOverloaded(Square, show)
∧ ¬IsOverloaded(Container, show)
∧ ExistsClass(Graphic)
∧ IsAbstractClass(Graphic)
∧ ExistsMethodDefWithParams(Graphic, fullprint, [ ])
∧ ExistsAbstractMethod(Graphic, fullprint)
∧ ¬IsInheritedMethod(Graphic, fullprintTmp)
∧ ¬IsInheritedMethodWithParams(Graphic, fullprintTmp, [ ])
∧ ¬ExistsMethodDefWithParams(Graphic, fullprintTmp, [ ])
∧ AllSubclasses(Graphic, [Square;Container])
∧ HasReturnType(Graphic, fullprint, void)
∧ ExistsMethodDefinition(Graphic, fullprint)
∧ ExistsMethodDefinition(Square, fullprint)
∧ ExistsMethodDefinition(Container, fullprint)
∧ ¬ExistsMethodDefinition(Graphic, fullprintTmp)
∧ ¬ExistsMethodDefinition(Square, fullprintTmp)
∧ ¬ExistsMethodDefinition(Container, fullprintTmp)
∧ ¬IsOverloaded(Graphic, fullprint)
∧ ¬IsOverloaded(Square, fullprint)
∧ ¬IsOverloaded(Container, fullprint)
∧ ¬ExistsType(ShowV isitor)
∧ ¬ExistsType(FullprintV isitor)

Figure 3: Computed precondition for Non-Failure
(formula P⊤) instantiated with method names and
class names of the program of Fig. 1

Correctness of the Effect

We now consider the correctness of the effect. We suppose
the target Visitor micro-architecture is described by the for-
mula QV of Fig. 4, which we take as a postcondition.

That specification describes coarsely the target Visitor ar-
chitecture (accurate description of the Visitor pattern is out
of scope of this paper).

Here, the computed precondition is the same as with true



• ExistsClass(”Visitor”)

• ∀m ∈ LM , ExistsClass(V (m))

• ∀m ∈ LM , IsSubClassOf(V (m), ”Visitor”)

• ∀c ∈ LC ∪ {S} , ExistsClass(c)

• ∀c ∈ LC , ExistsMethod(”Visitor”, ”visit”, [ c ])

• ∀c ∈ LC , ∀m ∈ LM , ExistsMethod(V (m), ”visit”, [ c ])

• ∀c ∈ LC ∪ {S},ExistsMethod(c, ”accept”, [”Visitor”])

• ∀c ∈ LC , ∀m ∈ LM , ¬ExistsMethod(c,m)

Figure 4: Weak specification of the target Visitor
architecture (formula QV )

as a postcondition. Thus the chain has also the type P⊤ →
QV , which is more precise than P⊤ → ⊤. Note that forward
inference may allow to find a more precise postcondition Q

so that P⊤ → Q is still a type for that chain (we did not
implement forward descriptions in this case study).

We next address the round trip transformation (the return
transformation is described in [2]).

4.3 Round-Trip Transformation
We now consider the chain composed of Composite →

Visitor and Visitor → Composite. We call TCV C that chain.
We are looking for a formula PX such that TCV C : PX → PX

(the fix-point for TCV C).
We find that fix-point with backward inference and the

following strategy: we find a P0 such that TCV C : P0 →
⊤, then a P1 such that TCV C : P1 → P0, and so on until
Pi = Pi+1 (this is equivalent to finding a fix-point for two
formulas as explained in Sec. 3)

In fact, in this use case, the fix-point PX is obtained at the
first iteration, for P0, the precondition for Non-Failure. That
precondition is sufficient to ensure itself as a postcondition.
However, this is not representative of the general case.

The formula PX is very close to the formula P⊤ for Non-
Failure of Composite → Visitor (Fig. 3). The only differ-
ences are proposition that ensure that the temporary method
names for the return transformation do not create a clash.

4.4 Results

Validation of the Transformation

We have formally validated the transformation: non failure,
correctness, round-trip transformation and behavior preser-
vation. However, this validation must be taken with care
because the faithfulness and soundness of the axioms used
(the implemented R) are not formally validated themselves
(see the discussion in Sec.6).

Domain of the transformation

The computed precondition for the round-trip transforma-
tion allows to define precisely the set of acceptable input
programs.

This is useful to know if that transformation can be reused
for some other programs than the initial one, or to know
when the transformation has to be adapted to cope with a
modification of the subject program during its maintenance

lifetime.

Accuracy of Backward Descriptions

In order to reach convenient results, we have had to give
very accurate preconditions and backward descriptions for
some operations. For instance, for the DeleteClass operation
(we delete visitor classes in the Visitor→Composite chain),
a predicate NotIsUsedClass is too coarse, because no op-
eration has it as a postcondition. In this case, we had to
use several predicates that tell that the type for the class is
not used (for variables, parameters, return types or exten-
sions) and that its constructors, methods and variables are
not used. In such situations, the work to ensure that the
composition succeeds can be compared to the use of formal
proof assistants which force you to give all the justifications
to ensure that a property holds.

This is the classic dilemma in the design of type systems
between coarse types which are easy to handle but which
lead to rejection of some correct programs and very accurate
types, more difficult to prove but which reject less programs.

Validation of the Composition System

This use case also validates the practical use of the composi-
tion system (here, only backward inference is used however)
with the retained properties: Non-Failure, Correctness of
the Effect, Round-Trip Transformation. Is also shows that
the constraint of using only behavior preserving operations
in order to ensure the behavior preservation for the whole
chain is acceptable, even for complex remodularizations.

5. RELATED WORK
Ó Cinnéide and Nixon [11] and Kerievsky [8] give many

examples of remodularization towards design patterns by
chaining refactoring operations. Hills et al. [6] show that
it can be successful for drastic architecture changes in real
programs (they transform a real interpreter based on the In-
terpreter Pattern to the Visitor pattern). To our knowledge,
our use case is the largest transformation to be formalized.

There are many contributions to the domain of static com-
position of refactorings. For instance it has been much de-
veloped by Roberts [13]. We have selected Ó Cinnéide and
Nixon [11] and Kniesel and Koch [9] for our work because
they are representative of the two ways of inference. In order
to unify these two systems, we have taken only their basic
features (also for simplicity of the presentation and lack of
space). For instance, in [9], the transformations are pro-
gram independent. We have not done that, but it should be
straightforward in our system.

Several frameworks for composition of refactorings are
currently available. For instance JTransformer/StarTrans-
former1 (ROOTS group, Univ. of Bonn) is under active de-
velopment. We did not use it for our use case because we
wanted to deal with the refactoring operations for which the
transformation was designed for, and because it does not
support pre/postcondition inference.

6. CONCLUSION

Contributions

This paper reformulates two existing composition calculus
into a type system, shows their practical use, and illustrates
1
http://sewiki.iai.uni-bonn.de/research/jtransformer/start

http://sewiki.iai.uni-bonn.de/research/jtransformer/start


it on a non-trivial use case of remodularization. More pre-
cisely:

• We have recast two composition systems, one based
on forward descriptions and one based on backward
descriptions, into one calculus. This allows to make
them interact. For instance, for a given transforma-
tion, one can first compute a minimal precondition
for an expected target architecture (backward infer-
ence), then compute a more precise characterization
of the resulting programs with that precondition (for-
ward inference). This also makes them comparable.
In particular, they both allow type checking, but they
are complementary for type inference.

• The resulting system is language- and tool- indepen-
dent because predicates on programs and descriptions
of refactoring operations are parameters of the system.

• We have shown how to use the resulting system in
various situations with four general, yet meaningful
properties on transformations, considering that initial
preconditions and postconditions are specified or not.

• We have applied our system to check these properties
on a deep remodularization (50 operations). That use
case shows that the system is workable with complex
transformations and it illustrates its value (validation
of the transformation, identification of the acceptable
inputs).

However, static composition of refactorings still has the
following drawbacks:

• Defining a faithful and soundR for the refactoring tool
at hand is hard. We can rely on proofs of correctness
for some operations, for instance [4] and [14] for Java,
but many operations are not proven yet.

• Defining R with the convenient accurateness for the
transformation at hand is also hard.

Future Work

To make static composition adopted by a large set of pro-
grammers, it should be integrated in a popular IDE, soundly
based on the native refactoring operations of that IDE. Here
are a few other possible future works:

• Compare more deeply forward and backward descrip-
tions: can one be inferred from the other?

• Consider transformations with loops or conditional bran-
ches. Again, we can rely on Hoare logic. For instance,
the following rule for conditionals fits well:

R ⊢ T1 : (P ∧Q) → R R ⊢ T2 : (P ∧ ¬Q) → R

R ⊢ if Q then T1 else T2 : P → R

• Study how the type system helps to make evolve a
transformation when the architecture of the subject
program has been modified.

• Use types to reduce the space of search in inference of
refactoring chains [10, 12, 5].

We hope this work will contribute to a better integration
of composition of refactorings in IDEs.

Acknowledgments

The authors would like to thank Anna Kozlova (JetBrains),

Günter Kniesel (Univ. of Bonn), Mel Ó Cinnéide (Univ. Col-

lege Dublin) and Jean-Claude Royer (École des Mines de
Nantes) for their comments on this work.

References

[1] A. Ajouli. An automatic reversible transformation from
composite to visitor in Java. In Conférence en In-
génieriE du Logiciel (CIEL), 2012. 6 pages.

[2] A. Ajouli and J. Cohen. Refactoring Composite to
Visitor and Inverse Transformation in Java. Research
report hal-00652872 (version 2), 2011/2012. URL
http://hal.archives-ouvertes.fr/hal-00652872/en.

[3] J. Cohen, R. Douence, and A. Ajouli. Invertible
program restructurings for continuing modular main-
tenance. In Soft. Maintenance and Reengineering
(CSMR), European Conf. on, pages 347–352, 2012.

[4] A. Garrido and J. Meseguer. Formal specification and
verification of java refactorings. In IEEE Int. Workshop
on Source Code Analysis and Manipulation (SCAM),
pages 165–174. IEEE, 2006.

[5] I. Hemati Moghadam and M. Ó Cinnéide. Automated
refactoring using design differencing. In Soft. Mainte-
nance and Reengineering (CSMR), European Conf. on,
pages 43–52, 2012.

[6] M. Hills, P. Klint, T. Van Der Storm, and J. Vinju. A
case of visitor versus interpreter pattern. In Int. Conf.
on Objects, Models, Components, Patterns (TOOLS),
pages 228–243. Springer-Verlag, 2011.

[7] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–
583, Oct. 1969.

[8] J. Kerievsky. Refactoring to Patterns. Pearson Higher
Education, 2004.

[9] G. Kniesel and H. Koch. Static composition of refactor-
ings. Science of Computer Programming, 52(Issues 1-3):
9–51, 2004. Special Issue on Program Transformation.

[10] T. Mens, G. Taentzer, and O. Runge. Analysing refac-
toring dependencies using graph transformation. Soft-
ware and Systems Modeling, 6(3):269–285, 2007.

[11] M. Ó Cinnéide and P. Nixon. Composite refactorings
for Java programs. In Workshop on Formal Techniques
for Java Programs, ECOOP, 2000.

[12] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex refactorings.
In IEEE Int. Conf. on Soft. Maintenance (ICSM), 2010.

[13] D. B. Roberts. Practical analysis for refactoring. PhD
thesis, University of Illinois at Urbana-Champaign,
Champaign, IL, USA, 1999.

[14] M. Schäfer, J. Dolby, M. Sridharan, E. Torlak, and
F. Tip. Correct refactoring of concurrent java code.
In European Conf. on Object-Oriented Programming,
ECOOP, pages 225–249. Springer-Verlag, 2010.

http://hal.archives-ouvertes.fr/hal-00652872/en

	Introduction
	A Type System for Composition
	Refactoring Operations
	The Type System

	Transformation Properties: Practical Use
	Case Study: Composite  Visitor Transformation
	Implementation
	Composite  Visitor Transformation
	Round-Trip Transformation
	Results

	Related Work
	Conclusion

