
Engaging End-Users in the Collaborative Development

of Domain-Speci c Modelling Languages

Javier Cánovas, Jordi Cabot, Jesús López-Fernández, Jesus Sanchez

Cuadrado, Esther Guerra, Juan De Lara

To cite this version:

Javier Cánovas, Jordi Cabot, Jesús López-Fernández, Jesus Sanchez Cuadrado, Esther Guerra,
et al.. Engaging End-Users in the Collaborative Development of Domain-Speci c Modelling
Languages. International Conference on Cooperative Design, Visualization & Engineering, Sep
2013, Mayorca, Spain. 2013. <hal-00869347>

HAL Id: hal-00869347

https://hal.inria.fr/hal-00869347

Submitted on 3 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00869347

Engaging End-Users in the Collaborative
Development of Domain-Specific Modelling

Languages

Javier Luis Cánovas Izquierdo1, Jordi Cabot1, Jesús J. López-Fernández2,
Jesús Sánchez Cuadrado2, Esther Guerra2, and Juan de Lara2

1 AtlanMod, École des Mines de Nantes – INRIA – LINA, Nantes, France
{javier.canovas,jordi.cabot}@inria.fr

2 Universidad Autónoma de Madrid, Madrid, Spain
{jesusj.lopez,jesus.sanchez.cuadrado,esther.guerra,juan.delara}@uam.es

Abstract. Domain-Specific Modelling Languages (DSMLs) are high-
level languages specially designed to perform tasks in a particular do-
main. When developing DSMLs, the participation of end-users is nor-
mally limited to providing domain knowledge and testing the resulting
language prototypes. Language developers, which are perhaps not do-
main experts, are therefore in control of the language development and
evolution. This may cause misinterpretations which hamper the develop-
ment process and the quality of the DSML. Thus, it would be beneficial
to promote a more active participation of end-users in the development
process of DSMLs. While current DSML workbenches are mono-user and
designed for technical experts, we present a process and tool support for
the example-driven, collaborative construction of DSMLs in order to en-
gage end-users in the creation of their own languages.

Keywords: Model-Driven Engineering, Language Engineering, Domain-Specific
Languages, Cooperative Engineering

1 Introduction

Model-Driven Engineering (MDE) emphasizes the use of models to raise the level
of abstraction and automation in the development of software. This is achieved
by defining Domain-Specific Modelling Languages (DSMLs) [1, 2] specially de-
signed to perform tasks in certain domains, like web engineering, mobile app
development, or gaming. By using DSMLs, end-users can solve problems in their
domain more easily, thus becoming an important asset to improve productivity.

Interestingly enough, end-users have a very limited participation in the de-
velopment of their own DSMLs. They are normally only involved in providing
domain knowledge or testing the resulting language [2, 3]. This means that the
MDE technical experts and not end-users (i.e., the real domain experts) are the
ones in control of the DSML construction and evolution. This is a problem be-
cause errors in understanding the domain may hamper the development process

and the quality of the resulting DSML. Thus, it would be beneficial to promote
a more active participation of end-users in the DSML development process.

To make effective this participation, some technical barriers need to be over-
come and means to foster the collaboration in the community of end-users of the
DSML are needed. First, end-users should be liberated from doing development
tasks requiring too technical, specialized MDE abilities (e.g., the identification of
abstract concepts or their implementation in platform-specific meta-models). To
this aim, we propose supporting language development by means of examples [4].
Thus, users are able to draft language examples from which a language defini-
tion (i.e., language domain and syntax) can be automatically derived. Second,
given that a language targets a community of end-users, it is crucial to drive
the participation of its members in a collaborative fashion where each member
cooperates with their peers to make the language development process progress.
The discussions arisen as a result of this participation drive the development
process and become a valuable documentation of the design decisions [5].

For this purpose, this paper provides an approach for the example-driven,
collaborative construction of DSMLs, which combines the works described in [4,
5]. We propose an iterative process, which starts with a set of examples that are
refined in each iteration. Refinement consists of providing language modifications
by means of new examples, which are discussed by the end-users to reach agree-
ment to drive the language development process. Furthermore, to help making
design decisions, the approach also incorporates a recommender system which
identifies and proposes changes in the language according to meta-model quality
patterns [6–8].

The rest of the paper is organized as follows. Section 2 describes how DSMLs
are built nowadays, using a running example. Section 3 overviews our approach
and Section 4 its main technical aspects. Section 5 compares with related work
and Section 6 concludes the paper.

2 Engineering Domain-Specific Languages

DSMLs are languages tailored to a specific task or domain, capturing its main
primitives and abstractions [1, 2]. Examples of DSMLs include dedicated lan-
guages for web engineering, requirements specification, business modelling, or
data querying. DSMLs are not only specific to computer science, but are useful
in many diverse areas and disciplines, like biology, physics, management or ed-
ucation, where the domain experts are not necessarily computer scientists, and
may not have knowledge of MDE platforms and tools.

A DSML is defined by its abstract syntax, concrete syntax and semantics.
The abstract syntax describes the concepts of the domain, their features and
relations. In MDE, the abstract syntax is built through a meta-model, normally
a class diagram with additional constraints. The concrete syntax describes the
representation of models, either graphically (e.g., an electrical circuit), textu-
ally (e.g., an SQL query), or a combination of both. The semantics describes
the meaning of models by providing, e.g., a description of their execution, or a

Domain
experts

MDE
experts

Identification of

relevant domain

knowledge

DSML reqs.

MDE
experts

Meta-model

construction/

improvement

start

Domain
experts

Evaluation of

meta-model

more

reqs?
errors?

no
end

no

yes yes
error
report

1 2 3

Meta-model

Fig. 1. Traditional process for meta-model construction.

mapping into a semantic domain. While a DSML covers these three aspects, in
this paper we concentrate on the process of constructing the abstract syntax.

There are many workbenches for developing DSML editors [1, 2, 9], but they
suffer from some drawbacks. First, they are directed to computer scientists with
a background in MDE, as the first activity is creating a meta-model. While
building meta-models is natural to software engineers, it can be challenging
for end-users, who may prefer drafting example models first, share and discuss
them with their peers, and only then abstract them in a meta-model. Asking
end-users to build a meta-model before drafting examples is often too demand-
ing. Moreover, these frameworks do not foster the active participation of the
domain experts in the DSML design process. Their role is limited to providing
background knowledge of the domain, and evaluating the DSML proposals cre-
ated by the MDE experts. This may lead to misunderstandings of the domain
concepts, omissions or non-optimal solutions.

A scheme of this “traditional” process is shown in Figure 1: first, there is a
requirements gathering meeting (1); then, a meta-model is built (2); and next,
this meta-model is reviewed by the end-users (3). If defects are found, feedback
is provided and the meta-model is reworked. This process is iterated until the
meta-model gathers all domain concepts and then the DSML tooling can be
developed. Note that, sometimes, defects can only be found once the tooling is
available, when end-users detect missing elements, thus requiring rebooting the
process.

As an example, consider the construction of a DSML to describe the passen-
ger entry process of an airport, with the purpose of performing a queue-based
simulation to optimize this process. The stakeholders include therefore terminal
operator supervisors, airport management staff, and terminal managers of spe-
cific airlines. A possible meta-model is shown in Figure 2(a), where the check-in
and airplane queues are identified.

The traditional process has some drawbacks at every stage. In step (1), do-
main knowledge is documented in natural language. However, having this knowl-

AirportQueue

CheckIn

Queue

Airplane

Queue

Passenger

Plane

capacity: int

*

*

CheckInDesk

open: boolean

servTime: float

 desk
queue

passengers

passengers

Airport

planes *

desks
*

gates *

plane

(a) (b)

Fig. 2. (a) Sample meta-model. (b) Sample model.

edge in the form of computer-processable models would be more effective. Unfor-
tunately, this is not possible as, at this point, no meta-model exists yet. Second,
evaluating the meta-model in step (3) is difficult, as the end-users may need to
build testing models using “raw” abstract syntax, with no intuitive support for
the concrete syntax. For example, in the case of Eclipse EMF [10], end-users need
to build models using a tree-based editor (see Figure 2(b)). Moreover, domain
experts are demanded to understand a meta-model that includes conceptual
modelling elements like inheritance, composition and textual constraints, which
might be difficult to grasp to non-experts. In addition, some meta-model ele-
ments, like concept Airport, are only needed due to the implementation platform
of the meta-model. For example, EMF requires a root concept in order to gen-
erate a tree-based editor. Finally, this process may lead to heavy iterations that
could be optimized with a more active involvement of end-users in the meta-
model design, at stage (2), which in turn could help to get a meta-model fitting
the end-users’ needs and ready to be used to develop the DSML tooling. Hence,
in the next section, we present a collaborative process aiming at alleviating these
problems.

3 A Collaborative Process Driven by Examples

The drawbacks identified in the previous section prevent end-users from par-
ticipating effectively in the creation of DSMLs. To promote their engagement,
we propose a collaborative development process driven by examples. The use of
example models liberates end-users from doing too demanding technical tasks
for their expertise (e.g., defining abstract concepts), thus enabling their active
participation in the process. Moreover, the development process evolves in a
collaborative fashion where any end-user cooperates and discusses about the
changes to be made in the language. End-users involved in the creation of the
DSML become the community, and as a result of their collaboration, the com-
munity as a whole decides the changes that will be eventually added to the
DSML.

We propose a process to build the abstract syntax of DSMLs composed of five
phases: (1) process bootstrapping, (2) meta-model induction, (3) evaluation and

Initial

provision of

examples

Meta-

model
Induction

Voting of

changes to be
incorporated

DSML eval.,

proposal &

discussion of

changes

3
Final

version of

Language

T R T R T
Adding of

accepted changes

!

recommender

community

end-users developers

end-users

1 2 4 5

Fig. 3. Process for building DSMLs collaboratively driven by examples.

discussion, (4) voting phase and (5) language development. Next, we describe in
detail each phase, which are illustrated in Fig. 3.

To bootstrap the process, end-users initially provide a set of examples (full
models or fragments) which illustrate the DSML to develop (see step (1)). These
examples are only sketches (i.e., they do not conform to any meta-model) where
icons are named and arranged, but give the end-users the power of tailoring
the DSML to their needs without performing too demanding tasks. A reasoning
procedure on these examples generates automatically the abstract syntax of the
language (step (2)), which is defined by means of a meta-modelling language.
In our case, we use the Ecore meta-modelling language, thereby abstract syntax
models conform to the Ecore meta-model, where concepts are represented as
instances of EClass elements and their attributes and references are represented
as instances of EAttribute and EReference elements, respectively. Once a first
version of the language is obtained from the examples, an iterative process starts
to collaboratively develop and refine the language.

In the next phase (step (3)), the generated meta-model is evaluated through
examples, which may trigger the proposal and discussion of changes. The DSML
can evolve due to three main inputs: (1) community members, (2) virtual as-
sistant and (3) technical experts. Community members can propose ideas or
changes to the DSML, e.g., after checking the examples they can ask for modifi-
cations on the language. A change proposal includes a description of the problem
and, optionally, a set of new model examples illustrating the issue. Internally,
the changes to be performed in the meta-model to accommodate the new model
examples are automatically derived, thus liberating end-users from the task of
devising how the language definition should be modified to include their pro-
posals. A virtual assistant can also propose some improvements based on a set
of predefined design patterns, thereby assisting end-users in increasing the qual-
ity of the DSML. Finally, technical experts can also collaborate to support the
language definition process. All change proposals can then be discussed and
eventually accepted/rejected.

CheckInDesk

AirplaneQueue

CheckInDeskCheckInQueue

CheckInQueue

Plane
capacity=120

open=false
servTime=180

open=true
servTime=200

(a)

CheckIn
Queue

CheckIn
Queue

Dispatcher
Queue Dispatcher

(b)

Fig. 4. (a) Initial example. (b) Corrective example.

The decision to accept or reject a change proposal depends on whether the
community reaches an agreement. For this purpose, community members can
vote the proposal (step (4)). A decision engine analyses the votes committed to
calculate (according to agreed collaboration rules such as majority, unanimity,
etc.) which proposals are accepted/rejected. The accepted proposals are then
incorporated into the language and a new iteration is performed. The process
keeps iterating until no more changes are proposed. At the end of the process,
the language can be implemented with the sureness that the meta-model fulfils
the end-users’ needs (step (5)).

To illustrate the process, Figure 4 shows the outcomes of a possible collab-
oration scenario for the running example introduced in Section 2. The process
starts with a set of model fragments from which a first version of the meta-model
is automatically obtained. One of the provided examples is shown in Figure 4(a),
which is actually the same as the one in Figure 2(b) but using a much more in-
tuitive, user-friendly graphical syntax. The obtained meta-model matches with
the one presented in Figure 2(a). The meta-model and the examples are then
shared in the community to be validated. Validation can be done by looking at
the existing examples but also giving new ones and then an automated procedure
checks whether those fragments are accepted by the current meta-model.

At some point, an end-user detects a problem because the concept of Dis-

patcher (a welcome agent that redirects passengers to appropriate checkin queues)
is not included so he submits a corrective model fragment including this concept
(see Figure 4(b)). Examples do not need to be full-fledge models, but may be
partial models focussing on some interesting aspect. The new example becomes a
new change proposal to which an automatic process attaches the modifications
that should be performed in the first version of the meta-model. This change
proposal must be validated by the community, who vote for/against it. Let us
consider that eventually it is accepted, consequently, the change proposal is re-
alised, resulting in the meta-model shown in Figure 5(a).

Concurrently, technical experts and the virtual assistant can also propose
modifications. For instance, a technical expert can detect the need of includ-
ing an attribute in the concept CheckInDesk to specify the initialization time.
This change is also proposed to the community, who eventually agrees on its
incorporation into the language (see Figure 5(b)). On the other hand, the vir-

AirportQueue

CheckIn

Queue

Airplane

Queue

Passenger

Plane

capacity: int

*

*

CheckInDesk

open: boolean

servTime: float

desk

plane

passengers

passengers

*

Dispatcher
Dispatcher

Queue
passengers

*

dispatcher

q
u

e
u

e
s

*

*

gates

Missing concepts

planes*

desks
* Airport

queue

(a)

AirportQueue

CheckIn

Queue

Airplane

Queue

Passenger

Plane

capacity: int

*

*

CheckInDesk
open: boolean

servTime: float

initTime: float

desk

plane

passengers

passengers

*

Dispatcher
Dispatcher

Queue
passengers

*

dispatcher

q
u

e
u

e
s

*

 *

gates

planes*

desks
* Airport

queue

Missing feature

(b)

Fig. 5. (a) Resulting meta-model after discussing the corrective example. (b) Resulting
meta-model after including changes from technical experts.

CheckIn

Queue

Airplane

Queue

CheckInDesk
open: boolean

servTime: float

initTime: float

*

queues Dispatcher

Queue

Container

Dispatcher

dispatcher

*

*

desk

passengers: int

Plane

capacity: int

gates

Extract superclass+
Pullup reference+
Inline class+
Remove int. class

planes *

desks
* Airport

queue

plane

Fig. 6. Resulting meta-model after including the change proposals of the virtual assis-
tant.

tual assistant analyses each version of the meta-model to recommend possible
improvements and refactoring opportunities. For instance, since Dispatcher, Air-
portQueue and Plane have a reference to Passenger, the assistant recommends cre-
ating a new concept as superclass of the first three elements thus factorizing the
reference. This recommendation is included in the process as a new change pro-
posal so it is also submitted for debate and eventually for acceptance/rejection.
Actually, the recommender also proposed to inline class Passenger (as it does not
have attributes) creating the integer attribute passengers, and to eliminate the
abstract class AirportQueue (see Figure 6).

4 Technical Solution

The proposed process has been implemented on top of Collaboro [5], an Eclipse-
based tool to develop Ecore-based DSMLs collaboratively. Collaboro allows mod-
elling the collaborations among community members when developing a DSML:
proposals describe language changes, solutions specify how changes should be
implemented in the language (e.g., adding concepts, removing attributes, etc.),
and comments can be added to both of them. The tool also allows community

members to vote change proposals and includes a decision engine which analyses
these votes to calculate which collaborations are eventually accepted/rejected.
However, Collaboro only allows modelling collaborations at the meta-model level
(i.e., in terms of abstract elements). Our proposal extends the tool to support
the collaborative definition of DSMLs by means of examples.

The example-based induction of meta-models is realized using the bottomUp
tool we presented in [4], which was integrated in Collaboro. As Collaboro needs
a model of the changes to be incorporated to the meta-model, we extended the
bottomUp tool with: (i) a mechanism to record and serialize the changes produced
by the induction algorithm, (ii) a virtual assistant and a mechanism to record
and serialize the changes produced by its recommendations, and (iii) an importer
of Ecore meta-models. The latter is needed in order to process the current version
of the meta-model, provided by Collaboro. Collaboro was therefore extended to
integrate both the bottomUp tool and the virtual assistant as part of the DSML
definition process.

Figure 7 shows a snapshot of our tool when the end-user proposes the cor-
rective fragment in the running example. The snapshot includes the meta-model
automatically generated from the initial example (left) and the change proposal
created by the end-user. The change proposal includes a reference to the file with
the fragment (as a child element of the proposal), as well as the set of changes to
be done in the meta-model (right bottom part), which are automatically derived
from the fragment. The snapshot also shows the contextual menu which allows
voting for/against a collaboration as well as commenting them (left top part).

Our implementation supports defining examples as DIA1 diagrams, as it con-
tains a rich palette of over 1000 icons. End-users can therefore create new pro-
posals and attach the corresponding diagram. For each example-based proposal,
Collaboro invokes bottomUp to automatically derive the changes to perform in
the meta-model of the language, thus creating a solution in the proposal de-
scribing these changes. These proposals are then shared with the community to
be voted and eventually accepted/rejected. If accepted, they are incorporated to
the meta-model by Collaboro.

Our approach also includes a virtual assistant, which analyses the abstract
syntax meta-model under development and recommends possible improvements.
The implementation of the assistant is integrated in bottomUp and incorporates
some heuristics to detect errors and modifications. These include refactorings [8]
like extracting a common super-class when a set of classes share features, dif-
ferent ways to in-lining or merge classes, and eliminating intermediate abstract
classes.

5 Related work

End-user collaboration is a key feature in software development methods such
as agile-based ones as well as in user-centered design [11]. The advantages of

1 http://dia-installer.de

Fig. 7. Induced meta-model (left). Providing example-based proposals in Collaboro
(right).

collaborating in the development of software have been studied in works such
as [12, 13] and they are also illustrated in fields such as requirements elicitation
[14] or global software development [15] but neither of them focus on creating
DSMLs.

In [16], a collaborative modelling environment is presented, based on EMF
Eclipse framework. While it supports the collaborative use of modelling lan-
guages, it does not support their collaborative construction. On the other hand,
the COMA tool [17] allows collaborating in the definition of UML diagrams,
however, it does not provide support for creating DSMLs and does not present
the collaboration as a process of discussion, argumentation and voting.

While several works emphasize the benefits of using examples when develop-
ing modelling abstractions [18], our proposal is unique in combining an example-
based and collaborative approach to define DSMLs.

6 Conclusions

In this paper we have presented a process and tool support2 for the collaborative
development of DSMLs, where end-users are engaged and play an active role in
the development of their own language. This is possible by the use of example
models and fragments as a mechanism to drive the process, on the explicit sup-
port for discussion and collaboration, and on automated technical advice by a
virtual recommender system.

In the future, we plan to apply our approach in the context of projects with
our industrial partners. This will enable an empirical study of our solution, with
the goal of checking whether end-users actually prefer it instead of the existing
traditional solutions for defining DSMLs, and assess the quality of the produced
DSML. We also plan to provide support for the automatic detection and solution

2 https://code.google.com/a/eclipselabs.org/p/collaboro

of conflicting change applications, and for the collaborative construction of the
concrete syntax and semantics of DSMLs, resulting in the generation of a full-
fledged modelling environment.

Acknowledgements. This work was funded by the Spanish Ministry of Econ-
omy and Competitivity (project “Go Lite” TIN2011-24139), the R&D pro-
gramme of the Madrid Region (project “e-Madrid” S2009/TIC-1650) and the
European Commission under the ICT Policy Support Programme, grant no.
317859.

References

1. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE CS (2008)

2. Voelter, M.: DSL Engineering - Designing, Implementing and Using Domain-
Specific Languages. CreateSpace (2013)

3. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37 (2005) 316–344

4. Cuadrado, J.S., de Lara, J., Guerra, E.: Bottom-up meta-modelling: An interactive
approach. In: MODELS conf. Volume 7590 of LNCS., Springer (2012) 3–19

5. Cánovas Izquierdo, J.L., Cabot, J.: Enabling the collaborative definition of DSMLs.
In: CAiSE conf., To appear (2013)

6. Aguilera, D., Gómez, C., Olivé, A.: A method for the definition and treatment of
conceptual schema quality issues. In: ER. Volume 7532 of LNCS., Springer (2012)
501–514

7. Cho, H., Gray, J.: Design patterns for metamodels. In: DSM’11. (2011)
8. Fowler: Refactoring: Improving the Design of Existing Code. Addison-Wesley

(1999)
9. Xtext. http://www.eclipse.org/Xtext/

10. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley Professional, Upper Saddle River, NJ
(2008)

11. Norman, D.A., Draper, S.W.: User Centered System Design: New Perspectives on
Human-computer Interaction. Erlbaum, Hillsdale (1986)

12. Hildenbrand, T., Rothlauf, F., Geisser, M., Heinzl, A., Kude, T.: Approaches to
collaborative software development. In: FOSE conf., IEEE (2008) 523–528

13. Whitehead, J.: Collaboration in software engineering: A roadmap. In: FOSE conf.,
IEEE (2007) 214–225

14. Mylopoulos, J., Chung, L., Yu, E.: From Object-Oriented to Goal-Oriented Re-
quirements Analysis. Commun. ACM 42(1) (1999) 31–37

15. Lanubile, F., Ebert, C., Prikladnicki, R., Vizcaino, A.: Collaboration tools for
global software engineering. IEEE Softw. 27(2) (2010) 52–55

16. Gallardo, J., Bravo, C., Redondo, M.A.: A model-driven development method for
collaborative modeling tools. J. Network and Computer Applications 35(3) (2012)
1086–1105

17. Rittgen, P.: COMA: A tool for collaborative modeling. In: CAiSE Forum. (2008)
61–64

18. Bak, K., Zayan, D., Czarnecki, K., Antikewicz, M., Diskin, Z., Wasowski, A., Ray-
side, D.: Example-Driven Modeling. Model = Abstractions + Examples. In: NIER
track at ICSE’13. (2013)

