
The svgl toolkit: enabling fast rendering of rich 2D

graphics

Stéphane Conversy, Jean-Daniel Fekete

To cite this version:

Stéphane Conversy, Jean-Daniel Fekete. The svgl toolkit: enabling fast rendering of rich 2D
graphics. [Research Report] 2002, pp.11. <hal-00877124>

HAL Id: hal-00877124

https://hal.inria.fr/hal-00877124

Submitted on 26 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50615787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00877124


The svgl toolkit: enabling fast rendering of rich 2D graphics

St́ephane Conversy1,2 Jean-Daniel Fekete1,3

1Ecole des Mines de Nantes
4, rue Alfred Kastler

F44307 Nantes, France

2Laboratoire de Recherche en
Informatique

UMR 8623 (CNRS Universit́e
Paris-Sud)

91405 Orsay Cedex, France
conversy@lri.fr

3Human-Computer Interaction
Laboratory

University of Maryland
fekete@cs.umd.edu

Abstract
As more and more powerful graphical processors be-

come available on mainstream computers, it becomes
possible to investigate the design of visually rich and fast
interactive applications. In this article, we present SVGL ,
a graphical toolkit that enables programmers and design-
ers of interactive applications to benefit from this power.
The toolkit is based on a scene graph which is translated
into an optimized display graph. After describing the
algorithms used to display the scene, we show that the
toolkit is two to fifty times faster than similar toolkits.

Key words: 2D GUI, fast rendering, visually rich inter-
faces, Post-WIMP, OpenGL, scene-graph, SVG.

1 Introduction

Today applications use Graphical User Interfaces (GUI)
based on a 20 years old model introduced with the Xe-
rox Star, and coined Windows, Icons, Menu, Point-
ing (WIMP) interfaces. Since then, researchers have
designed new paradigms — altogether known as post-
WIMP interfaces [19] — for interacting with applica-
tions, such as Zoomable User Interfaces (ZUI), see-
through tools, or dynamic queries.

However, even if some of these work have turned into
commercial products, they address a niche market and are
seldom found in everyone’s computer. Post-WIMP inter-
faces require a lot more computational power than tradi-
tional ones, either because they are aimed at visualizing
large amounts of data, or because they use demanding
graphical techniques such as transparency.

Our main goal is to design a toolkit to enable interface
designers to actually use novel interaction techniques. As
a first step into this direction, we have developed SVGL, a
toolkit that provides both a visually rich graphical model
and a fast rendering engine. The toolkit is based on a
scene graph that describes the elements to be displayed
and their graphical attributes. Instead of designing our
own scene graph, we have chosen to use SVG (Scalable

Figure 1: A rich SVG document, edited with a translucent

toolglass. The tiger is rendered at 200 fps on a 1Ghz P3

+ GeForce 2 GTS.

Vector Graphics1) for three reasons. First, it is a vector-
based format: it describes graphical primitives in terms of
analytical shapes and transformations. Second, an SVG
scene is a directed acyclic graph (DAG) that can be an-
alyzed and transformed for optimization purposes. This
contrasts with traditional GUI toolkits such as Motif[7],
where no optimization is performed at the widget tree
level. Finally, SVG has been designed by professional
graphical applications companies, such as Adobe, and
provides a very rich graphical primitives set. Hence, most
commercial drawing and painting software can produce
graphics that SVGL can display natively, allowing graphic
artists to be more involved in the design process of inter-
active applications.

To address the computational power issue, the toolkit
translates the SVG DAG into hardware-accelerated
graphical primitives supported by the OpenGL library.
Relying on a graphical hardware acceleration has two ad-
vantages: first, a graphical processing unit (GPU) is 10
to 100 times faster than a multi-purpose processor at dis-
playing graphical primitives; second, the rendering pro-

1http://www.w3.org/TR/SVG/



cess is mostly deferred to the GPU, freeing the CPU for
other computational tasks.

Displaying an SVG scene with OpenGL is not a
straightforward task. Problems arise in the translation of
high level SVG primitives into low level OpenGL ones:
OpenGL offers a limited set of low level operations, and
the choice of possible translations greatly affects the per-
formance of the rendering process.

This article begins with a description of related works
designed to address some of the mentioned issues. The
second section briefly describes the OpenGL API and the
SVG format. The third part explains the main character-
istics of the toolkit in terms of graphical primitives, how
they can be translated into OpenGL calls and how using a
scene graph allows the toolkit to accelerate the rendering.
The last part discusses the results of benchmarks compar-
ing SVGL to related systems.

2 Related Work

SVGL is a high level 2D API based on a scene graph of
lightweight 2D objects. As such, it is related to “retained-
mode graphics” APIs used in the 3D graphics community.
It is also related to recent 2D scene graph APIs or systems
from the 2D community. We describe these two families
of APIs in this section.

2.1 3D Retained-Mode Graphics APIs
Retained-mode graphics packages are defined in [8],
p. 293: ”It keeps a record of all primitives and other
related information to allow subsequent editing and au-
tomatic updating of the display, thereby offloading the
application program.” It opposes to “immediate mode”
graphics where the application is in charge of sending
graphical primitives to the display. OpenInventor [13]
and Java3D[18] are probably the most popular retained-
mode 3D toolkits.

OpenInventor maintains a DAG of graphic components
organized as a hierarchy. Components can be graphic at-
tributes, geometrical transformations, shape descriptions
and interaction managers called Draggers. With this
structure, displaying a scene consists simply in a pre-
order traversal of the DAG, each visual component be-
ing sent as a primitive to OpenGL – OpenInventor being
specially designed for OpenGL. In addition, OpenInven-
tor provides a data-flow mechanism to connect values to-
gether and trigger their re-computation when some events
happen. It also provides a file format to store and load
scenes. Finally, by documenting and exposing the scene
graph, OpenInventor programmers can analyze and opti-
mize it in a portable way, leading to several optimization
packages.

Java3D is a 3D toolkit available for the Java program-
ming language since June 1999. It is inspired from Open-

Inventor but has notable differences with it. First, it
completely hides the immediate mode graphics under it
and supports the two popular low-levels API (OpenGL
and DirectX). Second, it relies on an explicit compilation
of the scene graph. Application starts by building the
graph and specifying which values they want to change
or read after compilation. They then call the “compile”
method on the graph before being able to display the re-
sult. The actions performed during the compilation pro-
cess are hidden but meant to rewrite the scene graph into
an optimized version where some computation have been
performed at compile time.

OpenInventor and Java3D are 3D toolkits. We decided
not to use them mostly because 2D drawings allow for
optimizations that do not fit well with a 3D-based model.
Furthermore, OpenInventor has some features, such as
active variables, that add a lot of overhead. Java being
too slow on many platforms, we decided not to stick with
this language with Java3D. However, we plan to include
the optimizations used in both toolkits in SVGL .

2.2 2D Scene Graph APIs
Most popular 2D APIs are component based: applica-
tions construct their graphical output by combining in-
teractive components that have a look and an interactive
behavior. Changing the appearance or behavior of these
components is usually as hard as creating new compo-
nents. Popular component based APIs such as Motif[7]
or MFC[16] propose now several hundreds of compo-
nents, each having a specific look and interactive behav-
ior. The graphic quality of the look is always limited by
the graphic primitives and attributes of the underlying im-
mediate mode graphics model (and by the talent of the
designers).

In the early nineties, Linton at al. have designed the In-
terViews and Fresco toolkits [12, 11] to separate the ap-
pearance from the behavior through “lightweight graph-
ical objects” organized as a DAG. Like OpenInventor
“Draggers”, interaction is managed by special interac-
tive objects inside the DAG. Therefore, the appearance
of Fresco can be changed and enhanced independently
of the interaction. However, these two toolkits rely on
the graphics model of the windowing systems, which is
limited to flat colors, no transparency and no general ge-
ometrical transformations. Fresco implements geometri-
cal transformations in software, adding graphical capa-
bilities at the cost of more computation and complexity.
This complexity comes from the inability of the under-
lying graphic system to display transformed primitives.
To display a text rotated by 10 degrees requires Fresco to
re-implement most of the font rendering engine. While
InterViews has been used by commercial graphic pack-
ages, Fresco remained a research work, now continued



by the Berlin project2.
Since the mid-nineties, scene graph have been used

for Zoomable User Interfaces (ZUI) such as Pad++ [3],
Jazz [4] or Zomit [14]. ZUIs need to manage navigation
through panning and zooming, provide smooth animation
and semantic zooming with continuous transitions. They
rely on a scene graph to perform on the fly analysis for
optimizations. They also use the DAG structure to of-
fer multiple views of graphic objects through sharing and
portals. In [2], Bederson and Meyer describe issues in
implementing ZUIs and more specifically rendering is-
sues. Their imaginary idealZooming Graphics Accelera-
tor must have the following features (numbers are added
to refer to the points later):

Text (1)High quality anti-aliased text which can be
transformed and scaled rapidly;
(2) Support for a wide range of fonts, including
Type1 and TrueType; [...]

Lines (3) A rich set of line drawing styles, including
rounded ends, bevel, mitering and dashes;
(4) Scalable line width and semi-transparent lines.

Images and Movies (5) Hardware accelerated image
scaling, preferably using filtering to produce smooth
results;
(6) Support for MPEG and QuickTime digital
movies which can be scaled to any size and played
at 30 frames a second.

General (7) Two 24 bit color buffers (for double buffer-
ing), a 24 bit depth buffer, an 8 bit alpha buffer for
transparency, and a 32 bit accumulation buffer for
special effects;
(8) Floating point coordinate system with support
for affine transforms;
(9) Clipping, including clipping to arbitrary 2D
polygons;
(10) Fast rasterization of arbitrary 2D polygons;
(11) Level-of-quality control over rendering rou-
tines for text and images [. . . ];
(11) Double buffering hardware which supports par-
tial redraws and hardware pans.

While most of these features are already present on 3D
accelerated boards, such as (1), part of (4), (5), (6), part
of (7), (8), (9) and (10), the authors have preferred a soft-
ware implementation running on regular 2D boards. They
describe several techniques for computing anti-aliased
characters, caching them and organizing data using R-
Trees[9] to maintain a high redisplay speed. Still, emula-
tion of missing 2D graphics feature such as transparency

2http://www.berlin-consortium.org/

or general affine transforms is expensive in term of per-
formance as well as coding.

Jazz and Zomit both inherited from Pad++ but use the
Java programming language and graphics library which
is portable and rich. Jazz is a direct descendant of Pad++
whereas Zomit implements a client/server architecture to
support the visualization of very large databases such as
the human genome. However, graphics performance have
decreased from Pad++ to Jazz and Zomit, due to the Java
language and graphics API.

OpenGL has been used by several Post-WIMP projects
such as CPN2000[1]. The project uses several OpenGL
features to render richer 2D graphics than those found
into typical interactive applications. However, the graph-
ical model is not as richer as the SVG one, which make
difficult to involve professional graphic designer into the
design process. Furthermore, CPN2000 graphical and in-
teractive parts have not turned into a toolkit, which limits
acceptance of its rendering algorithms.

3 OpenGL and SVG

SVGL relies on the OpenGL API and SVG. This section
describes their most important properties.

3.1 OpenGL
OpenGL is a 2D and 3D graphical library designed
to support hardware-acceleration when available [20].
Graphics processors implement operations using a
pipeline where graphic attributes and geometry arrive on
one end and the final drawing is produced on the other
end.

Input data can be 2D or 3D control points, images with
various formats, colors and control parameters. Opera-
tions include geometrical transformation by a4 × 4 ho-
mogeneous matrix, color composition, texture mapping.
The result of applying operations on data is stored in sev-
eral output buffers: the color buffers, the stencil buffer,
the depth buffer and the accumulation buffer.

OpenGL provides many ways to accelerate the render-
ing. First, the API is designed to be as close as possible
to the rendering pipeline, allowing hardware designers
to tune their GPU, and application developers to finely
tune their applications, for example by disabling unused
features. Second, multiple OpenGL commands can be
stored in display lists that can be reused, either multi-
ple times in a redisplay, or during the display of the next
frames. Using display lists avoids intermediate computa-
tion as well as allows optimizations such as transforma-
tions concatenation.

3.2 SVG
The W3 Consortium have recently issued a recommen-
dation called “Scalable Vector Graphics” (SVG) to de-



scribe vector graphics for web applications. It has been
designed to allow web content designers to provide a vi-
sually rich experience to the user. SVG also defines a rich
API, made out of 642 functions and 159 classes classes,
called the DOM-SVG API.

As a document format, SVG is an XML DTD,i.e a
set of grammar rules following the XML syntax. SVG
describes a graphical scene with shapes that can be trans-
formed by 2D affine transformations. Shapes range from
basic one like rectangle, ellipse, polygon, to highly com-
plex one defined using a “path”, a combination of straight
lines, quadratic and cubic Bezier curves, and conics.
Transformations are compositions of translations, scales,
rotations and skews.

Each shape has a style that controls its appearance.
Style attributes include fill color, stroke color, stroke
width, opacity and more. Shapes can be rendered with
a solid color, with a linear or radial gradient, or with a
pattern which is defined by a part of the SVG DAG.

Shapes can be grouped and share geometrical or style
transformations. In addition, a particular branch of
the XML tree can be referenced by multiple unrelated
branches, turning the XML tree into a Directed Acyclic
Graph (DAG). SVG allows the use of high-level graph-
ical operations, such as clipping, masking and filtering.
Clipping eliminates parts of a shape when it is rendered.
Masking allows a shape to partially occludes other ones
by using transparency. Both use regular SVG shapes to
define the clipping and the masking path.

SVG also offers raster based operations called filters,
that can be applied to already rendered primitives. Effects
include Gaussian blur, general convolutions and transfor-
mation of color by a4 × 4 matrix.

SVG implicitly defines depth position for each shape
since the rendering process consists in using a variant of
the painter’s algorithm: shapes are rendered in the order
of their appearance in the description, one shape being
able to partially occlude the previous ones. Contrary to
the traditional painter’s algorithm, groups don’t follow
rule when they are not opaque. Instead, SVG specifies
that the contents of the group is first rendered in an “off-
screen” image and the image is then rendered with the
required opacity.

SVG elements can be animated, either by describing
the animation parameters in the document, or by using
a script that manipulates the document. Animations can
control shape parameters, style, and transformations by
using linear or Bezier-controlled interpolation, allowing
smooth transitions between values.

By using all the features of SVG, a toolkit can display
translucent objects such as “see through tools”[5] or the
HotBox[10]. Graphic designers can create visually rich

objects with their SVG enabled commercial tools and in-
tegrate them in the interface. Finally, SVG is a good rep-
resentation for ZUIs and is already used by Jazz.

4 SVGL

SVGL is a C++ toolkit that works on an SVG tree, either
loaded from an SVG file or defined using the SVG DOM
API3. The main objective of SVGL is to offload graph-
ical processing complexity of the CPU to the GPU. To
this end, SVGL performs a translation of SVG primitives
into OpenGL ones, while avoiding as much as possible
analytical computations on the CPU. SVGL then applies
some simple mechanism to optimize the hardware graph-
ical pipeline. We describe how SVG graphical primitives
and attributes are translated, and how interaction is sup-
ported.

4.1 Filling and Stroking
SVG graphical primitives such as lines, rectangles, poly-
lines and polygons are much richer than their OpenGL
counterparts. SVG shapes are actually two shapes in
one: a fill shape, and a stroke shape that depends on the
“stroke-width” attribute.

OpenGL graphical primitives are either filled, or
stroked with a limited range of line widths. Filling convex
shapes is straightforward but non-convex and complex
polygons need to be decomposed into convex parts, a pro-
cess calledtessellationthat is computationally expensive.
To stroke polylines according to SVG rules, SVGL needs
to compute the envelope of the lines as a set of joint tri-
angles and send them to OpenGL (figure 2). Computing
the stroke envelope of one line or one rectangle is simple.
Stroking circles needs a tessellation function provided by
the GLU utility functiongluDisk.

Stroking Paths

Figure 2: the tesselation of a stroked and filled path

Stroking a general path is more difficult, since it
may contain ellipse and Bezier segments, two primitives
that are not directly supported by OpenGL. To rasterize
Bezier curves, OpenGL provides evaluator objects which
are meant to be hardware-accelerated. However, SVGL

3http://www.w3.org/TR/SVG/svgdom.html



does not use evaluators to stroke paths since they can
only produce a limited range of wide lines. Hence, SVGL

needs to compute the stroke envelope of each path. It uses
a fast forward differencing method to transform curved
segments into lines [17].

SVGL iterates on each line segment, computes the rect-
angular envelope around it and send it to OpenGL for ren-
dering. This computation is simple but requires several
floating point computations: one hypotenuse to compute
the norm of the vector normal to the line direction — less
expensive than a square root — 2 divisions to normalize
the vector, two multiplications of the vector coordinates
by the line width to get the envelope width and 8 addi-
tions to compute the coordinates of the envelope. More
shapes are added between two lines envelopes to render
the join style, involving more computation for miter joins
but not for round or bevel joins.

Filling Non-Convex Shapes

SVG shapes such as path, polygon and polyline may
be non-convex and should be decomposed into convex
shapes for OpenGL rendering. This tessellation is done
by a set of utility functions provided by the GLU library.

4.2 Clipping

SVG shapes can be clipped by a clip path, an area de-
fined with other SVG shapes. OpenGL offers three mech-
anisms to implement clipping: scissors, stencil buffer and
depth buffer. SVGL uses either the stencil buffer or the
depth buffer, depending on a compilation directive. Us-
ing the stencil buffer frees the depth buffer if we want
to implement 3D extensions or out of order rendering.
However, hardware supported stencil buffer is much less
common than hardware supported depth buffer and since
clipping is used on several common rendering cases, we
offer both. In the following, we use the termclip buffer
to refer to the buffer used for clipping.

The algorithm consists in drawing the clip path into
the clipping buffer using a particular “clip” value, then
allowing the drawing of clipped shapes only where pixels
in the clip buffer has been set, and drawing the clipped
shapes.

To allow recursive clip paths, the algorithm increments
the clip value when drawing into the clip buffer. Drawing
is only allowed for pixels with the same clip value than
the maximum clip value in the clip buffer. To disable
a clip path, the bounding box of the clip path is drawn
and decrements the values in the clip buffer that passes
the clip test. This scheme implements a kind of stack
where drawing only occurs for clip values equal to the
top of the stack. To pop the stack, SVGL inverts the clip
test, and redisplays the clipped shapes bounding box, as it
is always faster than to redisplay the shapes themselves.

Since only pixels that have been pushed will pass the clip
test, removal of unpushed pixels will not occur.

With the stencil buffer, setting a particular clip value
consists in setting the corresponding OpenGL state vari-
able. Thus, every shape will be drawn with the current
stencil value. The clip test passes only when value in the
stencil buffer equals the incoming stencil value.

With the depth buffer, SVGL renders non clipped
shapes at a certain distance from the viewpoint. The clip
value corresponds to the translation along the z-axis given
by the multiplication with the model-view matrix. Before
rendering clipped shapes, we translate the shape closer
to the viewpoint. A mask disables writing pixels in the
color buffer while enabling writing into the depth buffer.
The clip path is then rendered using the mask and shapes
that need to be clipped are then rendered with an inverted
mask. Depth culling occur when incoming pixels have a
different z value then pixels already drawn.

4.3 Opacity
If shapes are not opaque, their pixels have to be blended
with existing ones in the color buffer. OpenGL handles
transparency natively, and supports some of the alpha-
blending operations described in [15]. However, two
problems arise when dealing with transparency: self-
intersection and semantics of shape transparency.

A stroke can be self-intersecting or have overlapping
parts produced during by the envelope generation. If the
stroke is not opaque, blending these overlapping parts
produces incorrect results, as shown in figure 3.

To solve this problem, we use a clipping mechanism:
when a pixel belonging to the shape is blended with the
background, the clip buffer receives a value that disables
forthcoming blending. This algorithm avoids expensive
computations of overlapping areas. We could have used
the GLU tessellation routines to analytically compute self
intersections, but we have chosen to let the hardware do it
at no cost for the CPU. Strategies like this one are at the
heart of the techniques that benefit from hardware fea-
tures.

The second problem comes from the semantic of the
“opacity” attribute when applied to a group of shapes, or
when applied to a shape both stroked and filled. Inside a
non-opaque group, shapes must not be blended together.
Only the resulting image of the group should blend with
previous pixels. The group must be rendered as if there
was no “opacity” value, then it must be blended into the
actual scene using the opacity value (see figure 4).

This behavior implies the use of a two-pass algorithm.
First, the bounding box of the group is computed using
the algorithm explained below. SVGL then saves the cur-
rent image in a texture, clears the bounding box area, and
renders the group in the image. Finally, it composes the



texture of the previous image as if it were “under” the
newly created image, using the right alpha-blending oper-
ation and the opacity value. This mechanism is very dif-
ferent from software based renderers that allocate a mem-
ory area to render the group and compose it over the main
image. Using OpenGL, rendering has to be performed in
the image to fully benefit from hardware acceleration.

SVG defines three opacity attributes: “opacity”, “fill-
opacity”, and “stroke-opacity”. “opacity” acts as if a
shape was a group of two shapes,i.eblending occurs only
between the resulting image and the previous image, not
between stroke and fill. In this case, the shape must be
rendered using the above algorithm and blended into the
actual scene. However, unnecessary computation can be
avoided if stroke is not semi-transparent. In this case, us-
ing the clip buffer when drawing stroke, then forbidding
drawing where stroke was rendered, and finally drawing
fill will give the correct result. If “opacity” equals to 1,
the basic algorithm can be applied.
if fill!=none and stroke!=none and opacity<1
if stroke_opacity=1

set OpenGL opacity to opacity
draw stroke in color and stencil buffer
set OpenGL opacity to opacity X fill_opacity
if fill recovers itself

draw fill in color and stencil buffer
else

draw fill in color buffer
get bounding box
draw in stencil buffer to pop it

else
apply two pass algorithm with stroke and fill

else
if stroke!=none

set OpenGL opacity to opacity x stroke-opacity
if OpenGL opacity<1 and stroke recovers itself

draw stroke in color and stencil buffer
get stroke bounding box
draw stroke in stencil buxffer to pop it

else
draw stroke in color buffer

if fill!=none
set OpenGL opacity to opacity x fill-opacity
if OpenGL opacity<1 and fill recovers itself

draw fill in color and stencil buffer
get fill bounding box
draw fill in stencil buffer to pop it

else
draw fill in color buffer

Figure 3: blended parts of a shape generate artifacts

4.4 Text and Fonts
SVGL text rendering engine supports two well-known
methods to render text strings. When character size is

Figure 4: the same path totally opaque, with stroke-

opacity and fill-opacity set to .5, and with opacity set to

.5

small enough (typically under 20), SVGL generates on
the fly a texture containing a set of characters of the same
font at the same size. Rendering a line of text consists
in drawing quads while mapping the corresponding tex-
ture on it. To apply a particular character, SVGL changes
the texture coordinates to the ones pointing to the charac-
ter. The format of the font textures is one opacity value
per pixel. Using an opacity value allows the use of anti-
aliasing effects, by blending character edges with back-
ground.

As size becomes larger, font textures get larger. Tex-
ture size is limited, as well as the available textures quan-
tity in graphical memory. SVGL handles text with large
font size with vectorial fontsi.echaracters described with
paths. Since vectorial fonts are transformable without any
artifacts, they are also used if a non-uniform scaling or a
rotation has been done, typically when a text follows a
path.

4.5 Bounding Box Determination
Some rendering techniques described in this paper needs
to determinate the bounding box of the shapes in window
coordinates. Usually, the determination of the bounding
box uses an analytical algorithm. To compute bounding
boxes, SVGL uses the OpenGL feedback mode. Instead
of rendering primitives, this mode computes and returns
coordinates of primitives that would have been rendered
in rendering mode.

For each basic shape, a non-transformed surrounding
rectangle can be efficiently computed. The algorithm
consists in traversing the graph, applying transformations
and rendering for each shape its surrounding rectangle,
then recovering back the information generated by the
feedback OpenGL mode.

By using the feedback mode, SVGL avoids the need
to duplicate OpenGL functionality, such as geometrical
transformations. Hence, SVGL uses less code and is less



likely to contain bugs due to minimal differences with the
implementation with the OpenGL library. Furthermore,
by using a single function for drawing and for comput-
ing a bounding box, we are sure that we will obtain the
same results. For example, an analytical algorithm would
require to handle transformations due to the traversal of
an element that redefine its “viewBox” attribute, while
the actual rendering process handles this behavior. Fi-
nally, imitating OpenGL rendering process would require
to handle differences between the different versions of
OpenGL drivers.

4.6 Viewports and Aspect Ratio
Some SVG elements define their own viewport, trans-
forming their sub-graph to match the characteristic of the
viewport. For example,<svg> elements inside an SVG
document can stretch uniformly their graphics to fit it in
a smaller area. Most special-purpose shared branches,
such as<marker> and <symbol>, can define their
own viewBox.

SVGL applies transformations on the model-view ma-
trix before rendering the content of such an element. In
particular, it applies a translation and a scale to displace
and stretch the sub-graph. Additionally, it may enable a
clipping area to avoid drawings external to the viewbox.

4.7 Geometrical and Style Transformations
Geometrical transformations and most styling transfor-
mations of a group apply to sub-graph shapes. As
OpenGL is a state-machine, a simple algorithm would
be to apply both kind of transformations before travers-
ing sub-graphs. This algorithm works for geometrical
transforms, since they are compatible between SVG and
OpenGL.

Applying style transforms is not as straightforward,
as some style attributes have no corresponding OpenGL
primitives. For example, stroke width cannot be directly
handled by OpenGL, and cannot be set using an OpenGL
state variable. Second, some attributes have a semantic
that is not compatible with OpenGL one, such as group
opacity. Finally, though set in a parent node, some at-
tributes apply for a shape using its proper characteristics.
For example, gradients may be drawn either according to
absolute coordinates, in which case it can be applied at
the level of a group, or it may be drawn according to each
shape bounding box. In this case, SVGL deferred state
changes until the traversal of each shape.

4.8 Color Gradients
SVG shapes can be filled and stroked with gradients,i.e
a smooth linear or radial shade of colors. SVGL uses
OpenGL trilinear color interpolation and a clip-based al-
gorithm to implement both flavors.

A gradient is partly defined with<stop> elements

that provides color and position information. Addition-
ally, a vector defines the direction of a linear gradient.
Finally, either the gradient coordinates are relative to the
bounding box of the shape using it, or they are relative to
the user space on use.

The algorithm first defines a clipping area defined by
the shape to be filled. Since pixels outside the shape will
be clipped, only the shape pixels will receive the gradi-
ent colors. If the coordinates of the gradient vector are
relative to the bounding box of the shape, a rectangle sur-
rounding the shape must be computed, as seen in figure
5. This rectangle is filled with the gradient, possibly mul-
tiple times, depending on the “spreadMethod” attribute.

For each<stop> color, a rectangular band with a stop
color at each side is defined, enabling OpenGL colors in-
terpolation from one side to the other. SVGL uses the
same algorithm to fill radial gradients. An adapted gluD-
isk function draws the circle slices by defining at each
vertex the color to interpolate.

Figure 5: construction of a linear color gradient

4.9 Filters
SVG filters apply operations onto rasterized pixels. They
range from blurring to complex lighting of a shape. Fil-
ters use very different techniques to achieve their effect.
For example, blurring uses convolution, while lighting
and morphology employ a special-purpose algorithm.

The GL ARB imaging extension of OpenGL 1.2 al-
lows the use of hardware-accelerated convolutions. Ad-
ditionally, it provides a color matrix to transform pixels
color when manipulating pixels. When available, SVGL

uses the extension to implement some of the filters. If
the extension is not available, or if a filter is implemented
through a special-purpose algorithm, SVGL has to imple-
ment the algorithm in software. This scheme requires a
part of the image to be transfered from the frame buffer
to the main memory, processed and written back.

Filters apply in a certain order, given by an in-
put/output flow. When filters have one input each, a one



pass algorithm can be used. When filters have two in-
puts, single input branches are rendered then saved into a
texture, before being reused by the multiple inputs filters.

4.10 Picking
Interaction on SVG documents uses builtin WIMP events
that triggers scripted actions. SVGL does not implement
this model, since we plan to use a post-WIMP interaction
model in the future. However, interaction is based on
picking, no matter the model. Picking is the process of
determining objects lying into a small square around the
cursor position, and allows to find a particular shape that
has been designated or passed-over. As shapes can be ar-
bitrarily transformed, determining analytically the shapes
a user has pointed is often difficult. OpenGL can render
a scene in a “selection” mode and provide the program-
mer with information about the set of primitives that are
included in the area of the cursor position.

SVGL uses OpenGL selection mode to implement
picking. For each shape that lies into the picking area,
the pick manager returns a stack corresponding to the
path in the graph followed during the traversal, up to the
shape. For example, a stack might resemble to this one:
<svg><g><use><symbol><g><rect> Thus, a de-
veloper can easily adapt the interaction in function of the
traversed SVG elements.

This algorithm has two problems. Since a stack is gen-
erated for each OpenGL shape that lies into the picking
area, distinct parts resulting from tessellation are likely to
generate multiple stacks though one would be sufficient.
SVGL removes multiple similar stacks, as a developer is
concerned by only one of them.

The second problem is that in selection mode, OpenGL
does not use the stencil test. Hence, SVGL has to detect
if a shape that hits the picking area is actually visible.
The method consists in detecting if a clip path is drawn.
If the clipping path actually hits the selection area, then
any subsequent shaped clipped by this path are likely to
be picked. If a regular shape in the stack is clipped, it is
actually picked if the corresponding clip path has hit the
selection area.

4.11 Optimizations
SVGL is implicitly optimized for geometrical and style
changes, since changes can be factored out in groups
of shapes. SVGL benefits from this optimization by ap-
plying changes to OpenGL state-machine when possible.
OpenGL offers many other ways to optimize the render-
ing process. SVGL uses two mechanisms: display lists,
and texture changes minimization.

Display Lists
Display lists cannot be changed once created, hence they
are useful when drawings are the same across frames.

Since most shapes do not change, SVGL uses display list
to draw them.

Display lists do not apply only to shapes but to trans-
formation as well. Thus, transformation due to shapes
positioning or due to viewbox operations can be encapsu-
lated into a display list. However, shared SVG elements
may use their parent characteristic to be displayed. For
such cases, a display list per element is not sufficient. As
of this writing, SVGL does not use display lists for this
kind of transformation. Only shapes drawing generates
display lists used in subsequent drawings: one for stroke,
and one for fill. As an example, using display lists multi-
plies by 25 the frame rate when displaying the tiger (fig-
ure 1.)

Reordering of Text Spans
Most readable texts use small enough font sizes to be
drawn using textures. However, formatted texts have of-
ten multiple font sizes and faces, to differentiate head-
ings and regular paragraphs. Displaying such texts using
the flow of characters is inefficient, since it implies many
texture swappings, where a number of swaps equal to the
number of texture would be sufficient.

SVGL is able to reorder text spans inside a text to min-
imize the number of texture swaps. The manipulation
should occur only if text spans are not translucent and do
not overlap, otherwise the result will not be the correct
one.

4.12 Summary of Hardware Support Used by Svgl
OpenGL hardware-accelerated functions support a num-
ber of SVGL features. Transparency implements opac-
ity and fonts anti-aliasing. Geometrical transformations
position, stretch, rotate shapes, and implements viewbox
transformations. Textures are used by fonts, patterns and
transparent groups. Stencil or depth buffer enables clip-
ping, pre-rendering of semi-opaque group, and gradient
filling. Color interpolation is used in gradient. Display
lists accelerate static shape rendering across frames. Con-
volutions and the color matrix help implementing filters.

Though not hardware-accelerated, feedback and selec-
tion modes respectively helps in determining bounding
boxes and selection with a picking device.

5 Results And Discussion

We have compared the speed of SVGL with two other
SVG engines: Batik from the Apache XML project and
the Adobe SVG Plug-in. Batik is written in Java whereas
the Adobe SVG Plug-in is written in C or C++.

We have compared the time required to render three
different scenes:

• an illustration representing a tiger, representative of
graphically rich scenes;



• a textual page with several font changes, representa-
tive of rich textual documents, and

• a dense starfield display using transparency, repre-
sentative of demanding visualization applications.

All scenes embed an animation that continuously zoom
in, in order to measure geometrical performances. They
have been rendered on 2 configurations:

1. a 700MHz Pentium III processor using an ATI Rage
Mobility M1 on a laptop computer running Win-
dows 2000. The GPU does not accelerate transfor-
mations and has no stencil buffer.

2. a 1GHz Pentium III processor using an NVidia
GeForce2GTS running RedHat Linux 7.0. The GPU
has transformation acceleration and a stencil buffer.

5.1 Discussion
The results are summarized on the table 1 and show that
SVGL is the fastest viewer in all tests. On configuration
1, SVGL is 3 times faster than Batik for the tiger bench-
mark and 10 times faster on configuration 2. This results
highlights the benefit SVGL gains with hardware acceler-
ation. For the same benchmark, SVGL is 3 times faster
than Adobe SVG viewer on configuration 1.

For the text benchmark, hardware texture mapping for
fonts is up to 100 times faster than Batik and 55 times
faster than Adobe SVG Viewer. Adobe SVG viewer
and Batik are probably able to avoid displaying clipped
characters, explaining the improvement when zooming
in whereas SVGL exhibits no difference between the min
and max values. For this test, Batik is much slower on a
Linux/X11 platform than on Windows because of issues
with font rendering implementation.

For the starfield benchmark, SVGL is 2 times faster
than Batik at worst and 10 times when all the starfield
shapes are visible. Compared to Adobe SVG viewer, re-
sults are closer. However, this benchmark continuously
display 10,000 translucent rectangles of different colors
and sizes. SVGL cannot rely on display lists to avoid
resending the same data because starfield configurations
can change at each frame. The rendering speed is prob-
ably limited by the transfer speed of the bus between the
CPU and the GPU. Using a display list improves the per-
formance by a factor of 17.

6 Conclusion and Future Work

In this paper, we have described SVGL, a toolkit that
displays visually rich SVG documents using hardware-
accelerated graphical functions from the OpenGL library.
The main objective of SVGL is to offload graphical pro-
cessing complexity of the CPU to the GPU, and bene-
fit from the GPU power for graphical computations. We

Tiger Rich Text Starfield

Batik 1 (1101) 491–90 (2644) 1793–740 (8000) 6390–711
Adobe 1 250–100 781–24 1331–871

SVGL 1 (449) 80–35 (552) 75–37 (604) 593–469
Batik 2 (365) 145–90 (7280) 1813–845 (3001) 1395–566
SVGL 2 (278) 17–13 (321) 14–11 (366) 340–336

Table 1: Time in millisecond required to draw images for

three SVG Viewers. Maximum and minimum time are

given for all the viewers. Startup time in parentheses is

only available for Batik and SVGL.

have described how some SVG primitives are turned into
OpenGL ones, and showed how SVGL applies optimiza-
tions on the scene graph. We have measured perfor-
mances with three typical examples against other SVG
viewers, and showed that SVGL is always faster, some-
times by a factor of 10 or more.

We are currently working on adding implicit and ex-
plicit optimizations in SVGL. Explicit optimizations in-
clude scene graph simplification, elimination of invisible
primitives (culling) or space partitioning of primitives for
faster viewport culling. Dynamic optimizations include
automatic simplification of shapes when the frame rate
becomes inadequate and the use of “level of details”. We
are also adding semantic zooming using a simple exten-
sion of the<switch> SVG element. Finally, we plan to
add multi-layering as described in [6].

To use SVGL in interactive applications, we are cur-
rently designing a higher-level API that will provide com-
mon interaction techniques such as tool-glasses relying
on SVGL features. When available, this toolkit will pro-
vide the speed and graphic quality needed by designers to
develop the next generation of user interfaces.

7 Acknowledgements

This work has been inspired by several meetings of the
French “ALF” working group of the I3 CNRS Research
Group (see http://www.cict.fr/alf). Thanks to all partici-
pants collectively.

References

[1] Michel Beaudouin-Lafon and Henry Michael
Lassen. The architecture and implementation of
CPN2000, a post-WIMP graphical application. In
Proceedings of the 13th Annual Symposium on
User Interface Software and Technology (UIST-00),
pages 181–190, N.Y., November 5–8 2000. ACM
Press.

[2] Ben Bederson and Jon Meyer. Implementing
a zooming User Interface: experience building



tiger.svg

0

200

400

600

800

1000

1200

Batik 700 Adobe 700 Svgl 700 Batik 1000 Svgl 1000

m
s

Min

Max

Init

text.svg

0

1000

2000

3000

4000

5000

6000

7000

8000

Batik 700 Adobe 700 Svgl 700 Batik 1000 Svgl 1000

m
s

Min

Max

Init

starfield.svg

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Batik 700 Adobe 700 Svgl 700 Batik 1000 Svgl 1000

m
s

Min

Max

Init

Figure 6: Time required to render the 3 scenes using Batik, the Adobe SVG Plug-in and SVGL using two different

hardware configurations: a 700Mhz P3, and a 1Ghz P3+GeForce2 GTS

Pad++. Software— Practice and Experience,
28(10):1101–1135, August 1998.

[3] Benjamin B. Bederson and James D. Hollan.
Pad++: A zooming graphical interface for exploring
alternate interface physics. InProceedings of the
ACM Symposium on User Interface Software and
Technology, Visualization I, pages 17–26, 1994.

[4] Benjamin B. Bederson, Jon Meyer, and Lance
Good. Jazz: an extensible zoomable user inter-
face graphics toolkit in java. InProceedings of the
13th Annual Symposium on User Interface Software
and Technology (UIST-00), pages 171–180, N.Y.,
November 5–8 2000. ACM Press.

[5] Eric A. Bier, Maureen C. Stone, Ken Pier, William
Buxton, and Tony DeRose. Toolglass and Magic
Lenses: The see-through interface. In James T.
Kajiya, editor, Computer Graphics (SIGGRAPH
’93 Proceedings), volume 27, pages 73–80, August
1993.

[6] Jean-Daniel Fekete and Michel Beaudouin-Lafon.
Using the multi-layer model for building interactive
graphical applications. InProceedings of the ACM
Symposium on User Interface Software and Tech-
nology, Papers: Tools, pages 109–118, 1996.

[7] Paula Ferguson and David Brennan.Motif Refer-
ence Manual, volume 6B. O’Reilly & Associates,
Inc., 981 Chestnut Street, Newton, MA 02164,
USA, June 1993.

[8] J. D. Foley, A. van Dam, Steven K. Feiner, and
John F. Hughes.Fundamentals of Interactive Com-
puter Graphics. Addison-Wesley Publishing Com-
pany, second edition, 1990.

[9] Antonin Guttman.R-trees: a dynamic index struc-
ture for spatial searching.SIGMOD Record (ACM
Special Interest Group on Management of Data),
14(2):47–57, 1984.

[10] Gordon Kurtenbach, George W. Fitzmaurice, Rus-
sell N. Owen, and Thomas Baudel. The hotbox: Ef-



ficient access to a large number of menu-items. In
Proceedings of ACM CHI 99 Conference on Human
Factors in Computing Systems, volume 1, pages
231–237, 1999.

[11] Mark Linton and Chuck Price. Building distributed
user interfaces with Fresco. The X Resource,
5(1):77–87, January 1993.

[12] Mark A. Linton, John M. Vissides, and Paul R.
Calder. Composing user interfaces with interviews.
IEEE Computer, 22(2):8–22, February 1989.

[13] Open Inventor Architecture Group.Open Inven-
tor C++ Reference Manual: The Official Refer-
ence Document for Open Systems. Addison-Wesley,
Reading, MA, USA, 1994.

[14] Stuart Pook, Eric Lecolinet, Guy Vaysseix, and
Emmanuel Barillot. Context and interaction in
zoomable user interfaces. InProceedings of AVI
2000, pages 227–231 & 317. AVI 2000, Palermo,
Italy, ACM Press, May 2000.

[15] Thomas Porter and Tom Duff. Compositing dig-
ital images. In Hank Christiansen, editor,Com-
puter Graphics (SIGGRAPH ’84 Proceedings), vol-
ume 18, pages 253–259, July 1984.

[16] Jeff Prosise. Programming Windows With MFC.
Microsoft Corporation, One Microsoft Way, Red-
mond, WA 98052-6399, USA, 2nd edition, May
1999.

[17] Thierry Pudet. Real Time Fitting of Hand-Sketched
Pressure Brushstrokes. InEurographics’94. Pro-
ceedings of the European Computer Graphics Con-
ference and Exhibition, Amsterdam, Netherlands,
1994. North-Holland.

[18] Henry Sowizral, Kevin Rushforth, and Michael
Deering. The Java 3D API Specification, Sec-
ond Edition. Addison-Wesley, Reading, MA, USA,
2000.

[19] Andries van Dam. The human connection: Post-
WIMP user interfaces. Communications of the
ACM, 40(2):63–67, February 1997.

[20] Mason Woo, Jackie Neider, Tom Davis, and Dave
Shreiner. The OpenGL Programming Guide. Ad-
dison-Wesley, Reading, MA, USA, 3rd edition, Au-
gust 1999.


	Introduction
	Related Work
	3D Retained-Mode Graphics APIs
	2D Scene Graph APIs

	OpenGL and SVG
	OpenGL
	SVG

	SVGL
	Filling and Stroking
	Clipping
	Opacity
	Text and Fonts
	Bounding Box Determination
	Viewports and Aspect Ratio
	Geometrical and Style Transformations
	Color Gradients
	Filters
	Picking
	Optimizations
	Summary of Hardware Support Used by Svgl

	Results And Discussion
	Discussion

	Conclusion and Future Work
	Acknowledgements

