
Input Device Selection and Interaction Configuration

with ICON

Pierre Dragicevic, Jean-Daniel Fekete

To cite this version:

Pierre Dragicevic, Jean-Daniel Fekete. Input Device Selection and Interaction Configuration
with ICON. A Blandford and J Vanderdonckt and P Gray. Proceedings of the International
Conference IHM-HCI 2001, Sep 2001, Lille, France. Springer Verlag, pp.543-448, 2001. <hal-
00877336>

HAL Id: hal-00877336

https://hal.inria.fr/hal-00877336

Submitted on 28 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50615786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00877336

Input Device Selection and Interaction Configuration with

ICON

Pierre Dragicevic

Ecole des Mines de Nantes

4, rue Alfred Kastler, La Chantrerie

44307 Nantes Cedex, France

Pierre.Dragicevic@emn.fr

Jean-Daniel Fekete

Ecole des Mines de Nantes

4, rue Alfred Kastler, La Chantrerie

44307 Nantes Cedex, France

+33 2 51858208

Jean-Daniel.Fekete@emn.fr

ABSTRACT

This paper describes ICON, a novel editor designed to

configure a set of input devices and connect them to actions

into a graphical interactive application. ICON allows

physically challenged users to connect alternative input

devices and/or configure their interaction techniques

according to their needs. It allows skilled users – graphic

designers or musicians for example – to configure any

ICON aware application to use their favorite input devices

and interaction techniques (bimanual, voice enabled, etc.).

ICON works with Java Swing and requires applications to

describe their interaction styles in terms of ICON modules.

By using ICON, users can adapt more deeply than before

their applications and programmers can easily provide

extensibility to their applications.

Keywords

Multiple inputs, input devices, interaction techniques,

toolkits, assistive technologies

INTRODUCTION

Today, interactive desktop applications manage a very

limited set of input devices, typically one mouse and one

keyboard. However, the population of users requiring or

simply possessing alternative input devices is growing, as

well as the number of new devices available.

Given the proliferation of input devices and the importance

of tasks performed by users on a computer, being able to

adapt an existing application to one or several input devices

is an important issue for physically challenged users,

musicians, video game players, graphic artists etc. These

users find their environment more usable or simply

improved when they use their favorite input devices with

existing applications.

However, the complexity of supporting alternative input

devices is currently very high: each application has to

explicitly implement some code to manage each device and

all the desired interaction techniques using these devices.

At best, specialized applications support a limited set of

devices suited to their task.

In this paper, we describe ICON (Input Configurator), a

system for selecting alternative input devices and

configuring their interaction techniques interactively.

Using ICON, users can connect additional input devices –

such as tablets, voice recognition software, assistive devices

or electronic musical instruments – to an ICON aware

application and/or assign specific interactive behavior to

connected devices. Figure 1 shows a typical configuration.

Figure 1: Screenshot of ICON showing part of the configuration

of a drawing editor. The right mouse changes the selected tool

and keypad keys change the color and line width attributes.

Mouse relative positions are added and sent to a “cursor”

module that abstracts a 2D locator device.

Adding new devices and configuring them using ICON not

only opens applications to the use of alternative, better

suited devices but also tremendously simplifies the

integration of new interaction techniques published each

year on conferences like CHI (for example [9, 12, 23]) but

very seldom implemented on commercial products.

ICON is implemented using Java Swing and requires

applications to externalize their interaction techniques to be

effective. The effort required to do so is very modest

compared to the benefits.

Typical ICON users need not be computer scientists; a good

understanding of computer systems is sufficient. Users with

disabilities or special requirements may need the help of

such “power” users to configure their application.

This paper first describes a typical scenario a user would

follow to edit the input configuration of a simple

application. After comparing ICON to related work, we

describe the ICON editor in details; we give then more

implementation details and discuss practical issues for the

use of ICON in applications.

SCENARIO

In this section, we show how John, a typical ICON user,

may adapt a sample application called “IconDraw” that can

draw lines, rectangles and freehand curves. By invoking

the “configure” menu of IconDraw, John starts ICON that

displays the current configuration as in Figure 1. This

dataflow diagram shows several connected blocks called

modules. Each module has input or output slots where links

can be connected. Only connected slots are displayed in the

figures. The two input devices of the default configuration

– the mouse and the keyboard – are on the left, connected to

some processing modules and finally to IconDraw’s

interaction tools appearing as input modules.

In IconDraw’s standard configuration, the mouse is

connected to a cursor module which displays feedback and

is used as a virtual device. The right mouse button is used

to cycle through the drawing tools. Keyboard keys are used

to change the color and size of the lines. John can then

change the configuration, save it to a file or load it from the

configuration files available for IconDraw.

Stabilizing the Mouse Position

John remembers his friend Jane wants a drawing program

but couldn’t use a regular one because she suffers from

Parkinson’s disease that provokes uncontrollable hand

shaking. With ICON, he can stabilize the pointer position

by inserting a low-pass filter – averaging pointer positions

to remove quick moves – between the mouse device and the

cursor as shown in Figure 2.

To insert a LowPass module, John drags it from the left

pane – where all existing modules are shown – and drops it

in the editor pane. Clicking on one slot and dragging into

another creates a connection. The configuration is effective

immediately in IconDraw. When finished, John saves the

configuration and sends it by email to Jane.

Figure 2: LowPass filters are inserted between the mouse and the

cursor to stabilize the position.

Adding a Pressure Sensitive Stylus

John is a graphic designer and has a tablet with a pressure

sensitive stylus. To use it inside IconDraw, he needs to

disconnect the mouse, drag the tablet module in the ICON

pane and connect it to the cursor through scale modules.

Figure 3: Adding a pressure sensitive stylus to IconDraw where

the pressure changes the line width of the drawing.

To further use the pressure for changing the line width

when drawing, he needs to connect the pressure slot of the

stylus to the size slot of the brush used by the drawing tools,

as shown in Figure 3. Brushes abstract graphic attributes

just like cursors abstract positional devices. John can now

draw with the stylus and have varying width strokes when

using the freehand drawing tool.

Figure 4: creation tools of IconDraw represented as input

modules.

Configuring for Bimanual Interaction

Figure 4 shows part of the configuration controlling

IconDraw’s interaction tools. John now wants to use both

his mouse and the stylus. A bimanual configuration

requires a second pointer that can be dropped from the left

pane into the ICON pane. Figure 5 shows the configuration

required to create a line using bimanual interaction: one

should be connected to the “p1” slot and the second to the

“p2” slot. A combination of boolean modules determine

when the creation mode is triggered and when it is finished.

Figure 5: Configuration for creating a line with bimanual

interaction.

Other Configurations

Current input modules also include voice and gesture

recognition. John could use it to control the selected tool or

to change the color if he wishes, effectively adapting the

program to his skills and environmental particularities such

as limited desk space or noisy environment.

RELATED WORK

There have been several attempts at simplifying the

connection of alternative input devices or specifying the

configuration of interactive applications.

Assistive technologies

Assistive technologies include hardware devices and

software adapters. They are designed to allow disabled

users to work on a desktop computer. Software adapters

can be external applications that take their input from

various special hardware devices and translate them as if

they were actions on the mouse and keyboard. NeatTool [6]

is such a system and configurations are designed using a

rich graphical dataflow system. However, systems like

NeatTool are limited to using existing interaction

techniques of an application. More generally, external

software adapters have problems when they need to

maintain the internal states of an application like the current

selected drawing tool.

In contrast, internal software adapters are becoming more

common. Microsoft Active Accessibility® [20] and Java

Swing [1] have provisions for accessibility and

programmers can modify existing applications to adapt

them to various input and output configurations. However,

accessibility functions are not well designed for continuous

interaction such as drag and drop or line drawing, and no

graphical configuration tools exist yet, requiring a

programmer’s skill and sometimes source access to use

them.

Games

Most current games offer some configuration options and

all 3D video games offer a large choice of supported input

devices. However, most of the games have a set of standard

configurations and adapt alternative devices by

compatibility. A regular action game will provide one

configuration using the keyboard and another using

positional devices (mouse, joystick or any compatible

device). Sometimes, very specific devices are also

managed like a force feedback joystick for flight simulators

or a driving wheel for car racing. However, no general

mechanism could allow a pianist to use a midi keyboard on

a car racing program for example. The configuration is

usually done through a simple form based interface or a

simple script-like language which only allows direct

bindings of device channels [13].

Furthermore, alternative input devices can only be used to

play the game but other controls such as menus or dialogs

can only be controlled by the regular mouse and keyboard.

3D Toolkits

3D toolkits and animation environments are usually aware

of alternative input devices. The AVID/SoftImage system

implements a “channel” library to connect any valuator

device as a set of channels [2]. These channels can in turn

be connected to internal values inside 3D models or trigger

the internal constraint solver to perform sophisticated direct

animations. However, channels are limited to these direct

animations and cannot be used to enhance the interaction of

the 3D modeling tool itself for instance. The World toolkit

[25] can use any kind of device if it is described as an array

of relative positional values. Again, this view of input

device is meant for animation or direct control in VR

environments but not for the interactive creation of objects

or control of menus. Furthermore, the configuration of

these input devices has to be programmed.

Recently, Jacob proposed a new architectural model to

manage the interaction [15] using VRED, a dataflow system

similar to ICON. Due to its complexity, VRED is meant to

be used by expert programmers since it interacts deeply

with the internals of animation programs.

2D Toolkits

There has been some attempts at simplifying the integration

of alternative input devices in applications, such as the X

Input Extension [8]. However, very few 2D programs use it

and, when they do, their level of configuration is very

limited. The X Toolkit [24] specifies a textual format to

configure application bindings but its syntax is complex and

requires the application to be restarted when it changes.

Myers described an interactive system for visual

programming of interactions using interactors [22] in the

Garnet environment. [21]. Garnet is still oriented towards

programmers and interaction techniques cannot be changed

dynamically during the execution of an application.

Furthermore, Garnet only manages one mouse and one

keyboard.

Other systems for managing multiple devices exist such as

MMM, Chatty’s two-handed aware toolkit and Hourcade’s

MID library [5, 7, 14] but they all offer tools to

programmers instead of users.

Classification

Table 1 summarizes this section, classifying existing

systems in term of support for configurability and multiple

input devices (MID). Configurability is classified in 6

categories: (1) none, (2) direct binding from device and

events to program actions (i.e. without higher level control

such as conditional binding), (3) environments configurable

by users, (4) environments configurable by a programmer

using a specialized language, (5) environments requiring a

regular programming language for configuration, and (6)

for completeness, adaptive environments that could

automatically adapt interaction techniques and input

devices to user’s needs. No existing systems belong to this

category yet. MID are classified in 4 categories: aware of

only a fixed set of devices, aware of accessibility services

and aware of many (a fixed set of classes) or any alternative

devices.

Configure /

MID

Fixed set Accessi-

bility

Many Any

None Most

applications

Direct binding Video games Midi

config.

User oriented Hardware

accessibility

NeatTool

Software

accessibil

ity

Softimage

Channels

ICON

Limited

programmer

oriented

Garnet

interactors

VRED

Programming Most toolkits Java

SWING

MFC

World Tk MMM

Chatty

MID

Adaptive

Table 1: classification of current systems in term of support for

configuration and multiple input devices.

THE ICON SYSTEM

The ICON Editor allows users to view and edit the

mappings between all the available input devices and an

application. It is based on a dataflow model, with the

underlying semantics of reactive synchronous languages

such as Esterel [4] or Lustre [11]. In this dataflow model,

modules are input devices, processing devices, and

application objects. Links are connections between input

and output slots of the modules. A configuration is built by

dragging modules into the ICON workspace and connecting

them to perform high level actions, expressed as input

modules. This section first describes how to use ICON,

then how to design an ICON Aware application.

Using ICON

Modules that can be used to build an input configuration

are available in three repositories : an output module

repository, a processing module repository, and an input

module repository (see Figure 1 on the left). Each type of

module has its own graphical representation. New

compound modules can also be created at will.

Output module repository: When the editor is launched, it

asks the input APIs (WinTab [18] for the tablets,

JavaSpeech [26] for the voice recognition engine, Direct

Input [16] and USB [3] for yet other devices) for the set of

connected input devices, and their capabilities. Device’s

capabilities are interpreted as a set of typed channels. For

each detected device, a module is created and filled with

output slots (corresponding to the device’s channels), and is

added to the output module repository. Timer modules also

belong to this repository. With timer modules, users can

detect timeouts, idle cursors, perform auto repeat or other

time-oriented constructs.

Processing module repository: The editor contains a set of

processing modules loaded from a library. A processing

module has both input and output slots. There are three

categories of processing modules: control modules,

primitive modules and utilities. Control modules are useful

to implement tests and control switches. Primitive modules

include arithmetic, Boolean operations, comparisons and

memorization of previous values. Utilities include debug

modules and modules that could be built by composing

primitives but are faster and smaller as primitives

themselves.

Input module repository: This repository contains

application-specific modules that are loaded when the user

chooses an application to edit. These output modules show

what the application needs in terms of input. It also

contains global output devices such as the standard text

output, the system cursor, or a Text-To-Speech engine.

Applications choose the level of granularity and how they

describe their interactions in term of input modules. For

example, all the atomic commands usually attached to menu

items or buttons can be exposed as single input modules or

can be grouped and exposed as one larger module.

Exposing control objects as input modules is supported at

the toolkit level. For application specific interactions,

programmers have to provide suitable input modules

according to the level of configurability they want to

provide. More details are given in the next section.

Compound modules: Part of an input configuration can be

used to create a user-defined module, by simply selecting a

group of modules and issuing the “create compound”

command. Selected modules and all the connections

between them are moved into a new compound module.

External connections are also preserved: slots are

automatically created on the compound device to enable

external connections to internal modules.

Module properties: In addition to slots, some modules have

properties that can be edited in a separate window. All

modules have the name, help, and enabled properties.

Other properties are mostly numerical parameters in

mathematical processors.

Properties can also exist in input modules depending on the

input API. As an example, recognizer devices issued from

the JavaSpeech API have an array of string describing their

vocabulary (empty by default). The properties describing

the way an input module interprets user’s actions to

generate data is sometimes called the device context.

Several instances of the same output module can live

separately, each having its own device context.

Module cloning and shortcuts: Modules and groups of

modules can be cloned in the workspace by dragging them

while holding the control key. During this operation, all

property values are copied. For example, cloning a

processing module is useful when we have to perform the

same operations elsewhere in the configuration. But an

input module such as a mouse has a unique data source, and

its clone will produce exactly the same data. However,

cloning an input module can be useful to describe different

device contexts (e.g. different working vocabularies for the

same speech recognizer). The semantics of cloning an

output module depends on how the application manages

several instances of this module.

Another useful feature is module shortcuts. They allow the

user to display the same device in different places of the

workspace, so that an input configuration looks much more

clearer(Figure 1-5 use shortcuts). A shortcut is made by

dragging a device while holding both the shift and control

keys.

Connections : Connections are created by dragging from

one slot to another. Inconsistent connections – i.e.

connections between input or output slots, type-

incompatible slots, or connections that generate a cycle –

are forbidden. Only authorized slots are highlighted during

the dragging operation. ICON provides facilities for

modifying connections, such as group deleting or fast

reconnecting (changing one side of an existing connection).

Hierarchical slots: The configuration editor has a

hierarchical representation of slots (Figure.6), which

facilitates browsing of numerous slots. This also allows the

structure of input devices to be preserved. Furthermore,

hierarchical slots can be used to manipulate complex types.

Extended/Minimal Display : There are two display modes

for modules. Extended mode shows all slots. Minimal mode

shows only used slots, which reduces the visual complexity

of a configuration. Entering a module with mouse cursor

automatically displays it in extended mode.

Panning/Zooming : The user can pan and zoom on the

workspace, and easily work on large configurations. It is

also possible to enlarge and shrink individual modules.

Figure 6: Hierarchical slots of the mouse device

Designing ICON Aware Applications

ICON changes the programming paradigm used by

interactive systems. Current systems rely on an event based

model, an event dispatching strategy and a state

management programmed in a general purpose language

such as Java or C. ICON uses another paradigm where

values are propagated through a network of operations

directly into actions. This paradigm is used extensively and

successfully in automatic control systems, a domain we

consider close to input configuration management.

Configurations in ICON are very similar to controllers in

the traditional Smalltalk Model View Controller (MVC)

triplet[17]. Externalizing the controller requires to

externalize a protocol to communicate between a Model

and a View. This protocol is modeled as input and output

modules.

Figure 7: Implementation of an input module displaying the

currently selected tool in IconDraw.

Concretely, new modules have to be programmed in three

circumstances: for a new application that needs to export

some new Views and Models, when an unimplemented

input device is available and when a new processing is

required such as a gesture classifier. Programming a new

public class ToolModule extends Module {
// INPUT SLOTS

protected final IntSlot tool = new IntSlot("tool");
protected ToolBox toolbox;

public ToolModule(String name) {
super(name);
addInSlot(tool);
toolbox = (Toolbox)getComponentNamed("ToolBox");

}

public void changed(Change change) {
if (change.hasChanged(tool)) {
toolbox.setTool(tool.getIntValue());

}
}
}

module involves modest efforts as shown in Figure 7.

Existing modules have an average size of 50 lines, the

largest being the speech recognition module, 512 lines long.

IMPLEMENTATION ISSUES

ICON is currently implemented in Java 1.2 and relies on

Java Swing [10] with some specific extensions.

Connections to the low level input APIs are usually

implemented in C++ using the Java Native Interface [19].

The implementation is divided in three parts: the reactive

language interpreter, the native modules API and the

graphical editor ICON.

The Reactive Language Interpreter

The language underlying the execution of ICON is derived

from Lustre and Esterel [4, 11]. Instead of defining a new

semantics, we have relied on the well established

synchronous reactive language semantics for the

propagation of values and the flow control. Modules are

like digital circuits and connections are like wires. Values

are propagated during a clock tick that occurs at regular

intervals or when a device requests it and at least one value

has changed in the network. We have adapted and improved

the value model of these languages by introducing

hierarchical compound slots. A slot can either be of atomic

type like integer or string, or by a collection of named slots.

These compound or hierarchical slots simplify greatly the

readability and construction of configurations. The

interpreter is 4000 lines of source code long.

Figure 8: Module API for ICON.

The Module API

A module is implemented as a Java object with a list of

input and output slots as shown in Figure 8. The interpreter

calls the “changed” method of the object at each internal

clock tick when at least one of its input slots has received a

new value. The method can then compute new values for

its output slots and the signal propagates through

connections. New modules are simple to implement with

this interface.

The Configuration Editor

The configuration editor modifies the reactive network

interactively and relies on the reflection mechanisms of

Java to expose module internals to the users. It represents

about 4000 lines of source code.

DISCUSSION

The use of ICON on real program raises several issues that

we discuss here. Among them, one can wonder about the

kind of users who will use ICON, the expressive power of

configurations edited with ICON and the practicality of the

approach.

ICON Users

We don’t expect all users to design large specific

configurations of their applications with ICON. Instead,

applications should come with a set of sensible

configurations and users should usually modify small

portions to suit their needs. However, with the possibility

of sharing configurations with other users, we expect

configurations to improve incrementally.

Some users may need special configurations, either because

they have disabilities or because they have particular skills

with some set of devices. These users will need the help of

expert ICON users or programmers but still, they could

adapt the programs to their abilities.

Expressive Power

ICON is a full language, although it doesn’t allow run-time

created modules or recursion. Considering the experience

in the field of reactive synchronous languages, we have

chosen to stay away from these run-time modifications. We

also believe this is not a serious issue because users are not

expected to build large dynamic configurations. As for the

readability of dataflow systems, we haven’t conducted

experiments but they seem quite readable for the

configurations we experienced. For larger configurations,

the textual form of the ICON language could be better for

some users, although compound modules and hierarchical

slots enhance the readability by hiding details.

Practicality

ICON is currently in early stages: most of the specification

of the interaction of interactive graphical applications can

be configured outside the application but we haven’t

modified all the Swing components yet to be ICON aware.

However, we have modified the Java Swing architecture to

suit our needs and these modifications are quite small and

not intrusive. We believe modern toolkits could benefit

from this externalization of the interaction in term of

modularity and extensibility. For example, the support of

text input methods is currently implemented at a very low

level in Java Swing and requires a complicated internal

mechanism that could be more simply described using

ICON. The same is true for some aspects of accessibility.

From an application programmer’s point of view,

interaction techniques can be exposed with any level of

granularity and abstraction, providing a smooth transition

path from no ICON support at all to full ICON support and

extensibility.

class Module {
attribute String name;
attribute boolean enabled;
void addInSlot(InSlot s);
void removeInSlot(InSlot s);
List getInSlots();
void addOutSlot(OutSlot v);
void removeOutSlot(OutSlot v);
List getOutSlot();
boolean open(Frame f);
protected boolean doOpen(Frame f);
void close();
protected void doClose();
abstract void changed(Change c);

}

CONCLUSION AND FUTURE DIRECTIONS

We have shown how ICON enables users to configure

applications to available devices as well as to their skills.

Such configurations previously required access to the

source code of the application and were impossible to

improve incrementally.

Configuring an application is important for disabled users,

but also to users with special skills or working on a special

environment (limited space, noisy, etc.) Furthermore, new

devices or interaction modes can be tested and adapted to

existing programs. This is even more important for

combined devices and their interaction techniques. When a

voice recognition software is used in conjunction with a

pressure and tilt sensitive stylus, a large number of

attributes are produced continuously and the best way to

use them together has to be tested by trials and errors.

Currently, this kind of testing can only be done by the

application’s programmers. ICON transfers this effort to

any user who is motivated.

For future directions, we are currently implementing a C++

version of ICON’s library to configure 3D virtual reality

applications that require higher performance than Java can

provide. We are also enriching our collection of supported

input device managers to play with more exotic devices,

including force feedback.

REFERENCES

1. Andrews, M. Accessibility and the Swing Set, Sun

Microsystems Inc., http://java.sun.com, 1999.

2. Avid Inc. Channel Developer’s Kit, Softimage

Inc., 2000, www.softimage.com.

3. Axelson, J. Usb Complete : Everything You Need

to Develop Custom Usb Peripherals. Lakeview

Research, 1999.

4. Berry, G. and Cosserat, L., The synchronous

programming languages Esterel and its

mathematical semantics. in Seminar on

Concurrency, (1984), Springer Verlag, 389–448.

5. Bier, E.A. and Freeman, S., MMM: A User

Interface Architecture for Shared Editors on a

Single Screen. in Proceedings of the ACM

Symposium on User Interface Software and

Technology, (1991), ACM, 79-86.

6. Carbone, M., Ensminger, P., Hawkins, T.,

Leadbeater, S., Lipson, E., O'Donnell, M. and

Rajunas, J. NeatTool Tutorial, 2000,

http://www.pulsar.org/neattools/.

7. Chatty, S., Extending a Graphical Toolkit for

Two-Handed Interaction. in Proceedings of the

ACM Symposium on User Interface Software and

Technology, (1994), 195-204.

8. Ferguson, P. The X11 Input Extension: Reference

Pages. The X Resource, 4 (1), 1992 195--270.

9. Frohlich, B. and Plate, J., The Cubic Mouse: A

New Device for Three-Dimensional Input. in

Proceedings of ACM CHI 2000 Conference on

Human Factors in Computing Systems, (2000),

526-531.

10. Geary, D.M. Graphic Java 2, Volume 2, Swing,

3/e. Prentice Hall PTR, 1999.

11. Halbwachs, N., Caspi, P., Raymond, P. and Pilaud,

D., The synchronous dataflow programming

language Lustre. in Proceedings of the IEEE,

(1991), IEEE, 1305-1320.

12. Hinckley, K. and Sinclair, M., Touch-Sensing

Input Devices. in Proceedings of ACM CHI 99

Conference on Human Factors in Computing

Systems, (1999), 223-230.

13. Honeywell, S. Quake III Arena: Prima's Official

Strategy Guide. Prima Publishing, 1999.

14. Hourcade, J.P. and Bederson, B.B. Architecture

and Implementation of a Java Package for

Multiple Input Devices (MID), Human-Computer

Interaction Laboratory, University of Maryland,

College Park, MD 20742, USA, 1999,

http://www.cs.umd.edu/hcil/mid.

15. Jacob, R.J.K., Deligiannidis, L. and Morrison, S.

A Software Model and Specification Language for

Non-WIMP User Interfaces. ACM Transactions

on Computer-Human Interaction, 6 (1), 1999 1-

46.

16. Kovach, P.J. Inside Direct3d. Microsoft Press,

2000.

17. Krasner, G.E. and Pope, S.T. A cookbook for

using the model-view controller user interface

paradigm in Smalltalk-80. Journal of Object-

Oriented Programming, 1 (3), 1988 26--49.

18. LCS/Telegraphics. The Wintab Developers' Kit,

LCS/Telegraphics,,

http://www.pointing.com/WINTAB.HTM, 1999.

19. Liang, S. The Java Native Interface :

Programmer's Guide and Specification. Addison-

Wesley Publisher, 1999.

20. Microsoft Corporation. Microsoft Active

Accessibility SDK 1.2, Microsoft Corporation,

1999.

21. Myers, B. The Garnet User Interface Development

Environment. in Proceedings of ACM CHI'91

Conference on Human Factors in Computing

Systems, 1991, 486.

22. Myers, B.A. A New Model for Handling Input.

ACM Transactions on Information Systems, 8 (3),

1990 289-320.

23. Myers, B.A., Lie, K.P. and Yang, B.-C., Two-

Handed Input Using a PDA and a Mouse. in

Proceedings of ACM CHI 2000 Conference on

Human Factors in Computing Systems, (2000),

41-48.

24. Nye, A. and O'Reilly, T. X Toolkit Intrinsics

Programming Manual., 4, 1993 567.

25. Sense8 Corp. The World Toolkit Manual, Sense8,

1999.

26. Sun Microsystems Inc. Java Speech API

Programmer's Guide, Sun Microsystems Inc,,

http://java.sun.com/products/java-

media/speech/forDevelopers/jsapi-

guide/index.html, 1998.

