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ABSTRACT 

The paper addresses a problem of the manipulator stiffness 
modeling, which is extremely important for the precise 
manufacturing of contemporary aeronautic materials where the 
machining force causes significant compliance errors in the 
robot end-effector position. The main contributions are in the 
area of the elastostatic parameters identification. Particular 
attention is paid to the practical identifiability of the model 
parameters, which completely differs from the theoretical one 
that relies on the rank of the observation matrix only, without 
taking into account essential differences in the model parameter 
magnitudes and the measurement noise impact. This problem is 
relatively new in robotics and essentially differs from that 
arising in geometrical calibration. To solve the problem, several 
physical and statistical model reduction methods are proposed. 
They are based on the stiffness matrix sparseness taking into 
account the physical properties of the manipulator elements and 
also on the heuristic selection of the practically non-identifiable 
parameters that employs numerical analyses of the parameter 
estimates. The advantages of the developed approach are 
illustrated by an application example that deals with the 
stiffness modeling of an industrial robot used in aerospace 
industry.  
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1. INTRODUCTION 

Application area of industrial robots is continuously 
increasing, they become more and more popular in many 
technological processes, including precise high-speed 
machining. For this process, the robot is subject to essential 

external loadings caused by the machining force that may lead 
to non-negligible end-effector deflections [1]. This feature 
becomes extremely important in the aerospace industry, where 
the accuracy requirements are very high but the materials are 
hard to process. In this case, the manipulator stiffness modeling 
and corresponding error compensation technique are the key 
issues [2-5].  

In the manipulator stiffness modeling, there are three main 
approaches that can be summarized as follows: the Finite 
Element Analysis (FEA), the Matrix Structural Analysis (MSA), 
and the Virtual Joint Method (VJM). The most accurate of them 
is the FEA-based technique [6], which allows presenting 
manipulator components with their true shape and dimension. 
However, this method is usually applied at the final design stage 
because of the high computational expenses [7]. The MSA 
method [8] incorporates the main ideas of the FEA, but operates 
with rather large elements – 3D flexible beams. This obviously 
leads to the reduction of the computational efforts, but does not 
eliminate the disadvantages of FEA. And finally, the VJM 
method [9-13], is based on the extension of the traditional rigid 
model by adding the virtual joints (localized springs), which 
describe the elastic deformations of the links, joints and 
actuators. This technique provides reasonable trade-off between 
the model accuracy and computational complexity, which will 
be further used in this paper. However, evaluation or 
identification of the stiffness model parameters is not a trivial 
problem. 

The main difficulty here is that the straightforward 
application of the VJM method yields very high number of 
parameters that differ in their magnitudes and in their impact on 
the model precision. Moreover, direct application of this 
technique may produce redundant models that are not suitable 
for calibration. In particular, attempts to solve the identification 
problem for the whole set of the elastostatic parameters (258 for 
6 d.o.f. manipulator) leads to the fail of the numerical routines 
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that is caused by singularity of the relevant observation matrix. 
It is worth mentioning that similar problem is also known in 
geometric calibration where the concept of complete-
irreducible-continues model has been introduced and relevant 
algebraic tools for the model reduction have been developed 
[14-16]. However, in elastostatic calibration there is an 
additional difficulty caused by high number of relatively small 
parameters for which the measurement noise impact is very 
essential. As follows from our experience, the identification 
results may violate fundamental physical properties of the 
stiffness matrices, such as positive-definiteness and symmetry, 
and are not acceptable for the compliance error compensation 
(more details are given in Section 3.2 presenting a motivation 
example). For this reason, this paper introduces a new notion of 
practical identifiability and proposes corresponding model 
reduction methods that allow obtaining reliable results in real 
industrial environment. 

To address the above mentioned problem, the remainder of 
the paper is organized as follows. Section 2 presents the 
stiffness modeling background. Section 3 describes the 
calibration procedure and contains the motivation example 
allowing us to define the research problems. In Section 4, the 
developed model reduction methods are presented. Section 5 
contains an application example and illustrates advantages of 
the proposed technique. And finally, Section 6 summarizes the 
main contributions of the paper. 

2. STIFFNESS MODELING BACKGROUND 

Let us consider elastostatic model of a general serial 
manipulator, which consists of a fixed “Base”, a serial chain of 
flexible “Links”, a number of flexible actuated joints “Ac” and 
an “End-effector” (Fig. 1). It is assumed that all links are 
separated by either rotational or translational joints. Such 
architecture can be found most of industrial serial robots.  

...
LinkAc LinkAc

Base End-effector

...

Link

Ac Rigid Link Link

Link

6-d.o.f.

spring
6-d.o.f.

spring

6-d.o.f.

spring
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Flexible links

Actuated joints

W

W

Virtual springs

 
Figure 1 Serial manipulator and its VJM model 

In order to evaluate the stiffness of the considered 
manipulator, let us apply the virtual joint method (VJM), which 

is based on the lump modeling approach [12]. According to this 
approach, the original rigid model should be extended by 
adding virtual joints (localized springs), which describe elastic 
deformations of the links. Besides, virtual springs are included 
in the actuated joints, in order to take into account the stiffness 
of the control loop. Under these assumptions, the kinematic 
chain can be described by the following serial structure:  

(a) a rigid link between the manipulator base and the first 
actuated joint described by the constant homogenous 
transformation matrix BaseT ; 

(b) several flexible actuated joints described by the 
homogeneous matrix function Joint Ac( )i i iq T , which 
depends on the actuated joint variable iq  and the virtual 
joint variable Ac

i  that takes into account the joint 
compliance;  

(c) a set of rigid links, which are described by the constant 
homogenous transformation matrices Link

iT ; 

(d) a set of  6-d.o.f. virtual joints that take into account the link 
flexibility and are described by the homogeneous matrix 
function VJM Link( )iT  which depends on the virtual joint 
variables Link x y z φx φy φz( , , , , , )i i i i i i i       corresponding 
to the translation/rotation deflections in/around the axis x, 
y, z; 

(e) a rigid link from the last joint to the end-effector, described 
by the constant homogenous matrix transformation ToolT .  

In the frame of these notations, the final expression 
defining the end-effector location subject to variations of all 
joint coordinates may be presented as the product of the 
following homogenous matrices and matrix functions 

  Base Joint Ac Link VJM Link Tool
1

( )
n

i i i i i

i

q 


        T T T T T T  (1) 

where n  is the number of links/joints, and the components 

Base Joint Link VJM Tool, , (.), , (.),i iT T T T T  may be factorized with 
respect to the terms including the joint variables (in order to 
simplify computing of the derivatives). For further convenience, 
after extraction from the homogeneous matrix T  rotation and 
translation components [17], the kinematic model can be 
rewritten in more conventional form   

 ( , )t g q  (2) 

where (.)g  denotes relevant vector function, the vector 
T( , )t p φ  defines the end-effector position T( , , )x y zp  and 

orientation T
x y z( , , )  φ , the vector T

1 2 n( , , ..., )q q qq  
aggregates all actuated coordinates, the vector 

T
2 nθ1( , , ..., )    collects all virtual joint coordinates, and 

θn  is the number of the virtual joints. It should be noted that 
here the values of coordinates q  are completely defined by the 
robot controller, while the values of the virtual joint coordinates 
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 depend on the external loading applied to the robot end-
effector. 

To take into account manipulator stiffness properties, let us 
assume that variations in the virtual joint variables  generate 
the force/torque applied to the corresponding links that are 
evaluated by the following linear equation (it can be treated as a 
generalised Hooke's law for the manipulator) θ θ τ K , 
where T

θ θ,1 θ,2 θ,nθ( , , ..., )  τ  is the aggregated vector of the 
virtual joint reactions, θ θ,1 θ,2 θ θ,n( , , ..., )diagK K K K  is the 
aggregated virtual spring stiffness matrix, and θ,iK  is the spring 
stiffness matrix of the corresponding link/joint. Further, let us 
apply the principle of virtual work assuming that the joints are 
given small, arbitrary virtual displacements Δ  in the 
equilibrium neighborhood. Then, the virtual work of the 
external wrench W  applied to the end-effector along the 
corresponding displacement θΔ Δ t J  is equal to 

T
θ )·( ΔW J , where θ ( , ) /f  J q  is the kinematic 

Jacobians with respect to the virtual variables , which may be 
computed from (2) analytically or semi-analytically, using the 
factorization technique proposed in [12]. On the other hand, for 
the internal forces θτ , the virtual work includes only one 
component T

θ Δ τ . Therefore, since in the static equilibrium 
the total virtual work is equal to zero for any virtual 
displacement, the equilibrium conditions may be written as  

 T
θ θ J W τ  (3) 

This gives additional expressions describing the force/torque 
propagation from the joints to the end-effector that should be 
considered simultaneously with the geometric equation (2). 

Combining further the virtual joint reaction equation 

θ θ τ K , the equilibrium condition (3) and the linearized 
geometric model θΔ Δ t J , it is possible to write statics 
equations  

 T
θ θ θ; 0    J t W J K  (4) 

describing elastostatic properties of the considered manipulator. 
In these equations, the end-effector displacement Δt  is treated 
as the model input and the external wrench W  is the model 
output, which corresponds to the representation of the 
manipulator stiffness matrix in the following form 

  C·ΔW K t  (5) 

where CK  is the desired Cartesian stiffness matrix of the 
considered manipulator for given robot configuration q . To 
find this matrix, equations (4) may be presented in the matrix 
form  

 θ
T

θθ

             

  

0 J W t
0J K

 (6) 

and solved for W . This transformation  yields the following 
force-deflection relation 1 T

θ θ θ Δ   J K J W t  that allows us to 
express the manipulator Cartesian stiffness matrix as 

   11 T
C θ θ θ

  K J K J  (7) 

This expression allows us to compute the Cartesian stiffness 
matrix assuming that the matrix 1 2

θ θ θ( , , ...)diagK K K , 
defining elastostatic properties of the manipulator links/joins is 
given. However, in practice, the matrices  (i)

θ , 1,2,...i K  are 
unknown and should be identified from relevant experiments.  
However, there are a number of numerical problems that may 
arise here that are in the focus of the remaining parts of the 
paper. 

3. PROBLEM OF ELASTOSTATIC PARAMETERS 

IDENTIFICATION  

3.1 Methodology of elastostatic identification 

To estimate the desired matrices describing elasticity of the 
manipulator components (i.e., compliances of the virtual springs 
presented in Fig. 1), the elastostatic model (5) should be 
rewritten as 

  (i) (i) (i)T
θ θ θ1

·
n

i  J k Jt W  (8) 

where t  is the vector of the end-effector displacements under 
the loading W , the matrices (i) (i) 1

θ θ( )k K  denote the link/joint 
compliances that should be identified via calibration, and the 
matrices (i)

θJ  are corresponding sub-Jacobians obtained by the 
fractioning of the aggregated Jacobian (1) (2)

θ θ θ[ , ,...]
T TT J J J . For 

the identification purposes, this expression should be 
transformed into more convenient form, where all desired 
parameters (elements of the matrices (i)θ , 1,2,...i k ) are 
collected in a single vector (1) (1) ( )

θ11 θ12 θ66( , ,... )nk k kπ . It yields the 
following linear equation   

 )·( , A q Wt π  (9) 

where (.)A  is so-called observation matrix that defines the 
mapping between the unknown compliances π  and the end-
effector displacements t  under the loading W  for the 
manipulator configuration q . 

Taking into account that the calibration experiments are 
carried out for several manipulator configurations defined by 
the actuated joint coordinates , 1,j j mq , the system of basic 
equations for the identification can be presented in the 
following form 

 ( ; 1,·, )j jj j j j m  t π εA q W  (10) 
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where jε  denotes the vector of measurement errors. Further, 
using these notations and assigning proper weights for each 
equation, the identification can be reduced to the following 
optimization problem 

 
1
( ) ( ) min

m T T
j j j jj

F      π
A π t A tπ  (11) 

where  is the matrix of weighting coefficients that normalizes 
the measurement data. This minimization problem yields the 
following solution  

    1

1 1
ˆ ·

m mT T T T
j j j jj j   


   π A A A t . (12) 

If the measurement noise is Gaussian (as it is assumed in 
conventional calibration techniques), expression (12) provides 
us with a unbiased estimates for which  ˆE π π . 
Corresponding covariance matrix evaluating the dispersion of 
the parameter estimate π̂  from one identification session to 
another can be computed as follows  

 
 

1
2

1 1

1

1

ˆcov( )
m mT T T T T

j j j jj j

m T T
j jj

   

 


 




 


 


π A A A Σ A

A A
 (13) 

where the matrix  2 ( · )TEΣ ε ε  describes the statistical 
properties of the measurement errors. 

It can be proved [18] that the best results in terms of the 
identification accuracy are achieved if 1 Σ . It leads to the 
following covariance matrix of the manipulator compliance 
parameters  

   1
1

1
ˆcov( )

m T T
j jj  

 
 π A Σ Σ A  (14) 

Such assignment of the weighing coefficients  also allows us 
to avoid the problem of different units in the objective function 
(11), which arises in straightforward application of the leas-
square technique to the robot parameters identification if the 
measurement system provides both position and orientation 
data. It should be noted that this particularity is usually omitted 
in conventional robot calibration. Another way to improve the 
identification accuracy is related to the proper selection of 
manipulator measurement configurations  , 1,j j mq  that is 
also known as the calibration experiment planning [19], which 
directly influences on the observation matrices ( , )j jjA q W  
and on the covariance matrix (14). 

It is clear that expression (12) gives reliable estimates of 
the parameters π  if and only if the matrix 1

1

m T T
j jj   

 A Σ Σ A  
is invertible. It leads to the problem of the parameter 
identifiability that have been studied by a number of authors for 
the problem of geometrical calibration [15-16]. Relevant 
techniques are based on the information matrix rank analysis 

(via either SVD- or QR-decomposition). However, in real 
industrial practice where the measurement not is non-negligible, 
the identifiable parameters are not equivalent in terms of 
accuracy (both absolute and relative) and expression (12) can 
give rather surprising results for some of them. This motivates 
revision of the above mentioned notion (parameter 
identifiability) and its extension taking into account the 
identification accuracy defined by the covariance matrix (14). 
In the following sub-sections, the notion of practical 
identifiability is introduced and a motivation example is 
presented, which illustrates potential problems that may arises 
in the manipulator elastostatic calibrations if conventional 
techniques are applied.  

3.2 Motivation example 

To illustrate the problems that may arise in identification of 
the manipulator elastostatic parameters, let us consider a 
numerical example that deals with a single link of the 
Orthoglide manipulator (Fig. 2). Its compliance matrix has been 
obtained in [12] and is equal to  

8

5 4

5 4

3

4 3

4 3

4.50·10 0 0 0 0 0
0 8.01·10 0 0 0 3.98·10
0 0 3.64·10 0 1.71·10 0
0 0 0 3.76·10 0 0
0 0 1.71·10 0 1.09·10 0
0 3.98·10 0 0 0 2.65·10


 

 


 
 

          

k  (15) 

where the values are expressed in SI units (N, m, rad).  

(a) Principal link of Orthoglide manipulator (b) Architecture of Orthoglide manipulator

W

 
Figure 2 Manipulator link considered in the motivation 

example  

Let us simulate the calibration process assuming that the 
matrix (15) should be estimated by means of the identification 
algorithm described above, where the input data are generated 
by means of virtual experiments. In the frame of these 
experiments, the link is assumed to be fixed on one side and the 
external loading jW  is applied on the another side. For each 
loading, the corresponding deflection vector is computed in 
accordance with expression ·j j j t Wk ε , where jε  is the 
measurement noise. In accordance with the physical properties 
of the examined link and to conserve the linearity of the force-
deflection relation, the loading magnitude has been limited by 
10N  for the forces and 10Nm for the torques. The 
measurement noise magnitude has been defined as  25p m   
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for the positional components and as 0.25mrad   for the  
orientation components (these values correspond to the 
precision of the best industrial measurement systems that 
currently are available on the market). These virtual 
experiments has been carried out six times, in order to obtain 
sufficient number of equations for the identification of 36 
desired parameters ijk .  

For these virtual experiments, the properties of the 
observation matrix used in the identification expression are 
quite good: rank is equal to 36 and the condition number is 
1.00. Nevertheless, the identification are rather "surprising": the 
obtained compliance matrix essentially differs from the original 
one and is  

 

8 7 7 8 7

7 7 7 7

7 7 7 7

7 6 7

8.71·10 1.86·10 1.59·10 7.72·10 1.15·10
4.53·10 2.07·10 1.98·10 1.14·10
2.29·10 3.76·10 2.25·10 1.13·10
1.42·10 1.83·10 7.05·1

ˆ
0

-8

-5 -4

-5 -4

-3.05·10
8.05·10 3.98·10

3.65·10 -1.71·10
3

    
   
   
  

 


 k 6 6

6 6 6 6

6 6 7 8

1.11·10 4.12·10
3.27·10 1.23·10 3.99·10 5.07·10
2.61·10 1.06·10 2.81·10 4.58·10

-3

-4 -3

-4 -3

.76·10
-1.68·10 1.09·10

3.97·10 2.65·10

 
   
   

           

 (16) 

Detailed comparison analysis of the original matrix k  and its 
estimate k̂  allows us to make the following conclusions 
concerning the harmful impact of the measurement noise on the 
identification of the elastostatic parameters in real industrial 
environment: 

(i) the obtained compliance matrix k̂  may lose the properties 
of positive-definiteness, which completely contradicts to 
the common physical sense that is based on the energy-
based definition of 1k  (in particular, in the above 
example, 11

ˆ 0k  is not acceptable);   

(ii) the obtained matrix ̂k  may be non-symmetric, which also 
contradicts to the physical sense (for instance, 53k̂  and 

35k̂ , which corresponds to non-zero elements of k , are 
not equal and differ by 2%);  

(iii)  for some small elements, the identification accuracy may 
be extremely low (for example the element 11k̂ , which is 

3~10  times less than 22k̂  and 33k̂  has been identified 
completely wrongly); 

(iv)  in the obtained matrix ̂k , the number of non-zero elements 
is redundant compared to the original matrix k ; moreover, 
it is difficult to distinguish small elements îjk  from so-
called zero elements, which correspond to exact zeros in 
k  induced by the physical properties of the examined link 
(for instance, the element 21k̂  that should be equal to zero 
by definition is the same order of magnitude as 11k̂ , which 
should be small but strictly positive); 

(v)  for the remaining elements, whose magnitude is high 
enough, the identification errors are quite acceptable 
(from 0.01% to 1.67%), but they should be further reduced 
by increasing number of the experiments.  

It should be noted that for essentially lower measurement noise 
(with p  and   that are 100 times smaller) the above 
mentioned problems do not exist, however such measurement 
precision is not achievable in industrial environment at present. 

Hence, as follows from this motivation example, the whole 
set of 36 elastostatic parameters  ijk  composing the 6 6  
matrix k  cannot be estimated using commercially available 
measurement systems. The main reason for this difficulty is 
that, for some elements, corresponding deflections under the 
admissible loading are comparable with the measurement noise. 
To detect these indistinct elements, a simple indicator can be 
applied showing parameter-to-noise ratio (which is similar to 
signal-to-noise ratio in communication): 

 

0.35 0.74 0.64 0.31 0.46
1.81 0.83 0.79 0.46

ˆ| | 0.91 1.50 0.89 0.45
0.06 0.73 0.28 0.44 1.64
1.31 0.49 1.60 2.02
1.04 0.42 0.11 0.02

ij

ij

0.12
322 1593

146 684
1504

-67.3 436
159 1060

k



               

 (17) 

where ij  is a corresponding element of the relevant covariance 
matrix. As follows from these numerical values, 27 of 36 
desired parameters can be hardly estimated from the 
experimental data with realistic measurement noise. Only for 9 
parameters 22k , 26k , 33k , 35k , 44k , 53k , 55k , 62k , 66k  the ratio is 
high enough (more than 50), so they can be treated as 
"practically identifiable". It should be stressed that similar 
indicators computed using exact values of ijk  (which are 
unknown in practice) give similar result  

 

0.18 0 0 0 0 0
0 320 0 0 0 1592

| | 0 0 146 0 684 0
0 0 0 1504 0 0
0 0 68.4 0 436 0
0 159 0 0 0 1060

ij

ij

k



               

 (18) 

allowing us to detect the same set of small or zero parameters 
whose identifiability is questionable. On the other side, the 
impact of these parameters on the elastostatic deflections is so 
small that they can be reasonably excluded from the desired 
stiffness model. These results confirm importance of the above 
pointed problems, which below are considered in details. 

3.3 Research problem: practical identifiability 

Summarizing theoretical background and simulation results 
presented in previous sub-sections, it is possible to make the 
following conclusions: 

(i)  complete elastostatic model of robotic manipulator 
includes huge number of parameters (258 for conventional 
6 d.o.f. serial robot), whose simultaneous identification in 
presence of measurement noise is rather difficult or even 
impossible; 



 6 Copyright © 2013 by ASME 

(ii) before applying the least-square identification technique , 
the manipulator elastostatic model should be reduced and 
redundant parameters should be eliminated, in order to 
ensure invertibility of the information matrix; this step can 
be performed using techniques similar to those developed 
for the geometrical calibration; 

(iii) among the remaining non-redundant parameters, there are 
a number of non-significant ones, whose absolute values 
are relatively small, the identification accuracy is quite low 
and the impact on the compliance of the of the entire 
manipulator is almost negligible; these parameters can be 
treated as "practically non-identifiable" and should be also 
eliminated from the model, but relevant techniques are not 
available yet;   

(iv) while developing relevant techniques allowing detection of 
"practically identifiable" parameters, it is prudent to take 
into account some specific properties of the compliance 
matrices induced by the elasticity physics such as the 
compliance matrix symmetry, presence of strictly zero 
elements (matrix sparseness), positive-definiteness, etc. 

Hence, to obtain reliable stiffness model that is suitable for 
calibration, contains only significant and practically identifiable 
parameters while describing manipulator elastostatic properties 
sufficiently good, it is necessary to develop dedicated model 
reduction techniques and relevant rules allowing us to minimize 
number of parameters to be estimated and to reconstruct the 
original VJM-based model from these data taking into account 
mathematical relations between the model parameters caused by 
their physical sense. 

4. PRACTICAL IDENTIFIABILITY IN MANIPULATOR 

CALIBRATION   

4.1 Basic assumptions and terminology  

Let us assume that the vector of desired elastostatic 
parameters π  should be identified from the set of the linear 
equations (10) whose least square solution is defined by the 
expression (12), where the observation matrices ( , )j jjA q W  
are computed for certain set of measurement configurations  jq  and loadings jW . Depending on the matrix set  jA , 
corresponding system of linear equations can be solved for kπ  
either uniquely or may have infinite number of solutions. In 
general, if the information matrix is rank-deficient, a general 
solution of the system (10) can be presented in the following 
form 

  ˆ · ·     π A IB A A λ . (19) 

where the superscript "+" denotes the Moore–Penrose pseudo 
inverse, 

1

m T T
j jj   A A A , 

1

m T T
j jj    B A t  and 

λ  is an arbitrary vector of the same size as π . Using the later 

expression, all desired parameters contained in the vector π  
can be divided into the following groups [16]: 

G1:  Identifiable parameters that can be obtained from (19) in 
unique way and are independent from the arbitrary vector 
λ ;   

G2:  Non-identifiable parameters that cannot be computed 
uniquely from (19) and can take on any value without 
influence on the right-hand side of the equation (9), they 
correspond to the zero columns of the observation matrix 

A ;  

G3:  Semi-identifiable parameters that are also cannot be 
computed uniquely but have influence on the right-hand 
side of the equation (9); they are united in subgroups 
where a single one can be treated as identifiable if the 
remaining ones are fixed.  

To obtain typical examples of the parameters belonging to the 
groups G1, G2 and G3, it is possible to use the ideas similar to 
geometrical calibration. For instance, the elastostatic parameters 
of the actuated joints and adjacent links are redundant in their 
totality and belong to the group G3. Besides, if the loading 
direction cannot be altered, a number of parameters belong to 
the group G2 and cannot be identified from the corresponding 
experimental data.   

In this paper, in contrast to previous works, this 
classification is enhanced taking into account practical issues 
related to the limited precision of the measurement system. The 
main idea is to compare the absolute value of the estimated 
parameter with the range of possible fluctuations of the estimate 
caused by the measurement noise. For computational reasons, it 
is convenient to introduce a numerical indicator similar to the 
signal-to-noise ratio in communication, which is defined as 
follows 

 ˆ , 1,2,.../i i i i    (20) 

where i  is the standard deviation of the parameter estimate  
ˆ i  extracted from the diagonal of the covariance matrix (14). It 

is clear that i  can be treated as the inverse of the relative 
accuracy, which allows us to avoid the problem of division by 
zero. In the following sections this indicator will be referred to 
as parameter-to-noise ratio.  

Using the above defined indicator, the set of parameters 
belonging to the group G1 (theoretically identifiable) can be 
further divided into three subgroups: 

G1+: Practically identifiable parameters, for which the 
accuracy indicator is high: 0i   ; this subgroup 
describes principal elastostatic properties of the 
manipulator and should be certainly included in the 
reduced model used in the identification routines; 
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G1-:  Practically non-identifiable parameters, for which the 
accuracy indicator is low: 0i   ; this subgroup contains 
non-essential parameters that can be assigned to zero in the 
VJM-model without essential impact on its precision (in 
practice, the majority of these parameters are nominally 
equal to zero due to the physical nature of the compliance 
matrices);  

G1~: Practically semi-identifiable parameters, for which the 
accuracy indicator is intermediate: 0 0i     ; the 
parameters belonging to this subgroup are practically non-
identifiable for the current experimental setup but, 
hypothetically, can be converted into practically 
identifiable ones by increasing the experiment number, 
improving the measurement precision of by modification 
of the measurement configurations.   

An open question however is related to justified assigning of the 
upper and lower bounds 0   and 0  . From practical point of 
view that is adopted below, it is reasonable to use 0 5    and 

0 2   , which is in a good agreement with the quantiles of the 
normal distribution. However, the user may modify these values 
in accordance with the specificity of the problem of interest. 

The above presented definitions allow us to revise the 
concept of "suitable-for-calibration" model that in previous 
works included all parameters of the group G1 (this model is 
also referred to as the "complete and irreducible" one). In this 
work, this model is limited to include only parameters of the 
subgroup G1+ (practically identifiable) that can be estimated 
with reasonable accuracy and provide good approximation of 
the original complete model. The following subsections address 
different aspects of model reduction allowing us to obtain the 
desired model suitable for the elastostatic calibration.  

It should be noted that, in spite of the fact that the main 
focus of the paper is on the elastostatic modelling, similar ideas 
can be also successfully applied in manipulator geometric 
calibration. 

4.2 Model reduction: physical approach 

Straightforward approach to the manipulator stiffness 
modeling leads to the exhaustive but redundant number of 
parameters to be identified. For instance, each links is described 
by a 6 6  matrix that includes 36 parameters that are treated as 
independent ones. However, as follows from physics, number of 
the pure physical and independent parameters is essentially 
lower (for a trivial prismatic beam, for example, there are only 
five physical parameters: three describing the geometry and two 
describing the material properties). Hence, there are strong 
relations between these 36 parameters but this fact is usually 
ignored in elastostatic calibration. Besides, due to fundamental 
properties of conservative system, the desired compliance 
matrices should be strictly symmetrical and positive-definite. In 
addition, for typical manipulator links, the compliance matrices 

are sparsed due to the shape symmetry with respect to some 
axis, but this property is also not taken into account in 
identification of the elastostatic parameters.   

To take advantages of the compliance matrix properties and 
to increase the identification accuracy, two simple methods can 
be applied that allows us to reduce the number of parameters to 
be computed in the identification procedure (12). They can be 
treated as the physics-based model reduction techniques and 
formalized in the following way.  

M1:Symmetrisation. For all compliance matrices k  to be 
identified, replace the pairs of symmetrical parameters  ,ij jik k  by a single one ,ijk i j .    

For each link, this reduction procedure is equivalent to re-
definition of the model parameters vector in the following way  

 · π M π  (21) 

where the binary matrix M  of size 36 21  describes the 
mapping from the original to reduced parameter space. It can be 
proved that corresponding basic expression for the 
identification (9) can be rewritten as  

 )·( ,   A q Wt π  (22) 

where (.) (.)· A A M  denotes the reduced observation 
matrix. The later can be also computed as 

 θ 1 θ θ 2 θ θ 21 θ( , ) , , ...[ ]T T T A q W J ω J W J ω J W J ω J W  (23) 

where 1 2, ,...ω ω  denote the binary matrices of size 6 6  for 
which non-zero elements (i.e. equal to 1) are located in the 
following way: for the parameter l  corresponding to the 
matrix elements ,ijk i j , the non-zero elements are 

1ij ji   . It is clear that this idea allows us to reduce the 
number of links compliance parameters from 36 to 21 (and from  
258 to 153 for the entire 6 d.o.f. manipulator).  

M2:Sparcing. For all compliance matrices k  to be 
identified, eliminate from the set of unknowns the 
parameters ijk  corresponding to zeros in the stiffness 
matrix template 0k  derived analytically for the 
manipulator link with similar shape.  

To derive the desired template matrix it is convenient to use any 
realistic link-shape approximation. For example using the trivial 
beam [20], the desired template can be presented as  

 0

* 0 0 0 0 0
0 * 0 0 0 *
0 0 * 0 * 0
0 0 0 * 0 0
0 0 * 0 * 0
0 * 0 0 0 *

         

k  (24) 
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where the symbol "*" denotes non-zero elements. It allows 
further reducing the number of the unknown parameters from 
21 to 8, taking into account only essential ones from physical 
point of view. It can be also proved that the template (24) is 
valid for any link whose geometrical shape is symmetrical with 
respect to three orthogonal axes. But it is necessary to be 
careful if this property is not kept strictly.  

Summarizing these methods, it should be mentioned that 
the above presented methods essentially reduce the number of 
parameters to be identified (by the factor 4.5) but they do not 
violate such basic properties as the mode completeness, i.e. the 
ability to describe any deflection caused by the external 
loading. However, the reduced model may still have some 
redundancy in the frame of entire manipulator, where the virtual 
springs of adjacent joints/actuators cause similar impact on the 
end-effector deflections under the loading. To eliminate these 
parameters (belonging to the group G3), relevant algebraic 
technique developed in our previous work [16] can be applied. 

To illustrate efficiency of the proposed methods, the 
identification problem considered in section 3.2 have been 
solved for reduced set of the compliance parameters. It yielded 
the following  result  

 

8

5 4

5 4

3

4 3

4 3

3.05·10 0 0 0 0 0
0 8.05·10 0 0 0 3.98·10
0 0 3.64·10 0 1.71·10 0
0 0 0 3.76·10 0 0
0 0 1.71·10 0 1.09·10 0
0 3.98·10 0 0 0 2.6510

ˆ

·


 

 


 
 

          

k  (25) 

which is essentially better compared to (16). In particular, the 
identification errors for the most of the desired parameters are 
less than 0.4%, i.e. 4 times lower. The only exception is the 
small element 11k̂  that is still negative and contradicts to the 
physical sense. This motivates further efforts to obtain reliable 
model suitable for elastostatic calibration in industrial 
environment.  

4.3 Model reduction: statistical approach 

As follows from relevant study and above presented 
example, rigorous reduction methods based on the physical and 
mathematical properties of the compliance matrix are rather 
limited if the measurement noise is non- negligible. This gives 
us reasons to develop some heuristic rules that take into account 
the measurement noise impact on the identification accuracy. It 
is clear that extremely low accuracy is not acceptable, but often 
corresponding parameters are so small that their influence on 
the end-effector deflections is almost negligible. This supports 
an idea for heuristic reduction of small model parameters but 
leaving an open problem of their further reconstruction in the 
VJM-model using some empirical or semi-empirical relations 
induced by mathematical relations between the stiffness matrix 
elements. 

To take into account the relative accuracy of the parameter 
estimates, it is convenient to use a simple indicator showing 
parameter-to-noise ratio (20) introduced in sib-section 4.1. It is 
evident that it should be applied only to those parameters that 
belong to the group G1 (theoretically identifiable). Using this 
index, a heuristic model reduction technique allowing us to 
distinguish the practically identifiable parameters from the 
hardly-identifiable ones can be formalized as follows:  

M3:Neglecting.  

Step 1:  Using complete but non-redundant model derived 
after application of physical and algebraic model 
reduction techniques, compute estimates of the 
desired parameters ̂ π  and their covariance 
matrix  ˆcov π  by means of equations (12) and 
(14); 

Step 2:  Using the parameters estimates ˆ π  and the 
diagonal elements of the covariance matrix  ˆcov π , compute  the parameter-to-noise ratios 

i  in accordance with expression (20); 

Step 3.  For all compliance matrices k  to be identified, 
eliminate from the set of unknowns the 
parameters ijk  for which parameter-to-noise 
ratios ij  is lower the user defined threshold: 

0ij   .  

This method allows us to eliminate from the model the 
parameters whose identification accuracy is comparable with 
the noise impact and, strictly speaking, these values can not be 
considered as reliable estimates of ijk .  

As follows from our experience, it a very powerful method 
with two useful features: (i) elimination of small (but 
theoretically non-zero) parameters, and (ii) detection of 
elements corresponding to zeros in the matrix template (see 
method M2), if the latter has been defined rather carefully. 
These conclusions are clearly confirmed by the numerical 
example presented in section 3.2 (see (17) and (18)). In this 
example, it is worth to pay attention to the element 11k̂  that is 
really small for the majority of manipulator links (because the 
link length is always essentially higher compared to the cross-
section dimensions). Elimination of this parameter is really 
negligible for the manipulator Cartesian stiffness matrix (7) that 
integrates impact of all compliance elements. Nevertheless, 
after identification, the parameter 11k̂  can be reconstructed 
approximately using non-zero elements of the compliance 
matrix and some relations between îjk  induced by physics. The 
last problem is currently under study but is not in the scope of 
this paper. 

In conclusion of this section, it should be noted that the 
proposed methods M1-M3 allow us essentially reducing the 
number of model parameters while retaining the model 
accuracy. For example, for 6 d.o.f. manipulator, the number of 
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parameters is reduced from 258 to 42 allowing us to obtain an 
adequate stiffness model in real industrial environment. 

5. APPLICATION EXAMPLE  

The  developed model reduction techniques have been 
applied to the elastostatic identification of the industrial robot 
KUKA KR-270 (Figure 3), which is used for processing of 
aircraft components made from contemporary high performance 
materials. The application area requires high positional 
precision while the technological process generates significant 
end-effector deflections, which can be compensated on the 
control level via the elastostatic modeling. It should be noted 
that for this robot, the elastostatic model must also take into 
account the impact of the gravity compensator, which creates 
the closed loop between the first and second links and is 
described in the stiffness model by two additional parameters 
(the spring stiffness and preloading). The geometrical 
parameters of the gravity compensator have been identified 
from dedicated experiments.  

F
Measurement 

tool

Test mass

 
Figure 3 Experimental setup for the identification of the 

elastostatic parameters 

x

z

460 mm

75.5 mm

Joint #6

Tool

F
Markers

 
Figure 4 End-effector used for elastostatic calibration 

experiments  

For the elastostatic calibration, two different experiment 
setups have been used. The first of them is based on the 
application of the gravity force 2.5 kN to the special 
measurement tool, which contains three reference points 
(Figure 4). Relevant deflections have been measured by the 
laser-tracer Leica (absolute accuracy 10μm). For the second 
setup, the deflections have been generated by applying 
horizontal loadings 3.5 kN. To find the measurement 

configurations that ensure the best identification accuracy, the 
design of experiments technique has been applied, which is 
based on the dedicated industry-oriented performance measure 
proposed in our previous work [16]. These optimal 
configurations have been obtained taking into account physical 
constraints that are related to the joint limits and the work-cell 
obstacles.  

Table 1 Principal elastostatic parameters of KR-270 

Parameter  Value Accuracy 

kc, [rad·μm/N] 0.144 ±0.031 21.5% 
s0, [mm] 458 ±27  5.9% 
k2, [rad·μm/N] 0.302 ± .004  1.3% 
k3, [rad·μm/N] 0.406 ±0.008  2.0% 
k4, [rad·μm/N] 3.002 ±0.115  3.8% 
k5, [rad·μm/N] 3.303 ±0.162  4.9% 
k6, [rad·μm/N] 2.365 ±0.095  4.0% 

For the considered manipulator, the complete elastostatic 
model includes 260 parameters (with 2 additional parameters 
for the gravity compensator). To obtain the suitable for 
calibration model, the original set of parameters has been 
sequentially reduced by applied physical, algebraic and 
statistical methods presented in Section 4. This yielded the 
simplified model with 18 parameters that can be identified in 
practice with the desired accuracy (the most essential of them 
corresponding to the joint actuators are presented in Table 1). 
Relevant model has been further used for the compliance error 
compensation for the robotic based milling of a aircraft parts, 
where essential improvement of the precision has been 
achieved. For this application, the reduced elastostatic model 
allowed us to compensate more than 95% of elastostatic 
deflections and to ensure positional accuracy about 0.1 mm 
(that is comparable with the robot repeatability 0.06 mm).  

6. CONCLUSIONS 

The paper deals with the problem of the manipulator 
stiffness modeling, which is extremely important for the 
robotic-based machining of contemporary aeronautic materials 
where high position accuracy is required while performing 
prescribed manufacturing task. The main attention is paid to the 
elastostatic parameters identification and model reduction, 
where the notion of practical identifiability is introduced that 
relies on the essential differences in the model parameter 
magnitudes and the measurement noise impact.  

In contrast to previous works, the manipulator stiffness 
properties are described by the sophisticated model, which 
takes into account the flexibilities of all mechanical elements 
such as links, actuated joints, mechanical transmissions, etc.. In 
the frame of this model, the virtual joint method (VJM) is used, 
which operates with 6×6 stiffness matrices for each compliant 
link and scalar coefficients for the joints/transmissions. This 
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yields extremely high number of the model elastostatic 
parameters to be identified, that for a conventional 6 d.o.f. 
manipulator reaches 258. Even by eliminating dependent ones 
does not allow us to reduce this number substantially; for this 
manipulator the stiffness model includes 153 independent 
parameters  that, theoretically, may be identified. However, the 
parameter magnitudes differ significantly (~1000 times), so 
straightforward application of conventional identification 
technique does not give reliable results (for some parameters 
the estimation errors are greater than 100%  that also may 
violate fundamental physical properties of the stiffness matrices, 
such as positive-definiteness and symmetry). On the other hand, 
some of the desired parameters are so small that their influence 
on the manipulator accuracy is negligible. This leads the 
problem of further reduction of the stiffness model that aims at 
eliminating some small parameters. To distinguish these small 
parameters from essential ones, the notion of practical 
identifiability is introduced. 

To solve the problem, physical and statistical model 
reduction methods are developed. They take into account 
mathematical relations between the elements of the compliance 
matrices and parameter magnitude with respect to the 
measurement noise impact. The advantages of the developed 
approach are illustrated by an application example that deals 
with the stiffness modeling of industrial robot used in aerospace 
industry. In future, the problem of the complete model 
reconstruction from the obtained set of practically identifiable 
parameters will be in the focus of our attention. 
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