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Observability and controllability for linear neutral type systems

Rabah Rabah and Grigory Sklyar

Abstract— For a large class of linear neutral type systems
which include distributed delays we give the duality relation
between exact controllability and exact observability. The
characterization of exact observability is given.

I. INTRODUCTION

Our purpose is to study the problem of exact observ-
ability of a large class of linear neutral type system. The
cases of approximate and spectral controllability and the
corresponding dual notions of observability were widely
investigated at the end of the last century (see books by
[1] and [2] and references therein). The duality between
these notions is not so simple. The main reason is that
the dual or adjoint system is not obtained directly by
simple transposition. It is necessary to consider the duality
using some hereditary product proposed first for retarded
systems and later for neutral type systems (see [3], [4], [5]
and [2] for example). An important tool in this context is
the structural operator. It enables some explicit expression
for duality between approximate controllability, spectral
controllability and approximate observability. Moreover,
there are several interesting results concerning these no-
tions of observability and controllability and about duality.

The cases of exact controllability and exact observability
for neutral type systems are less developed. The infinite
dimensional setting has been developed essentially for
exact controllability and often for neutral type systems
without distributed delays. In [6], [7] and [8] an approach
is described based on the reconstruction of a part of the
state for the case of a neutral type system with discrete de-
lays. A duality condition with null controllability is given.
The time of controllability (or of possible reconstruction
of a part of the state) is estimated “sufficiently large”.

The present paper is concerned with exact observability
which is related to the notion of exact controllability
developed in [9]. The semigroup approach used there is
based on the model introduced in [10]. In the infinite
dimensional setting described in [9], exact controllability
means reachability of the state space operator domain
because reachability of all the state space is not possible
by finite dimensional control. Hence, the dual notion of
observability is also adapted. The approach using the
structural operator is not used. Considering the adjoint
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systems in the infinite dimensional framework, we con-
struct a transposed neutral type system corresponding to
this adjoint system. This relation between the semigroup
and the neutral type system is different from that of the
model given in [10].

These notions are important because they imply ex-
ponential stabilizability or exponential convergences for
possible estimators.

The approach developed in [9] uses the theory of
moments problem and allows the minimal time of exact
controllability to be determinated. We specify here how
duality may be used and then we give not only the
conditions for exact observability but also the minimal
time of observability.

We consider the following neutral type system

ż(t ) = A−1 ż(t −1)+
∫0

−1
[A2(θ)ż(t +θ)+ A3(θ)z(t +θ)]dθ (1)

where A−1 is a constant n×n-matrix, and A2, A3 are n×n-
matrices whose elements belong to L2(−1,0).

If we introduce the linear operator L defined by

L f =

∫0

−1
A2(θ) f ′(θ)+ A3(θ) f (θ)dθ (2)

then the system may be written concisely as

ż(t ) = A−1 ż(t −1)+Lzt , zt (θ) = z(t +θ).

This system may be represented, following the approach
developed in [10], by an operator model in Hilbert space
given by the equation

ẋ =A x, x(t ) =

(
v(t )
zt (·)

)

, (3)

where A is the infinitesimal generator of a C0-semigroup
given in the product space

M2 = M2(−1,0;Rn)
def
= R

n
×L2(−1,0;Rn)

and defined by

A x(t ) =A

(
v(t )
zt (·)

)

=

(
Lzt (·)

dzt (θ)/dθ

)

, (4)

with the domain D(A ) ⊂ M2 given by
{(

v

ϕ(·)

)

: ϕ(·) ∈ H 1, v =ϕ(0)− A−1ϕ(−1)

}

, (5)

where H 1 = H 1([−1,0];Rn).



The output of the system. We consider the finite dimen-
sional observation

y(t ) =C x(t ) (6)

where C is a linear operator and y(t ) ∈ R
p is a finite

dimensional output. There are several ways to design the
output operator C [11], [2], [6]. One of our goal in this
paper is to investigate how to design a minimal output
operator like

C x(t ) =C z(t ) or C x(t ) =C z(t −1), (7)

where C is a p × n matrix. More general output, for
example with several and/or distributed delays are not
considered in this paper. We want to use some result on
exact controllability in order to analyze, by duality, the
exact observability property in the infinite dimensional
setting like, for example, in [12].

The operator C defined in (7) is linear but not bounded
in M2. However, in both cases it is admissible in the
following sense:

∫T

0
‖C S(t )x0‖

2
Rn dt ≤ κ2

‖x0‖
2
M 2 , ∀x0 ∈D(A ),

because it is bounded on D(A ). We recall that if x0 ∈

D(A ) then S(t )x0 ∈ D(A ), t ≥ 0 (see for example [13]).
In fact, C is admissible in the resolvent norm: ‖x0‖−1 =
∥
∥(λI −A )−1x0

∥
∥= ‖R(λ,A )x0‖ , λ ∈ ρ(A ). This is a conse-

quence of the fact that C is a closed operator and takes
value in a finite dimensional space (see [12, Definition
4.3.1] and comments on this Definition).

Definition 1.1: Let K be the output operator

K : M2 −→ L2(0,T ;Rp ), x0 7−→K x0 =C S(t )x0.

The system (1) is said to be observable (or approximately
observable) if kerK = {0} and exactly observable if

∫T

0
‖C S(t )x0‖

2
Rp dt ≥ δ2 ‖x0‖

2 , (8)

for some constant δ.

This is the classic definition. In the case of a neutral
type system with a finite dimensional output (7) the exact
observability in this sense is not possible. It may be
possible if we consider another topology for the initial
states x0.
Unlike approximate observability, which does not depend
on the topology, exact observability depends essentially
on the topology in the space. We can show that, the
given neutral type system is not exactly observable if we
consider x0 ∈ D(A ), with the norm of the graph and
no longer in the topology of M2. Moreover, in our case
the relation (8) must be changed by taking a weaker
norm for x0, namely the resolvent norm ‖R(λ,A )x0‖

and considering the extension of the operator K to the
completion of the space with this norm.

Exact observability can be investigated directly, but an-
other way is to use the duality between exact observability
and exact controllability. In [9] the conditions of exact

controllability were given for the controlled system (33).
In order to use the duality between observability and
controllability, we need to compute the adjoint operator
K

∗ in the duality with respect to the pivot space M2 in
the embedding

X1 ⊂ X = M2 ⊂ X−1, (9)

where X1 = D(A ) with the graph norm noted ‖x‖1 and
X−1 is the completion of the space M2 with respect to the
resolvent norm ‖x‖−1 = ‖(λI−A )−1x‖. The duality relation
is

〈K x0,u(·)〉L2(0,T ;Rp ) =
〈

x0,K ∗u(·)
〉

X1,X d
−1

, (10)

where X d
−1 is constructed as X−1 with A

∗ instead of A

(see [12] for example). Our purpose is to compute the
adjoint operator

K
∗ : L2(0,T ;Rp ) → X d

−1.

The abstract formulation is well known. Exact controlla-
bility is dual with exact observability in the corresponding
spaces with the corresponding topologies. It is expected
that the operator K

∗ corresponds to a control operator
for some adjoint system.

We then need to calculate the adjoint state operator A
∗

and the corresponding adjoint system in the same class:
the class of neutral type systems. We shall see that the
situation is not so simple.

This paper is organized as follows. First we give the
duality relation in Section 2. Section 3 is concerned with
the calculation of the adjoint system of neutral type .
Then we return to the duality relation with the explicit
expression of the adjoint system after formulation of exact
controllability results. As the adjoint neutral type system
has a slghtly different structure, we give an explicit relation
between the new neutral type system and the original one.
After that we can give the expression of duality between
exact controllability and exact observability.

II. THE ADJOINT OPERATOR A
∗

We now give the expression of the adjoint operator for
A obtained by [14]. Of special interest is the characteri-
zation of the eigenvectors of A

∗ to be used in the next
sections.

Theorem 2.1: The adjoint operator A
∗ is given by

A
∗

(
w

ψ(·)

)

=

(

(A∗
2 (0)w +ψ(0)

−
d[ψ(θ)+A∗

2 (θ)w]
dθ + A∗

3 (θ)w

)

, (11)

with the domain D(A ∗):

{(

w,ψ(·)
)

: ψ(θ)+ A∗
2 (θ)w ∈ H 1,

A∗
−1

(

A∗
2 (0)w +ψ(0)

)

=ψ(−1)+ A∗
2 (−1)w

}

. (12)

The eigenvectors of A
∗ are given by

(
w

E∗(λ,θ)w

)

, w ∈ Ker∆∗(λ) (13)



where E∗(λ,θ) and ∆
∗(λ) are the matrices

E∗(λ,θ) =λe−λθ− A∗
2 (θ)+

∫θ
0 eλ(s−θ)

[

A∗
3 (s)+λA∗

2 (s)
]

ds,

∆
∗(λ) =λI −λe−λA∗

−1 −
∫0
−1 eλs

[

A∗
3 (s)+λA∗

2 (s)
]

ds.

The eigenvalues are the roots of the equation det∆∗(λ) = 0.

III. THE ADJOINT SYSTEM

In this section we give the expression of the adjoint
system corresponding to the adjoint operator A

∗ as the
operator A corresponds to the system (1).

Theorem 3.1: Let x be a solution of the abstract equation

ẋ =A
∗x, x(t ) =

(
w(t )
ψt (θ)

)

. (14)

Then the function w(t ) is the solution of the neutral type

equation

ẇ(t +1) = A∗
−1ẇ(t )+

∫0

−1

[

A∗
2 (τ)ẇ(t +1+τ)+ A∗

3 (τ)w(t +1+τ)
]

dτ. (15)

We want to find the corresponding neutral type equation
in R

n . Equation (14) may be written as

∂

∂t

(
w(t )
ψt (θ))

)

=

(

A∗
2 (0)w(t )+ψt (0)

−
∂[ψt (θ)+A∗

2 (θ)w(t )]
∂θ + A∗

3 (θ)w(t )

)

Let us denote by r (θ) = A∗
2 (θ)w +ψ(θ) and

r (t ,θ) = A∗
2 (θ)w(t )+ψt (θ) = A∗

2 (θ)w(t )+ψt (θ). (16)

Then A
∗ may be rewritten as

A
∗

(
w

r (θ)− A∗
2 (θ)w

)

=

(
r (0)

−
dr (θ)

dθ + A∗
3 (θ)w

)

, (17)

and the system ẋ =A
∗x as

∂

∂t

(
w(t )

r (t ,θ)− A∗
2 (θ)w(t )

)

=

(
r (t ,0)

−
∂r (t ,θ)
∂θ + A∗

3 (θ)w(t )

)

. (18)

The second line of this equation gives

∂

∂t
r (t ,θ)+

∂

∂θ
r (t ,θ) = A∗

2 (θ)ẇ(t )+ A∗
3 (θ)w(t ). (19)

The general solution of this partial differential equation is

r (t ,θ) = f (t −θ)+
∫θ

0

[

A∗
2 (τ)ẇ(t −θ+τ)+ A∗

3 (τ)w(t −θ+τ)
]

dτ, (20)

where f (t−θ) is the solution of the homogenous equation
obtained from (19):

∂

∂t
r (t ,θ)+

∂

∂θ
r (t ,θ) = 0.

and the second term is a particular solution of (19).
The first line of the equation (18) gives

ẇ(t ) = r (t ,0). (21)

From (20) (obtained from the second line), putting θ = 0,
we get with (21)

ẇ(t ) = r (t ,0) = f (t ). (22)

Then (20) and (22) allow r (t ,θ) to be written as follows:

r (t ,θ) = ẇ(t −θ)+
∫θ

0

[

A∗
2 (τ)ẇ(t −θ+τ)+ A∗

3 (τ)w(t −θ+τ)
]

dτ. (23)

From the definition of the domain D(A ∗) we obtain
A∗
−1r (0) = r (−1), or

A∗
−1r (0)− r (−1) = 0.

For the function r (t ,θ), this condition reads

r (t ,−1) = A∗
−1r (t ,0) = A∗

−1ẇ(t ) (24)

and by (23) we have
r (t ,−1) = ẇ(t +1)−

∫0

−1

[

A∗
2 (τ)ẇ(t +1+τ)+ A∗

3 (τ)w(t +1+τ)
]

dτ. (25)

Finally, from (24) and (25), we obtain the dual equation

ẇ(t +1) = A∗
−1ẇ(t )+

∫0

−1

[

A∗
2 (τ)ẇ(t +1+τ)+ A∗

3 (τ)w(t +1+τ)
]

dτ. (26)

On the other hand the solution of equation (18) is

eA
∗t x0 =

(
w(t )
ψt (θ)

)

=

(
w(t )

r (t ,θ)− A∗
2 (θ)w(t )

)

, (27)

where w(t ) is the solution of equation (26). If x0 ∈ X then
it is a mild solution.

This result may also be formulated in the following way.
Theorem 3.2: Let x be a solution of the abstract equation

ẋ = Ã x, x(t ) =

(
w(t )
ψt (θ)

)

,

where the operator Ã is defined by

Ã

(
w

ψ(·)

)

=

(
A2(0)y +ψ(0)

−
d[ψ(θ)+A2(θ)y]

dθ + A3(θ)w

)

,

with the domain

D(Ã ) =
{(

w,ψ(·)
)

: ψ(θ)+ A2(θ)w ∈ H 1,

(A−1 A2(0)− A2(−1)) w =ψ(−1)− A−1ψ(0)
}

.

Then the function w(t ) is the solution of the neutral type

equation

ẇ(t +1) = A−1ẇ(t )+
∫0

−1
[A2(τ)ẇ(t +1+τ)+ A3(τ)w(t +1+τ)]dτ. (28)

Let us now specify the relation between the solutions of
neutral type equations (28) and (1). Let us put

(
w(t )
ψt (θ)

)

= eÃ t x̃0 = eÃ t

(
w(0)
ψ0(θ)

)

,

and
(

v(t )
zt (θ)

)

=

(
w(t +1)− A−1w(t )

w(t +1+θ)

)

= eA t

(
v(0)
z0(θ)

)

= eA tξ0,



where z0(θ) = w(t + 1) and v(0) = z0(0)− A−1z0(−1). Our
purpose is to give the explicit relation between the initial
conditions x̃0 and ξ0:

x̃0 =

(
w(0)
ψ0(θ)

)

, ξ0 =

(
v(0)
z0(θ)

)

.

The formal relation between these vectors is

x̃0 =

(
w(0)
ψ0(θ)

)

) = Fξ0 = F

(
w(1)− A−1w(0)

w(θ+1)

)

.

Let us calculate the explicit expression for the linear
operator F . From (23) and (16) we obtain

r (0,θ) =ψ0(θ)+ A2(θ)w(0) =

ẇ(−θ)+
∫θ

0 [A2(τ)ẇ(τ−θ)+ A3(τ)w(τ−θ)]dτ,
(29)

which can be written as

r (0,θ) = ẇ(−θ)+
∫θ

0
[A2(θ− s)ẇ(−s)+ A3(θ− s)w(−s)]ds.

Putting w(−s) =
∫s

0 ẇ(−σ)dσ+w(0), we get

r (0,θ)−
∫θ

0
A3(θ− s)ds ·w(0) = ẇ(−θ)+

∫θ

0

[

A2(θ− s)ẇ(−s)+ A3(θ− s)
∫s

0
ẇ(−σ)dσ

]

ds. (30)

This may be represented by the expression

r (0,θ)−
∫θ

0
A3(θ− s)ds ·w(0) = (I +V )ẇ(−s), (31)

where V is the Volterra operator defined by

V µ(·) =
∫θ

0

[

A2(θ− s)µ(s)+ A3(θ− s)
∫s

0
µ(σ)dσ

]

ds.

The operator V is a compact linear operator from
L2(−1,0;Rn) to L2(−1,0;Rn) with a spectrum σ(V ) = {0}.
This implies that the operator I +V is bounded invertible
on L2(−1,0;Rn).

Let us now represent the operator F as a composition
of operators according to the following commutative dia-
gram

(
v(0)
z0(θ)

)

F

��

P //

(
w(0)

ẇ(−θ)

)

Q

��
(

w(0)
ψ0(θ)

)

R
oo

(
w(0)

(I +V )ẇ(−s)

)

where, as explained above,

(
v(0)
z0(θ)

)

=

(
w(1)− A−1w(0)

w(θ+1)

)

and

(I +V )ẇ(−s) = r (0,θ)+
∫−θ

0
A3(θ+ s)ds ·w(0).

The operators P : X1 → M2 and R : M2 → M2 are bounded
invertible. Moreover, as I +V : L2(−1,0;Rn) → L2(−1,0;Rn)
is bounded invertible, then Q : M2 → M2 is also bounded
invertible.

We can summarize these considerations in the following
theorem.

Theorem 3.3: The operator F representing the relation

between initial conditions x̃0 and ξ0 corresponding to the

neutral type systems (1) and (28) is linear bounded and

bounded invertible from X1 to M2.

We also need the following property of the bounded
operator F−1.

Proposition 3.4: For λ 6=σ(Ã ), the operator

F−a
= F−1(λI − Ã )

can be extended to a bounded (and bounded invertible)

operator from M2 to M2.

Proof: We need to prove that

‖F−1(λI − Ã )x̃0‖ ≤C‖x̃0‖, x̃0 ∈D(Ã ),C > 0, (32)

where ‖·‖ is the initial norm in M2. Let L0 and D0 be the
subspaces

L0 = {(0,ψ(·) : ψ(·) ∈ L2(−1,0;Rn)}, D0 = L0 ∩D(Ã ).

It is clear that D0 is of finite co-dimension n, and this
implies that it is enough to prove the relation (32) for
x̃0 ∈D0. Let x̃0 = (0,ψ0(·) ∈D0. The action of the operator
F−a = F−1(λI − Ã ) may be decomposed according to the
following diagram

(
0

ψ0(·)

)
(λI−Ã )
−→

(
ψ0(0)

λψ0(·)− ψ̇0(·)

)
R−1

−→ R−1
(

ψ0(0)
λψ0(·)− ψ̇0(·)

)

↓F−a
↓Q−1

(
w(1)− A−1ψ0(0)

w(θ+1)

)

P−1
oo

(
ψ0(0)
ẇ(−θ)

)

where

R−1
(

ψ0(0)
λψ0(·)− ψ̇0(·)

)

=





ψ0(0)

λψ0(·)− ψ̇0(·)+
−θ∫

0
A3(θ+ s)dsψ0(0)





and the function w(·) is determinated from the equation
(obtained from (29))

λψ0(θ)− ψ̇0(θ)+ A2(θ)ψ0(0) =

ẇ(−θ)+
∫θ

0
[A2(τ)ẇ(τ−θ)+ A3(τ)w(τ−θ)]dτ

with the initial condition w(0) =ψ0(0). Integrating the last
equation from 0 to −1−θ and taking in account the initial
condition, we obtain

−ψ(−1−θ)−λ

∫−1−θ

0
ψ(τ)dτ+

∫−1−θ

0
A2(τ)dτ ·ψ0(0) =

−w(1+θ)+
∫−1−θ

0

(∫τ

0
A2(s)ẇ(s −τ)+ A3(s)w(s −τ)ds

)

dτ.



After a transformation in the double integration, and with
the initial condition, we get

ψ(−1−θ)+λ

∫−1−θ

0
ψ(τ)dτ=

∫−1−θ

0

(

A2(s)ẇ(1+θ+τ)−
∫τ

0
A3(s)w(s −τ)ds

)

dτ,

and this can be written as

(I +V1)ψ0(−1−θ) = (I +V2)w(1+θ), θ ∈ [−1,0],

where V1 and V2 are Volterra operators from L2(−1,0;Rn

to L2(−1,0;Rn . Both operators have spectra concentrated
at {0}. Then

w(1+θ) = (I +V2)−1(I +V1)ψ0(−1−θ) =W ψ0(−1−θ),

where W is a bounded invertible operator. Putting θ =−1
in the relation between ψ0 and w we get ψ0(−1) = w(1).
This enables the final expression for the operator F−a =

F−1(λI − Ã ) on the set D0 to be obtained:

F−a

(
0

ψ0(θ)

)

=

(
ψ0(−1)− A−1ψ0(0)

W ψ0(−1−θ)

)

=

(
0

W ψ0(−1−θ)

)

,

because, by the definition of D0 = L0 ∩D(Ã ) we have

ψ0(−1)− A−1ψ0(0) = 0.

This means that the operator F−1(λI − Ã ) is continuous
with continuous inverse from L0 to L0 (in the norm of M2).
Hence, F−1(λI − Ã ) may be extended as a bi-continuous
operator on all M2 because

F−1(λI − Ã )D(Ã ) =D(A ).

The proof of the proposition is complete.
A direct consequence of this proposition is the following
corollary.

Corollary 3.5: For all x ∈D(Ã ), for λ 6=σ(A ), we have

c‖x‖ ≤ ‖(λI − Ã )−1F x‖ ≤C‖x‖.

IV. THE CONTROL SYSTEM AND DUALITY

Consider the controlled neutral type system

ż(t ) = A−1 ż(t −1)+Lzt +Bu(t ), (33)

where u(t ) ∈ L2(0,T ;Rm) is a m-dimensional control
vector-function. This system may be represented by an
operator model in Hilbert space given by the equation

ẋ =A x +Bu(t ), x(t ) =

(
v(t )
zt (·)

)

, (34)

where Bu = (Bu,0) is linear and bounded from R to M2.
We can note that B is not bounded from M2 to X1 (M2

with the norm of the graph of A ) because Bu = (Bu,0) ∉
D(A ) if Bu 6= 0.

A. Exact controllability

Let us denote by RT ⊂ M2 the reachable subspace of
the system (34):

RT =

{

RT u(·) =
∫T

0
eA t

Bu(t )dt : u(t ) ∈ L2(0,T ;Rm)

}

,

where RT : L2 7→ M2 is a linear bounded operator.
As was pointed out in [15] and [9], RT ⊂ D(A ) for

all T > 0. This implies that exact controllability may be
defined as follows.

Definition 4.1: The system (34) is exactly controllable if

RT =D(A ).

The abstract condition of exact controllability is (see [16]
for example)

∫T

0
‖B

∗eA
∗t x‖2

Rm dt ≥ δ2
‖x‖2

X d
−1

, ∀x ∈D(A ∗), (35)

which means that the operator RT : L2 7→ X1 is onto. Here
the space X d

−1 is the completion of the space X = M2 with
respect to the norm

‖x‖X d
−1

= ‖(λI −A
∗)−1x‖, λ ∉σ(A ∗).

For the system (33) the condition of exact controllability
is given by the following theorem (see [9]).

Theorem 4.2: The system (33) is exactly controllable at

time T if and only if, for all λ ∈ C, the following two

conditions are verified

i) There is no vector z 6= 0 such that B∗z = 0 and

∆
∗(λ)z = 0,

ii) There is no eigenvector z of the matrix A∗
−1 such that

B∗z = 0.

The time of controllability is T > n1(A−1,B).

The integer n1(A−1,B) is the controllability index of the
pair (A−1,B) (see [17]). If the delay is h, then the critical
time is n1h.

Let us now consider the dual notion of observability for
the adjoint system. The condition (39) is equivalent to the
exact observability of the observable system

{
ẋ = A

∗x,
y = B

∗x
(36)

and the corresponding neutral type system is the system
(15). Then the conditions (i)–(ii) of Theorem 4.2 are
necessary and sufficient for the exact controllability of
the adjoint system (36). But what is the corresponding
property for the associate neutral type system (26)? This
will be shown in the following paragraph.

B. Duality

Consider the transposed controlled neutral type system

ż(t ) = A∗
−1 ż(t −1)+L∗zt +C∗u(t ), (37)

where L∗ f =
∫0
−1 A∗

2 (θ) f ′(θ) + A∗
3 (θ) f (θ)dθ. Let A

† be

the generator of the semigroup eA
†t generated by this

equation (37). We cannot consider A
∗ for this system



because this operator does not correspond directly to this
system as the generator of the semigroup of solutions. The
domain D(A †) of the operator A

† is given by
{(

v

z(·)

)

: z ∈ H 1([−1,0];Cn), v = z(0)− A∗
−1z(−1)

}

.

The spectrum of A
† is σ(A †) = {λ : ∆∗(λ) = 0} = σ(A ∗).

Let X †
1 be D(A †) with the norm

‖x‖
X †

1
= ‖(λI −A

†)x‖, λ ∉σ(A †),

which is equivalent to the graph norm. Consider now the
reachability operator for this system

R†
T

u(t ) =
∫T

0
eA

†t

(
C∗

0

)

u(t )dt .

From the properties of the operator RT , we can deduce
that R†

T
is linear, bounded from L2(0,T ;R) to X †

1 . The exact
controllabilty for the system (37) can be formulated as

R
†
T
= ImR†

T
= X †

1 .

The conditions of exact controllability for this system (37)
may be obtained directly from Theorem 4.2.

Let us now consider the corresponding space X †
−1 of

linear functionals on X †
1 as a the completion of the space

X = M2 with respect to the norm

‖x‖
X †
−1

= ‖(λI −A
†)−1x‖, λ ∉σ(A †).

We then have the embedding

X †
1 ⊂ X = M2 ⊂ X †

−1. (38)

Then, for x ∈ X †
1 and y ∈ X †

−1, the functional acts as

〈

x, y
〉

X †
1 ,X †d

−1
=

〈

(λI −A
†)−1x, (λI −A

†∗)−1 y
〉

X
,

where A
†∗ is the adjoint of the operator A

† in M2, and
the space X †d

−1 is constructed as X †d
−1 with A

†∗ instead of
A

† (see [12] for example).
Let us note that the operator A

†∗ is in fact the operator
Ã defined in Section III (see Theorem 3.2 and later). We
shall use the properties obtained for this operator.

Let us now consider the adjoint R†∗
T

of R†
T

with respect
to the duality induced by X †

1 and X †d
−1 with the pivot space

X = M2. Let x0 ∈ X , then
〈

R†
T

u(·), x0

〉

X1,X d
−1

=

〈

R†
T

u(·), x0

〉

X

=

〈∫T

0
eA

†t

(
C∗

0

)

u(t )dt , x0

〉

X

=

∫T

0

〈(
C∗

0

)

u(t ),eA
†∗t x0

〉

X

dt .

Suppose now that x0 =

(
w(0)
ψ0(θ)

)

∈D(A †∗).

Then, as a consequence of the results in Section III,
namely from (27) but for the operator A

†∗ = Ã , we obtain

eA
†∗t x0 =

(
w(t )
ψt (θ)

)

=

(
w(t )

r (t ,θ− A2(θ)w(t )

)

, t ≥ 0.

Hence,
〈

R†
T

u(·), x0

〉

X
=

∫T
0 〈u(t ),C w(t )〉Rp dt

=

〈

u(·),R†∗
T

x0

〉

L2
.

On the other hand, we can write x0 = Fξ0 (cf. Proposi-
tion 3.4), where

ξ0 =

(
v(0)
z0(θ)

)

=

(
z0(0)− A−1z0(−1)

z0(θ)

)

=

(
w(1)− A−1w(0)

w(θ+1)

)

,

and then

eA tξO =

(
w(t +1)− A−1w(t )

w(t +1+θ)

)

.

Let K be the output operator introduced in Definition 1.1.
Then

〈u(·),K ξ0〉L2
=

〈

u(·),C eA tξ0

〉

L2
=

{ ∫T
0 〈u(t ),C w(t )〉Rp dt if C x(t ) =C z(t −1)

∫T
0 〈u(t ),C w(t +1)〉Rp dt if C x(t ) =C z(t )

,

which implies for all x0 ∈ X :

K F−1x0 =

{

R
†∗
T

x0 if C x(t ) =C z(t −1),

eA
†∗

R
†∗
T

x0 if C x(t ) =C z(t ).

We can now formulate our main result on duality.
Theorem 4.3: 1. The system (1) with the output

y(t ) =C x(t ) =C z(t −1)

is exactly observable in the interval [0,T ], i.e.

‖K x0‖
2
=

∫T

0

∥
∥
∥C eA t x0

∥
∥
∥

2
≥ δ2

‖x0‖
2

if and only if the adjoint system (37) is exactly controllable

a time T , i.e.

RT = RT (L2(0,T ;Rp ) = X †
1 =D(A †).

2. If det A−1 6= 0, assertion 1 of the theorem is verified for

the output

y(t ) =C x(t ) =C z(t ),

and for the same time T .

Proof: The condition of exact controllability is (see
[16] for example)

‖R†∗
T

x0‖L2 ≥ δ
∥
∥
∥(λI −A

†∗)−1x0

∥
∥
∥ , ∀x ∈ X . (39)

Let ξ0 = F−1x0 ∈ D(A ), where F : D(A ) → M2 is the
bounded invertible operator defined in Section III. Let us
remember that

R†∗
T

x0 =K F−1x0 =K ξ0.

Then the inequality (39) is equivalent to

‖K ξ0‖L2 ≥ δ
∥
∥
∥(λI −A

†∗)−1Fξ0

∥
∥
∥ , ξ0 ∈D(A ). (40)

Suppose now that the relation (40) is verified for all ξ0 ∈

D(A ), then from Corollary 3.5 we obtain

‖K ξ0‖L2 ≥ δ
∥
∥
∥(λI −A

†∗)−1Fξ0

∥
∥
∥≥ δc

︸︷︷︸

=δ1

‖ξ0‖, ξ0 ∈D(A ).



This inequality can be extended by continuity to ξ0 ∈ M2:

‖K ξ0‖L2 ≥ δ1‖ξ0‖, ∀ξ0 ∈ M2

Conversely, suppose that the preceding relation is verified.
For ξ0 ∈D(A ), and from Corollary 3.5, we get

‖ξ0‖ ≥
1

C

∥
∥
∥
∥

(

λI −A
†∗

)−1
Fξ0

∥
∥
∥
∥ ,

and then

‖K ξ0‖L2 ≥
δ1

C

∥
∥
∥
∥

(

λI −A
†∗

)−1
Fξ0

∥
∥
∥
∥ .

This is the relation (40) with δ= δ1/C . As the relations (39)
and (40) are equivalent, the first assertion of the theorem
is proved.
To prove item 2 of the theorem, it is sufficient to remark
that the condition det A−1 6= 0 is equivalent to the fact that
the operator eA is bounded invertible (eA t is a group),
and then the relations (39) and (40) are equivalent.
From this result and from Theorem 4.2 we can formulate
the condition of exact observability.

Theorem 4.4: 1. The system (1) with the output y =

C z(t −1) is exactly observable over [0,T ] if and only if

i) For all λ ∈C, rank
(
∆
∗(λ) C∗

)

= n,

ii) For all λ ∈C, rank
(
λI − A∗

−1 C∗
)

= n,

iii) T > n1(A∗
−1,C∗), where n1 is the first index of con-

trollability for the par (A∗
−1,C∗).

2. If det A−1 6= 0, then assertion 1 is verified for the output

y(t ) =C z(t ).

V. EXAMPLES

Let us give some simple examples to illustrate our
results.
Example 1. Consider the system

ż(t ) = ż(t −1),

where z(t ) ∈R
n ,n > 1, with two possible outputs

y0(t ) =C0x(t ) = z(t ), y1(t ) =C1x(t ) = z(t −1).

The conditions of observability are verified, and the sys-
tem is exactly observable for the output y0 or y1.
Example 2. Consider the system

ż(t ) = 0,

where z(t ) ∈R
n ,n > 1, with two possible output

y0(t ) =C0x(t ) = z(t ), y0(t ) =C1x(t ) = z(t −1).

The system with the output y1 is exactly observable for
the time T > 1 and not observable for T = 1. The system
with the output y0 is not observable for any time T > 0.

VI. CONCLUSION

Duality between exact controllability and observability
for a wide class of neutral type systems is analyzed by an
infinite dimensional approach. We give an explicit neutral
type system wich corresponds to the abstract adjoint
system.
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