
A two-phase method for the Shift Design and Personnel

Task Scheduling Problem with Equity objective
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Abstract

In this paper, we study the Shift Design and Personnel Task Scheduling
Problem with Equity objective (SDPTSP-E), initially introduced in [11].
This problem consists in designing the shifts of workers and assigning a set
of tasks to quali�ed workers, so as to maximise the equity between workers.
We propose a natural two-phase approach consisting in �rst designing
shifts and then assigning tasks to workers, and we iterate between these
two phases to improve solutions. We compare our experimental results
with existing literature and show that our approach outperforms previous
known results.

1 Introduction

In personnel scheduling problems, the aim is to build employee rosters that
respect legal and organisational constraints. The aim is also often to propose
rosters that �t with employee wishes and/or that are fair between employees in
order to maximise the sta� satisfaction. In this paper, we study the Shift Design
and Personnel Task Scheduling Problem with Equity objective (SDPTSP-E),
initially introduced in [11].This problem consists in designing the shifts of work-
ers and assigning a set of tasks to skilled workers, so as to maximise the equity
between workers. In [11], an integrated approach is proposed. It simultaneously
deals with the assignment of tasks and the design of rosters. In this paper, we
split this problem in two steps: �rst designing shifts and then assigning tasks to
workers; we iterate between these two phases in order to improve our solution.

A state of the art for the SDPTSP-E is presented in [11]. More precisely, pa-
pers related to Nurse Rostering Problem (see [4] for a survey), Tour Scheduling
Problem (see [15] and [1] for a survey), Personnel Task Scheduling Problem (see
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[9]) and Fixed Job Scheduling Problem (FJSP, see [7] and [8] for two surveys)
are analyzed and it is shown that our problem shares characteristics with all
these problems but always di�ers in such a way that it is not possible to use
existing methods. For example, in many personnel scheduling problems (see [5]
for a survey up to 2004 and [3] for 2004-2012), the design of the shifts is an input
for the problem, whereas we have to de�ne the shifts in our problem. Moreover,
the workload is often given as a number of required workers per skill, per time
period, whereas it is given by a set of �xed tasks that cannot be preempted
in our case. The FJSP, which address this problem does not take into account
legal constraints. Moreover, to the best of our knowledge, the objective function
(the equity among workers) we are taking into account has never been studied
in such problems. The closest objective function can be found in [14] for a crew
rostering problem; the authors are considering a weighted sum of three average
relative deviations, one of them being the deviation between the ideal and the
real monthly �ight time raised to the power r (r = 3 in their experiments).

When considering employee scheduling problems, two-phase methods are
very common. The main idea of these methods is to solve two subproblems,
sometimes optimally, although there is no guarantee that the optimal solution
of the overall problem can be found. For instance, in [16], the authors propose
an algorithm using two steps for the nurse rostering problem, where in the �rst
phase the working days are computed while in the second one the type of shift
assigned each day is computed. Likewise, in [6], the authors study the minimum
cost shift scheduling problem with a guaranteed service level, and propose a two-
step heuristic; in the �rst phase, sta�ng requirements are computed whereas
in the second one a minimum cost schedule is found. In [13] the authors pro-
pose a two-stage procedure for the multi-activity and task assignment problem,
consisting of assigning interruptible activities and uninterruptible tasks to given
work shifts so as to match as much as possible for each activity a time-dependent
demand curve.

2 Problem description

The problem we study in this paper is the Shift Design and Personnel Task
Scheduling Problem with Equity objective (SDPTSP-E), which has been intro-
duced in [11]. For the sake of completeness, we recall here the main features of
the problem. A set of tasks, with �xed starting and �nishing times (lying in a
time horizon of one week), has to be performed by a set of workers, while trying
to minimise the inequity among workers. In this problem, a task corresponds
to a �xed interval of work that cannot be preempted and requires exactly one
quali�ed worker. We call shift of a worker the time he/she spends at the o�ce,
i.e. a shift corresponds to a period when the worker is available to perform
tasks. Note that the shifts can be computed in two ways: �rst, the shift of a
worker can be computed a priori, and hence we have to assign to this worker
only tasks lying in his/her shifts. Second, some tasks may be �rst assigned to
a worker, and the shifts are computed relatively to the allocated tasks. In both
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cases, task assignment and shifts have to respect speci�c constraints.

2.1 Constraints

Two di�erent types of constraints have to be respected while designing shifts
and assigning tasks to workers, the organisational and the legal ones.

2.1.1 Organisational constraints

The organisational constraints are the following ones:

• Employees cannot perform tasks which require unmastered skills.

• Employees cannot perform tasks while unavailable.

• Every task must be assigned to one employee.

• The assignment of meetings must be respected.

• Employees must �nish a task before starting another one.

• Tasks starting after 6 a.m. on a given day must not belong to the same
shift as tasks starting before 6 a.m.

This last constraint needs explanations: Tasks starting before 6 a.m. should
be considered as night tasks, meaning that they should be performed during a
night shift, whereas tasks starting after 6 a.m. should be considered as morning
tasks, meaning that they should be performed during a morning shift. The
purpose of this constraint is to avoid shifts starting in the middle of the night
and ending in the middle of the morning, because they are not appreciated by
employees.

2.1.2 Legal constraints

In the following, we introduce the notion of daily working time and duration of
a working day. Note that there is a di�erence between these two terms: If the
shift starts before noon and ends after 2:30 p.m., then a one-hour lunch break
has to be removed from the duration to obtain the working time. For example,
if a shift starts at 11 a.m. and ends at 5 p.m., the corresponding working time
is equal to 5 hours. We also use the notion of working day for an employee:
A day is considered as worked if the employee is working between 6 a.m. and
6 a.m. in the next morning.

Legal constraints are the following ones:

• The daily working time must not exceed 10 hours.

• The weekly working time must not exceed 48 hours.

• The duration of a working day must not exceed 11 hours.

• The duration of a rest period must not be less than 11 hours.
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• The duration of the weekly rest must not be less than 35 hours.

• Series of consecutive working days must not exceed 6 days.

• Employees do not work more than one shift per working day.

• Depending on the starting and ending times of their shifts, nurses must
have a lunch break or not.

This last constraint needs further explanations. In [11] the authors decided
to deal with lunch break, by guaranteeing that an employee who should have a
lunch break does not work during at least one hour in its shift. This correspond
to the industrial way of dealing with lunch break. Note that the break is not
necessarily placed in the time window [12a.m.; 2 : 30p.m.], since it is possible
that an employee has to do a long task that completely overlaps lunch hours.
Hence, if it is the case and if we want that the lunch break lies in this interval,
we are sure that no feasible solution exists. In practice, when such a case occurs,
the employee is �exible and does a break before or after such a task. In order to
deal correctly with the lunch break, we hence decide to bound the sum of the
processing times of tasks assigned to a worker in a given shift by the maximum
between the daily working time and �ve hours (this corresponds to the length
of the longest tasks in our instances). It means that, if a shift is starting at
11 a.m. and ending at 7 p.m., then the sum of tasks' processing times can not
exceed seven hours (we have to keep one hour for the lunch break). If the shift
is starting at 11 a.m. and ending at 3 p.m., then the sum of processing times is
bounded by four hours (no need to keep time for the lunch break, if the length
of the shift is less than �ve hours).

2.2 Equity

Legal and organisational constraints must be satis�ed, but they only ensure the
feasibility of schedules. In order to build good schedules, the workload should be
shared among workers in a fair way. Basically, the idea is just to �nd a solution
where employees have the same amount of work. However, in this paper, we only
deal with �xed tasks, and thus, we only deal with a part of the global workload.
Apart from �xed tasks, employees also have some administrative work to do.
This work is not �xed, may be preempted and is already assigned to employees,
which explains why it is not taken into account in this study. Moreover, some
employees may have more administrative work to do than others, which means
that these employees cannot perform as many �xed tasks as other employees.
Consequently, it is required to distinguish workers that have a lot of administra-
tive work to perform from the others. That is why the decision-maker associates
with each employee a weekly targeted working load, corresponding to the time
each worker should dedicate to the �xed tasks.

The idea of our objective function is to be as close as possible to this value for
each worker. Indeed, if a worker is above his/her targeted working load, then
he/she will have great di�culties to perform all his/her administrative work.
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On the contrary, a worker that is under his/her targeted working load, will have
a lot of free time. Of course, workers prefer to be under their targeted working
load, but we assume that the sum of the processing times of the �xed tasks is
equal to the sum of the targeted working loads. Therefore, if some workers are
under their targeted working load, it means that other workers are above, which
is not fair.

The objective function we consider in this paper is the equity among workers,
that we want to maximise. It is equivalent to minimise the inequity, de�ned as
the di�erence between the highest and the lowest worker's gap value, itself being
the di�erence ∆i between the targeted working load and the real working load
of the worker wi. We hence want to minimise ∆ = maxi ∆i − mini ∆i. A
small di�erence between the highest gap and the smallest gap means that the
workload is well balanced among workers. This objective criterion is illustrated
on Figure 1. In �gure 1a, the di�erence between the targeted and the real
working load is null for the worker w2, but not for w1 and w3, leading to a
strictly positive value of the objective function. On the contrary, on Figure 1b,
the real working load perfectly matches with the targeted working load for each
worker, and we hence have an optimal solution.
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3

∆  < 0
1
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3 1

real working loadtargeted working load
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Obj =

Figure 1: Objective function: equity

2.3 Feasibility

Sometimes, it is not possible to �nd a solution that respects all these constraints.
In practice, this may be handled in two di�erent ways. The decision-maker may
�rst try to �nd agreements with employees in order to design a few longer
days, or a few shorter rests. If such agreements cannot be found, or if the
workload is simply too di�cult to share among the regular workforce, then the
decision-maker hires externals to strenghten the regular workforce. It could be
the case when there exist some activity peaks where a number of simultaneous
workers, bigger than the regular employees, is needed. In this case, the decision-
maker tries to hire as few as possible externals, which requires a deep insight on
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the problem at hand to evaluate the di�erent time windows where additional
workforce is needed on an acceptable timetable for regular workers. Therefore,
in this paper (as in [11]), we propose to relax the constraint which speci�es
that each task has to be assigned to exactly one employee. Our approach, is
consequently able to produce solutions with a partial assignment (i.e. some
tasks are left unassigned). These solutions are useful to the manager because
they provide insights regarding to the need on externals. However, a complete
assignment is always better than a partial one. Likewise, given two di�erent
partial solutions, the one with the smallest number of unassigned tasks is also
always better, because it provides sharper insights on the problem at hand.
More formally, in this paper, the minimisation of the number of unassigned
tasks and the minimisation of the inequity among workers are handled in a
lexicographic order.

2.4 General remarks regarding the design of shifts

One may wonder how realistic it is to work on personnel schedules with a preci-
sion of one minute. Indeed, in the literature, especially in nurse rostering, it is
classical to work with a small set of prede�ned shifts, and try to have a regular
pattern for each worker. It is not possible to work with such a set, because some
tasks can last up to �ve hours, hence leading to a large set of prede�ned shifts
in order to cover the this kind of tasks all over the day. Nevertheless, we try to
adapt this two-phase method with prede�ned shifts (from four to eight 8-hours
and/or 10-hours prede�ned shifts), and the results are not conclusive, since in
the best case we are able to �nd only 60% of the complete solutions we can have
with our approach because there still exist uncoverable tasks or activity peaks.
Even on the extreme case where we prede�ne 24 di�erent patterns (one shift
starts each hour of the day), the way of dealing with tasks assignment is still
not �exible enough (to manage di�erent shift lengthes for example) and leads
to uncompleted assignments that enforce to hire more externals than needed,
which is unacceptable.

Moreover, in our case, the workload is �xed with a precision of one minute
because of medical constraints and it cannot be changed. The decision maker
wants to check precisely the feasibility of schedules, and workers are willing to
respect the imposed timing. Consequently, the assignment of tasks to workers
is handled with a precision of one minute. However, this does not mean that
the design of shifts has to be done with a precision of one minute. Indeed, if we
consider a shift composed of two tasks of one hour, starting respectively at 7h14
and at 13h42, then the worker assigned to this shift may choose to start working
any time before 7h14, and may leave any time after 14h42. The employee may
use this extra working time to work on his/her administrative work. However,
the employee, may also prefer to have a smaller shift (7h14 to 14h42). This
choice is up to the employee, and it is not easy to determine a priori what
kind of extension the employee is going to choose, because it depends on many
criteria (wishes, density of the working day, kind of tasks assigned). Therefore,
the most natural way to deal with shifts is to consider the case without any
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extension. Note also that depending on the end (resp. start) of the previous
(resp. next) working day, extensions may be limited. Therefore, working with
prede�ned and more classic shifts may strongly increase the di�culty of �nding
a complete assignment. Consequently, we choose to work with a precision of
one minute for both the task assignment and the shift design.

3 Two-phase approach

In this section, we precisely describe our two-phase approach. The �rst phase is
dedicated to the building and the assignment of shifts to workers, which gives
a pattern. The second phase is devoted to the corresponding task assignment
problem. We explain the complete approach from bottom to top: We �rst
explain in Section 3.1 how we assign tasks to workers, when the pattern is
given. Sections 3.2 and 3.3 are then dedicated to neighborhoods on patterns
and the initial solution. Finally, in Section 3.4 we describe the overall structure
of our approach.

3.1 Assignment of tasks

In this section, we propose a heuristic for the subproblem in which the pattern
is given, i.e., shifts are already de�ned. We hence have to solve a Fixed Job
Scheduling Problem (FJSP) where the objective function is the equity, as de�ned
in Section 2.2. A very important step in our algorithm consists in choosing
which worker is assigned to a given task. That is why we use the notion of
criticality, that indicates (a priori) the interest of assigning a given task to a
given worker. Several versions of this notion are proposed in Section 3.1.1, while
the assignment heuristic is detailed in Section 3.1.2.

3.1.1 Criticality

We use three types of criticality, according to the time interval we are interested
in:

• The (global) criticality of a worker w as de�ned for the �rst time in [2].
The criticality of a worker is an evaluation of the way a worker will be
required and it is hence high when a worker has skills and availabilities to
do most of the tasks. It is a ratio between the overall amount of work an
employee is able to do and the time he can spend to that work.

• The local criticality c(w, t) of a worker w and a task t: It is de�ned as the
opposite of the number of tasks that w is able to do and that overlap t.

• The local p-criticality cp(w, t) of a worker w and a task t: It is de�ned as
the opposite of the total processing time of tasks that w is able to do and
that overlap t.

These notions play a major role in the assignment algorithm, detailed in the
next section.

7



3.1.2 The algorithm

We detail here the heuristic consisting in assigning �xed tasks when a pattern is
given. We iteratively consider the maximal cliques K ∈ C in the incompatibility
graph. For each clique (i.e., set of maximal overlapping tasks), we try to assign a
worker to each task lying in the clique, by solving a maximum weighted matching
problem with the hungarian algorithm (cf [10]) on a weighted assignment graph
G(K) = (T ∪ W, E), where T and W denotes respectively the set of tasks TK
in clique K and the set of workers WK available and skilled for at least one
of these tasks. There is an edge (t, w) ∈ E if and only if the worker w may
be assigned to the task t. The weight that we put on each edge is a heuristic
indicator of our algorithm that shows the interest of assigning a given task to a
given worker. After extensive computational tests, we decided to keep the four
following choices:

• Method Tar: The remaining targeted working timeWr(wK) of wK, i.e., the
di�erence between the targeted working time and the sum of the processing
times of tasks already assigned to wK.

• Method TarPr: The di�erence betweenWr(wK) and pr(wK), pr(wK) being
the sum of the processing times of all remaining tasks that wK is able to do.
Note that in this measure, we use a combination of minutes and number of
tasks, which is not intuitive. Nevertheless both criteria are in�uent that is
why we did experiments with di�erent weights (from 1 to 20) on the two
data. Since the best result was obtained with equal weights, we decided
to keep unitary weights.

• Method CrTar: The sum of the local criticality c(wK, tK) and Wr(wK).

• Method pCrTar: The sum of the local p-criticality cp(wK, tK) andWr(wK).

In order to obtain strictly positive weights, we add a large positive constant
to each edge. The second parameter of our algorithm is the order in which we
explore the cliques; we tested �ve di�erent methods and decided to keep the
three methods leading to the best results:

• Method First: Choose the �rst clique in the chronological order.

• Method LongTight: Choose the clique containing the longest task. If there
is a tie, choose the one having the smallest di�erence between the number
of workers and the number of tasks. If there still is a tie, choose the �rst
one.

• Method TightLong: Choose the clique for which the di�erence between
the number of workers and the number of tasks is the smallest. If there is
a tie, choose the clique containing the longest task. If there still is a tie,
choose the �rst one.

The combination of these two parameters leads to 12 di�erent settings for
the algorithm. Each setting may be used to �nd a solution to this subproblem.
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This task assignment procedure will be called in each step of the local search
in order to build an assignment for each pattern. The next part is dedicated to
this pattern building.

3.2 Pattern neighborhood

In order to de�ne new patterns from an old one, we use 5 di�erent neighborhoods
de�ned in the following:

• Add: Among the workers having the lowest gap between the targeted
working load and the real working load, pick one and add a shift randomly,
in order to cover at least one task.

• Extend: Among the workers having the lowest gap between the targeted
working load and the real working load, pick one and extend a shift ran-
domly as much as possible in order to respect legal constraints, either at
the beginning or at the end of the shift.

• Remove: Among the workers having the highest gap between the targeted
working load and the real working load, pick one and remove a shift ran-
domly.

• GuidedEquity: Among the workers having the highest gap between the
targeted working load and the real working load, we pick one worker w
and add a shift containing a task done by w to another worker.

• GuidedRealisability: Among the unassigned tasks, pick a task t. Pick a
worker for whom it is possible to move a shift to cover t. If all the tasks
are allocated, among the tasks that are covered the least(i.e., among the
tasks for which the di�erence between the number of available workers
and the number of overlapping tasks is the smallest) we pick one and add
a shift containing this task.

The four �rst neighborhoods aim mainly at improving the equity among
workers, either by increasing the shifts of a worker that does not work enough
(for Add and Extend) or by reducing the amount of work done by a worker doing
too many tasks (for Remove and GuidedEquity). The last neighborhood is more
dedicated to the feasibility of our problem.

After having assigned tasks to workers, it is possible that some tasks remain
unassigned. In such cases we process a local descent that slightly modi�es the
existing pattern. More precisely, for each unassigned task, we try to �nd a
worker for which it is possible either to extend or to add a shift, such that this
worker can be assigned to this task.

The next section is dedicated to the way of building a �rst feasible solution
for the current problem.
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3.3 Initial solution

3.3.1 Computation of an initial pattern

To �nd an initial solution, we �rst start by computing an initial pattern. It
relies on the use of the criticality of a worker : The set of workers is ordered
according to increasing criticality, so that we �rst deal with workers associated
to a low criticality. Then, for a task t ∈ T , we �nd the �rst worker w able to
perform t and we add a shift s to w so that s includes t. Then, we remove from
T all the tasks covered by shift s and for which worker w is skilled. We iterate
while T is not empty. Finally, we try to cover the resource pro�le p, computed
as the number of tasks p(x) at each time instant x. More precisely, for each time
x where the number of workers having a shift is strictly less than the number of
tasks p(x), we add a shift including time x to an available worker, if possible.

Once the initial pattern is computed, we use it to compute an initial assign-
ment, as described in the next section.

3.3.2 Computation of initial solution

Given a pattern, we try to compute an allocation of tasks to workers, as men-
tioned in Section 3.1, for each possible combination of the parameters cc (choice
of clique) and wc (choice of weight). Each method is improved in two steps
(reducing shifts and doing a local descent) that are proposed and discussed in
Algorithm 1 in Section 3.4. The best assignment and its pattern are chosen to
initialise the method. Note that we also keep track of the best method, since
we will use it for several iterations of our two-phase method.

At the end of the search, we then have the best known solution, that has to
be returned.

3.3.3 Post-processing procedure

It appears that, on several cases, it is possible to improve the best solution by a
dedicated procedure that is too time-consuming to be called at each iteration.
This is why we keep this procedure as a post-processing one, introduced in the
following: The post-processing procedure consists in reducing (resp. increasing)
the amount of work of the worker wi having the biggest (resp. lowest) ∆i (dif-
ference between the targeted working load and the real working load).

Insertion method

First, for worker w0 having the biggest ∆i, we pick the longest task t (done
by worker w1) in the set of tasks that w0 is able and available to do, that veri�es
inequalities ∆1 + p(t) ≤ maxi ∆i and ∆0 − p(t) ≥ mini ∆i (in order to avoid an
increase of the objective function) and assign t to w0. This method is illustrated
with Figure 2, where the task 4 is moved from a worker w1 to w0 (the one having
the biggest ∆i).
Removal method
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Figure 2: Post-processing procedure: insertion method: insert a task to the
worker having the biggest ∆i

Second, for the worker w0 having the lowest ∆i, we pick the longest task t
done by worker w0 and for which another worker w1 is available and quali�ed,
such that ∆1 − p(t) ≥ mini ∆i and ∆0 + p(t) ≤ maxi ∆i and assign t to w1.
Figure 3 is illustrating this method.
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Figure 3: Post-processing procedure: removal method: remove a task from the
worker having the lowest ∆i

Swap method

Using the same methodology, we look for a possible swap between a task t0
done by the worker w0 having the biggest (resp. smallest) ∆i and a task t1 done
by another worker w1, i.e., we assign t0 to w1 and t1 to w0, under the condition
that the inequalities guaranteeing an improvement of the objective function are
veri�ed.

Note that each of the four post-processing methods is done iteratively at the
end of the local search, as long as we can improve the objective function.
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3.4 Global structure

The two-phase approach we propose consists in designing shifts in the �rst phase
and assigning tasks to workers in the second one. We iterate between the two
phases in order to improve the current solution. In this section, we describe the
local search procedure that is used in the �rst phase, in order to improve the
design of the pattern. Our local search consists in trying to improve the best
known solution at each iteration, by exploring a part of a large neighborhood.
Algorithm 1 describes the main steps in our local search algorithm, organised
as follow:

Lines 1-2 We compute an initial solution of our problem by �rst de�ning a
pattern and then an assignment of the tasks to workers. This is discussed
in detail in Section 3.3.

Line 6 At each iteration, the �rst phase consists in computing new patterns
by generating a set P of neighbors from the best pattern at the previ-
ous iteration. The di�erent neighborhoods we propose are described in
Section 3.2.

Lines 8-9 For each generated pattern, we compute an assignment of tasks to
workers. This is the second phase of our method, and it is discussed in
Section 3.1. If it is not possible to assign all the tasks, we do a local
descent as explained in Section 3.2.

Lines 10-15 If necessary, we store the new local and global best solutions and
patterns.

Lines 16 In order to diversify patterns, we propose to reduce the length of
the shifts by recomputing the starting and �nishing time of each shift,
according to the set of tasks assigned to each worker. This reduction
makes the operators Add and Extendmore e�ective, which allows to obtain
very di�erent patterns. The frequency of this operation is discussed in
Section 4.1.

Line 17 After several non-improving iterations, the strategy of the second
phase may be replaced by the one that gives the best solution on the
current pattern. The interest of this change is to escape local optima.
The frequency of this change is discussed in Section 4.1.

Line 18 The post-processing procedure is done at the end of the local search,
in order to improve the equity of our best solution. This step is presented
in Section 3.3.3.

4 Experiments

This section is dedicated to computational experiments validating our approach.
All the tests have been done on an Intel Core i3-540 (3.06 GHz & 8G RAM)
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Algorithm 1: Overall design of the proposed approach

Input: An instance instance

Output: A solution bestSolution

1 bestPattern← computeInitialShifts(instance) // cf Section 3.3.1

2 (bestSolution, cc∗,wc∗)← computeInitialSol(bestPattern) // cf

Section 3.3.2

3 localBestPattern← bestPattern

4 localBestSolution← bestSolution

5 while (timeOut not reached) do
6 P ← generateNeighborhood(localBestPattern)

7 for (pattern ∈ P) do
8 solution← computeFJSPSolution(pattern, cc∗,wc∗) // cf

Section 3.1.2

9 localDescent(pattern,solution)

10 if improve(localBestSolution, solution) then
11 localBestSolution← solution

12 localBestPattern← pattern

13 if improve(bestSolution, solution) then
14 bestSolution← solution

15 bestPattern← pattern

16 reduceShifts(localBestPattern, localBestSolution)
17 update(cc∗,wc∗)

18 PostProcessing(bestSolution,bestPattern) // cf Section 3.3.3

19 return bestSolution

with a time limit of �ve minutes. In order to validate our approach, we test it
on a set of 720 instances introduced in [11]. Results are compared based on four
di�erents indicators:

• �Complete�: The number of complete solutions, i.e., for which all tasks are
assigned.

• �Inequity�: The mean inequity value of best solutions (over complete so-
lutions only).

• �Assigned�: The average percentage of assigned tasks (over partial solu-
tions only).

• �Time�: The mean CPU time of best solutions, in seconds.

4.1 Parameters design

Extensive computational tests have been performed to obtain the best setting :
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• The update of the strategy (cc∗, wc∗) in the second phase is triggered only
on some iterations, based on a parameter λ = 5, 10 or 50, corresponding to
the number of non-improving iterations between two updates. The smaller
λ, the more it brings diversi�cation within the second phase.

• The reduction of shifts is determined by a condition that has been tested
for several settings. First, it is triggered only on some iterations, based
on a parameter γ = 5, 10 or 50, corresponding to the number of iterations
between two reductions. Second, it may be triggered only on solutions
that are not complete yet (θ = 1), or it may be triggered on all solutions
(θ = 0).

• The percentage, δ, of eligible workers for operators Add, Extend, Remove
and GuidedEquity has been tested for values 0.2, 0.6 and 1.0. The higher
δ, the more it brings diversi�cation within the �rst phase.

Crossing these di�erent settings leads to run our approach 54∗720 = 38, 880
times. In order to ease the reading, we do not present the results in detail, but
we give general trends on each parameter.

The inequity between workers increases with λ by 20%, meaning that the
approach bene�ts from an increased diversi�cation during the second phase.
Note that λ has no clear impact on the number of complete solutions. Therefore
we �x λ to 5.

When γ increases, if θ is set to 0, then both the inequity and the number of
complete solutions tends to decrease. To obtain more complete solutions, one
should consequently set γ to a small value, but it would worsten the inequity.
On the contrary, if θ is set to 1, then decreasing γ still reduces the inequity
among workers, by a factor 2, but without decreasing the number of complete
solutions. In this way, the approach is able to �nd more complete solutions (best
results obtained with γ = 10), and complete solutions have a smaller inequity.

Finally, setting δ to 1.0 slightly improves the number of complete solutions,
meaning that the design of the neighborhood bene�ts from an increased diver-
si�cation.

On the whole the best con�guration is given by δ = 1, γ = 10, θ = 1 and
λ = 5. This global setting highlights the interest of searching for very di�erent
patterns in the �rst phase. It also highlights the importance of solving their as-
signment problems with very di�erent strategies, which justify the design of 12
di�erent strategies. Moreover, it seems e�ective to decrease patterns' diversi�-
cation once a complete solutions has been found, in order to keep searching with
similar patterns. On the contrary, as long as some tasks remain unassigned, it
seems more relevant to change the current pattern as much as possible.

In each iteration, the design of the neighborhood has also a tremendous im-
portance. That is why we tested di�erent settings, by changing the number
of neighbors generated by each operator ( Add, Extend, Remove, GuidedReal-
isability and GuidedEquity). It turns out that we obtain the best results when
10 neighbors are generated by each of the non-guided neighborhoods (i.e., Add,
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Tightness Indicator
Size

100 200 300 400 All
Complete 53/54 59/60 58/58 59/60 229/232

600
Inequity (min) 28 34 40 47 38
Assigned (%) 97.6 99.0 99.7 99.8 98.3
Time (s) 145 166 191 236 184
Complete 42/47 50/55 53/59 55/59 200/220

800
Inequity (min) 35 35 38 44 38
Assigned (%) 97.8 98.6 99.2 99.7 98.5
Time (s) 155 138 186 202 170
Complete 11/22 22/37 42/56 40/57 115/172

1000
Inequity (min) 72 42 46 51 49
Assigned (%) 96.7 97.7 98.8 99.0 97.7
Time (s) 167 156 173 196 173

Table 1: Two-phase method results(time limit: 5 min)

Extend and Remove) compared to 5 for the guided ones (i.e., GuidedRealisabil-
ity and GuidedEquity). Hence, with the values retained for each parameter, we
generate 40 neighbors in our approach.

4.2 Experimental results

Using the best parameters design, we obtained very good results that are sum-
marised in Table 1.

Overall results are very satisfying since we are able to �nd a complete solution
for 544 out of 624 instances (we prove that 96 instances do not admit a complete
solution by using the ILP approach proposed in [12]), i.e., 87.2%. Note that
there is an important disparity due to tightness: We are able to �nd a complete
solution for all but three instances with tightness 600, and only 66.9% when
tightness is equal to 1000. However, when we are not able to �nd a complete
solution, the percentage of assigned tasks is very important, since it is more
than 96%. For the objective function, the results are also very good, since we
are able to deliver a mean inequity with a value less than one hour, which is
satisfying from an industrial point of view. Equity deteriorates with the number
of tasks and with the tightness of our instances, but it remains under one hour
for 92% of instances. Note that the post-processing procedure used to improve
the equity reduces the inequity by 30%.

4.3 Comparison with [11]

We compare our approach with the one given in [11]. Note that the hardware
and software environment is the same in the two works. Many strategies are
proposed in [11]; we compare our approach with two strategies: the one giving
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the best results regarding to the indicator �Complete� (named MW-l = 180 LN)
and the one giving the best results in terms of inequity (named LW BT). Recall
that there is a small modi�cation of the constraints with respect to [11], and we
hence adapt their model to have a fair comparison. Corresponding results are
given respectively in Tables 2 and 3 in Appendix A.

Our approach clearly outperforms the literature. For instance, if we compare
with the approach MW-l = 180 LN from [11] (which gives the best results in
terms of feasibility), we �nd 15% additional complete solutions, and we are
able to reduce the objective function (i.e., improve the fairness) by about 1000
minutes. Compare to the approach LW BT from [11], dedicated to �nding good
solutions, we are able to �nd 180% additional complete solutions, with a slightly
better inequity (there is a di�erence of 2 minutes between the two approaches).

The mean percentage of assigned tasks is also slightly better, and very close
to 100%. The mean CPU time to obtain the best solution is higher in our
approach, because we are able to improve our initial solution, on average, 72
times per instance. It nevertheless is quite far from the time limit of �ve minutes
that is given by the company. On the whole, our approach performs well both
on the inequity and the number of complete solutions, whatever the number of
tasks or the tightness.

5 Conclusion and future work

In this paper, we studied the SDPTSP-E and proposed a two-phase heuristic,
consisting in �rst designing shifts and then assigning tasks to employees, with
iterations between the two phases in order to obtain solutions with a good
equity. Our experimental results outperform the literature, and hence justify
this two-phase approach, even if heuristic procedures are used in the two phases.

Future work may consist in studying the feasibility of our instances, in order
to assess in a more accurate way the performance of di�erent approaches. Lower
bounds on the inequity is also a research avenue, but this is a very challenging
study, since shifts are not �xed in this problem and hence the combinatoric is
very high.
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Appendix - A - Results provided in [11]

Tightness Indicator
Size

100 200 300 400 All
Complete 53/54 59/60 58/58 59/60 229/232

600
Inequity (min) 736 993 1079 1143 994
Assigned (%) 97.6 99.0 99.7 99.8 98.3
Time (s) 161 196 188 183 182
Complete 32/47 41/55 50/59 53/59 176/220

800
Inequity (min) 732 1019 1127 1218 1057
Assigned (%) 97.9 98.9 99.2 99.7 98.6
Time (s) 154 154 157 154 155
Complete 5/22 10/37 20/56 33/57 68/172

1000
Inequity (min) 759 928 1167 1281 1157
Assigned (%) 95.9 97.6 99.0 99.1 97.6
Time (s) 91 92 97 104 96

Table 2: Best feasibility results obtained in [11] (with strategy MW-l = 180 LN)

Tightness Indicator
Size

100 200 300 400 All
Complete 31/54 41/60 46/58 41/60 159/232

600
Inequity (min) 35 41 38 37 38
Assigned (%) 97.8 99.3 99.6 99.7 98.9
Time (s) 60 36 19 27 35
Complete 5/47 5/55 11/59 12/59 33/220

800
Inequity (min) 38 51 61 64 57
Assigned (%) 96.9 98.1 98.8 99.0 98.2
Time (s) 79 37 33 21 42
Complete 1/22 0/37 0/56 1/57 2/172

1000
Inequity (min) 110 - - 75 93
Assigned (%) 92.2 94.9 97.1 97.6 95.5
Time (s) 73 21 28 26 36

Table 3: Best feasibility results obtained in [11] (with strategy LW BT)
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