
A Declarative Paradigm for Robust Cumulative

Scheduling

Alban Derrien, Thierry Petit, Stéphane Zampelli

To cite this version:

Alban Derrien, Thierry Petit, Stéphane Zampelli. A Declarative Paradigm for Ro-
bust Cumulative Scheduling. O’Sullivan, Barry. CP 2014, Principles and Prac-
tice of Constraint Programming, 20th International Conference, Sep 2014, Lyon,
France. Springer, 8656, pp.298-306, 2014, Lecture Notes in Computer Science (LNCS).
<http://www.springer.com/computer/theoretical+computer+science/book/978-3-319-10427-
0>. <hal-01084256>

HAL Id: hal-01084256

https://hal.archives-ouvertes.fr/hal-01084256

Submitted on 28 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Mines Nantes

https://core.ac.uk/display/50615187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01084256

A Declarative Paradigm for Robust
Cumulative Scheduling

Alban Derrien, Thierry Petit and Stéphane Zampelli

TASC (Mines Nantes, LINA, CNRS, INRIA),
4, Rue Alfred Kastler, FR-44307 Nantes Cedex 3, France.

{alban.derrien, thierry.petit}@mines-nantes.fr, szampelli@gmail.com

Abstract. This paper investigates cumulative scheduling in uncertain environ-
ments, using constraint programming. We present a new declarative characteriza-
tion of robustness, which preserves solution quality. We highlight the significance
of our framework on a crane assignment problem with business constraints.

1 Introduction

Scheduling consists in assigning activities over time. When a solution is executed in a
real-world environment, activities may take longer to execute than expected. In many
practical cases, solutions cannot be re-computed at anytime when disruptions occur. For
instance, in Crane Assignment [17], planners need a fixed schedule which guarantees
that the vessel processing will be completed ahead of schedule. The solution should
meet the deadline while being able to absorb activity delays during its execution. We
wish a tradeoff between robustness and performance.

We aim to address this issue for the Cumulative Scheduling Problem (CuSP), with
possibly additional constraints. In a CuSP, each activity a ∈ A has a starting time
variable sa and an ending time variable ea. Its duration pa (processing time) and re-
source consumption ha are usually strictly positive integers. We use the notation a =
〈sa, pa, ea, ha〉. Given an integer capacityC, a solution to a CuSP satisfies the following
constraints: ∀a ∈ A, sa + pa = ea and ∀t ∈ N,

∑
t∈[sa,ea[,a∈A ha ≤ C. In Constraint

Programming, the Cumulative(A, C) constraint [3] represents a CuSP. A usual objective
is to minimize the makespan, i.e., the latest end among all activities.

In this paper, we integrate the notion of robustness directly into the problem defi-
nition. We define a new generic problem, such that any activity can be delayed up to a
certain time without being forced to re-schedule the other activities in its neighborhood.
We introduce FlexC, a constraint dedicated to this problem. Our paradigm deals with
the three following aspects at the same time. 1. Declarative framework: We solve prob-
lems such that solutions cannot be recomputed at anytime. Maximum allowed delays of
activities are a data and may vary from one activity to another. 2. Specialized definition:
In order to fit the practical needs, we use a robustness definition based on the semantics
of the core problem. Notably, all the variables have not the same status. 3. Modular
approach: We design a framework such that the model should not be totally re-written
each time we add a new business constraint.

Crane Assignment is a real-world example with these three requirements. In order
to validate our approach, we experiment on this problem.

2 Robust Cumulative Scheduling

Related Work In the literature, some frameworks deal with the three aspects (declar-
ative approach, specialized definition and modularity), but not all at the same time for
the CuSP. In a super-solution [9; 10], the loss of the values of at most a variables can
be repaired by changing the values of these variables and at most b other variables.
This notion is generic. All variables have the same status. It has been applied to job-
shop benchmarks [9]. A low-performance technique for obtaining robust schedules is
to augment the duration of each activity. To improve it, some slack-based techniques
incorporate the reasoning about uncertainty in the solving process [7]. This approach
does not deal with CuSP and its modularity was not investigated but it has some links
with our work: Schedules absorb some level of unexpected events without rescheduling.
Other Operations Research techniques for robustness in scheduling problems different
from the CuSP can be found in [5; 16]. A Mixed-Integer Linear Programming formu-
lation of robust RCPSP (i.e., CuSP with precedences) has been proposed in [14]. This
formulation requires an exponential number of variables and constraints.

A New Framework for Robust CuSP We use the following notation for i-order max-
imum heights of activities: Given A↓ the collection of activities in a set A sorted by
decreasing heights, max i

a∈A(ha) is the height of the ith activity in A↓.
We propose a new definition of cumulative problems, where each activity a can be

delayed up to ka points in time, without modifying the position of any other activity in
its neighborhood. This can be viewed as a specialization of the notion of super-solutions
that takes into account the semantics of the CuSP. Formally, given an integer r ≥ 1, we
define the Robust Cumulative Problem of order r (RCuSPr).

Definition 1 (RCuSPr). Given a set of activities A, let K be a set of positive integers
slacks associated with activities, such that to each a ∈ A corresponds ka ∈ K. Let r be
an integer, r ≥ 1. A solution to a RCuSPr satisfies the following constraints:

∀a ∈ A, sa + pa = ea ∧ ∀t ∈ N,
∑
a∈A,

t∈[sa,ea[

ha +

i=r∑
i=1

max i

a∈{b∈A,t∈[eb,eb+kb[}
(ha) ≤ C

Definition 1 considers a setK of positive integers for slacks. The material presented
in this paper is consistent with the case where K is a set of variables, provided that
values in their domains are greater than or equal to 0 and for each activity a we consider
ka as the minimum valid value for the variable in K mapped with a. Using variables,
constraints can be defined on slacks, e.g., dependencies on starting time of activities.

We now focus on the problem RCuSP (RCuSPr with r = 1). We express a RCuSP
with a constraint, FlexC(A, C,K), as it is done for the CuSP.

Property 1. FlexC(A, C,K)⇒ Cumulative(A, C).

Proof. By Definition 1 and Definition of the CuSP. ut

Property 2. Assume activities in A are fixed. Let a = 〈sa, pa, ea, ha〉 be an activity in
A, and k an integer, 0 ≤ k ≤ ka. Given a′ = 〈s′a = (sa + k), pa, e

′
a = (ea + k), h′a =

ha〉 and A′ = A ∪ {a′} \ {a}, we have: FlexC(A, C,K)⇒ Cumulative(A′, C).

Fig. 1. Solutions minimizing the makespan. Grey rectangles are activities, the horizontal axis is
time and the vertical one is consumption. On the left, a CuSP without robustness. In the middle,
optimal solutions of the RCuSP with values in K respectively all equal to 1 (top) and 2 (bottom).
On the right, optimal solutions with all durations increased respectively by 1 and 2.

Proof. Assume ¬ Cumulative(A′, C) ∧ FlexC(A, C,K) (hypothesis). As ¬
Cumulative(A′, C), ∃tfail ∈ N,

∑
b∈A′,tfail∈[sb,eb[

hb>C (1). From Property 1,
FlexC(A, C,K) ⇒ Cumulative(A, C). Then, ∀t ∈ N,

∑
b∈A,t∈[sb,eb[

, hb ≤ C. As
A and A′ differ only wrt. a and a′, tfail ∈ [max(ea, s

′
a), e

′
a[. As FlexC(A, C,K)

is satisfied, (
∑

b∈A,tfail∈[sb,eb[
hb)+(maxb∈A,tfail∈[eb,eb+kb[hb)≤C (2). (2) minus

(1) leads to (maxb∈A,tfail∈[eb,eb+kb[hb) − h′a < 0. As tfail ∈ [max(ea, s
′
a), e

′
a[,

ha ≤ (maxb∈A,tfail∈[eb,eb+kb[hb). Thus, ha − h′a < 0, absurd by definition of A′. ut

Delaying the starting time of an activity or increasing its duration are equivalent in
the context of the RCuSP, provided we do not both delay and enlarge the activity. In
case of enlargement (a′ = 〈sa, p′a = (pa + k), e′a = (ea + k), h′a = ha〉), the proof of
Property 2 is the same. Given any set of activities, comparing RCuSPr when r varies,
we can say that RCuSPr has an optimum makespan less than or equal to the minimum
makespan of RCuSPr+1. When r is too high (e.g., with sumr the sum of the r minimum
heights of distinct activities, sumr ≥ C) we obtain the naive approach consisting in
adding ka to the duration of each activity. This naive method is the least performant
and the most robust, as Fig. 1 shows. Conversely, the RCuSP (when r=1) is the most
performant tradeoff. Nevertheless, we claim that the level of robustness in solutions of a
RCuSP will be widely satisfactory in most of cases. Indeed, the RCuSP allows to delay
several activities in a solution provided they are scheduled in disjoint intervals in time
even when they are delayed. This property is the key of the practical significance of the
RCuSP. Furthermore, in some particular solutions of FlexC, more than one activity (e.g.,
a2 and a3 in the medium picture of Fig. 1, with all values inK equal to 1) can be delayed
in the same time window without violating Cumulative. Regarding modularity, as we
define a constraint, our declarative paradigm can be combined with other constraints.
To guarantee the robustness, additional constraints may also have to be modified. We
demonstrate this possibility in Sect. 4.

3 Filtering Technique

This Sect. presents a Time-Table filtering for FlexC. We selected this algorithm because
it is the best one in terms of scaling (number of activities) in the CuSP case [13]. This
algorithm does not directly depends on the selected time unit. Given a variable x, x
(resp. x) denotes the minimum value (resp. the maximum value) in its domain.

Time-Table Failure Detection. We first study the failure condition of the Time-Table
filtering Algorithm for Cumulative, such as Letort et al.’s algorithm [13]. It is based on
the profile of compulsory parts [11]. The compulsory part of an activity a ∈ A is the
interval in time where a has to be processed. This interval is [sa, ea[(empty if sa ≥ ea).
The profile is the cumulated sum of heights of compulsory parts for each point in time
t, which should never exceed the capacity C. From [2], we have:

Proposition 1 (Time-Table failure check for Cumulative).
If ∃t ∈ N, (

∑
a∈A,t∈[sa,ea[

ha) > C, Cumulative(A, C) has no solution.

To provide a similar failure condition for FlexC, we have to add the necessary height
to preserve the robustness (arrayK) to the cumulated sum of heights of activities having
a non-empty compulsory part. To do so, we introduce K-compulsory parts. Given the
compulsory part Ia of an activity a computed with the hypothesis that duration of a is
pa + ka, the K-compulsory part of a is the sub-interval of Ia that is not intersecting the
initial compulsory part of a, [sa, ea[, if such a sub-interval exists (it can be empty).

Definition 2 (K-compulsory part). Let a ∈ A be an activity and ka ∈ K. The K-
compulsory part of a, denoted KCPa, is the interval [max(sa, ea), ea + ka].

The Time-Table failure condition of FlexC integrates in the profile, at any time t, the
maximum height among activities having a K-compulsory part intersecting t.

Proposition 2 (Time-Table failure check for FlexC).
If ∃t∈N, (

∑
a∈A,t∈[sa,ea[

ha)+(maxa∈A,t∈KCPa ha)>C then FlexC(A, C,K) fails.

Proof. Assume ∃t,
∑

a∈A,t∈[sa,ea[ha + maxa∈A,t∈KCPa ha > C. Let b be an activity such
that t ∈ KCPb and hb = maxa∈A,t∈KCPa ha. Consider A′ = A \ {b} ∪ {b′ = 〈s′b =
sb, p

′
b = pb+kb, e

′
b = eb+kb, hb〉}. By construction t ∈ [sb′ , eb′ [.

∑
a∈A′,t∈[sa,ea[ha > C.

Cumulative(A′, C) is violated. By Property 2, FlexC(A, C,K) is violated. ut

Pruning Characterization. We assume now that, for each activity a ∈ A, the solver
maintains Bounds-Consistency [4] (BC) on the constraint sa + pa = ea, independently
from our propagator. A special case of FlexC(A, C,K) is the case where all values in
K are equal to 0. In this case, from Definition 1, FlexC⇔ Cumulative. As enforcing
BC for Cumulative is NP-Hard [1], it is NP-Hard for FlexC. Therefore, we consider
a weaker form of BC. Our goal is that the achieved consistency corresponds to the
filtering enforced by Time-Table in the case of Cumulative.

Definition 3. Given a scheduling constraint, a propagator is Time-Table if ∀a ∈ A,
fixing sa at time sa (respectively, ea at time ea) does not lead to a contradiction if we
apply the Time-Table Failure check of the constraint.

Fix-point property. The following property holds when Letort et al.’s sweep min al-
gorithm reaches its fixpoint (Property 1 in [13]) on lower bounds of start variables.

Property 3. Given Cumulative(A, C), sweep min ensures that: ∀b ∈ A,∀t ∈ [sb, eb[, hb+∑
a∈A\{b},t∈[sa,ea[

ha ≤ C.

To adapt the fixpoint Property 3 to the case of FlexC, we have to ensure that any
activity b ∈ A could be able to be scheduled at its earliest time sb without leading
directly to a fail when we apply Prop. 2.

∀t ∈ [sb, eb[, (hb +
∑

a∈A\{b},
t∈[sa,ea[

ha) + (max
a∈A,

t∈KCPa

ha) ≤ C

This condition guarantees that when all variables are instantiated we have a solu-
tion of FlexC. The obtained filtering is weaker than Time-Table. For instance, consider
a capacity C = 1 and two activities a1 and a2, such that a2 is fixed to 〈sa2 = 4, pa2 =
2, ea2 = 6, ha2 = 1〉, with ka2 = 0. Assume sa1 = [0, 1000], pa1 = 2, ha1 = 1 and
ka1

= 3. The lower bound sa1
= 0 satisfies the previous condition. However, schedul-

ing a1 at sa1
= 0 leads to a fail using Prop. 2. The condition ensures the consistency

of each activity a all along its duration if scheduled at sa, but it does not guarantee that
the space required after a to make it robust does not induce an inconsistency (because
some activities may end after ea). The complete Time-Table fixpoint conditions are the
following. Any activity which would lead to a Time-Table fail if fixed at its earliest
(resp. latest) date violates one of the conditions, and reciprocally.

Property 4 (FlexC (lower bounds)). Given FlexC(A, C,K), the propagator should en-
sure ∀b ∈ A:

∀t ∈ [sb, eb[, (hb +
∑

a∈A\{b},
t∈[sa,ea[

ha) + (max
a∈A,

t∈KCPa

ha) ≤ C (1)

∧∀t ∈ [eb, eb + kb[, (
∑

a∈A,
t∈[sa,ea[

ha) + hb ≤ C (2)

Property 5 (FlexC (upper bounds)). Given FlexC(A, C,K), the propagator should en-
sure the same conditions as Property 4 with intervals [sb, eb[(condition (1)) and [eb, eb+
kb[(condition (2)).

We can obtain this filtering using either a decomposition or a dedicated algorithm.

Decomposition. Let A = {a1, a2, . . . , an} be a set of activities. For each ai =
〈sai

, pai
, eai

, hai
〉 inA we define a′i = 〈sai

, pa′
i
= (pai

+kai
), ea′

i
= (eai

+kai
), hai

〉
and Ai = A ∪ {a′i} \ {ai}. The set of solutions of FlexC(A, C,K) is the set obtained
by projecting on variables in A all solutions of the following constraint network CN :
Cumulative(A1, C,K)∧Cumulative(A2, C,K)∧ . . .∧Cumulative(An, C,K). Representing
a global constraint with n global constraints may be costly. With respect to RrCuSP,

(
n
r

)
Cumulative constraints are required. However, using Time-Table for each Cumulative of
the decompositon prunes the same values as Time-Table for FlexC.

Dynamic Sweep Time-Table algorithm. We have adapted [8] the Time-Table Letort
et al.’s dynamic Sweep algorithm [13; 12] for Cumulative, in order to design a propa-
gator for FlexC. This algorithm is in two steps: Filtering of lower bounds of starting
time variables (Sweep min) and upper bounds of ending-time variables (Sweep max).
Sweep min for FlexC is in O(n2) time, as for Cumulative [12, p. 55]. Conversely to

0.1

1

10

100

1000

100 200 400 800 1600 3200 6400 12800
Se

co
nd

s
Number of activities

Cumulative
FlexC

Decomposition

Fig. 2. Scaling of Dynamic Sweep for FlexC.

the case of Cumulative, the filtering of FlexC is not symmetrical. In Sweep max, our
implementation adds new events in the sweep process to handle K-compulsory parts,
leading to a O(n2 ×maxa∈A(ka))) time algorithm. As there is some differences with
Sweep for Cumulative, we have experimented the limits of our algorithm with respect to
problems size. We used Choco [6] with a 2.9 Ghz Intel i7 and 8GB of RAM. Following
experiments provided in [12], we generated large random instances with pa from 5 to
10, ha from 1 to 5, C = 30. Values inK are not null, with an average equal to 4. Similar
results are obtained with fixed ka. Figure 2 shows that our filtering algorithm scales on
problems up 12800 activities for a first solution. The decomposition reaches the time
limit of 1h:00m with 1600 activities and leads to a memory crash with 6400 Cumulative.

4 Experiments with Side Constraints

FlexC can be used in a closed world, but external constraints can also be defined. It
may be necessary to make them robust. For instance, precedence constraints of the form
eai

+∆ij ≤ saj
. As the constraint≤ is monotone, using the natural ordering of integers,

augmenting saj by kaj does not reduce the set of solutions of eai+ ∆ij ≤ saj . Con-
versely, to ensure that solutions are robust to the increase of eai , the precedences should
be strengthened: eai

+kai
+∆ij≤ saj

. The principle can be extended to more complex
constraints, e.g., business constraints of the Crane Assignment Problem (CAP).

We now present experiments on this problem. Our goal is to show how the model
with business side constraints (such as precedence constraints, transition times, machine
assignments) can be transformed into a robust one, and to measure the impact of the
robust model on the objective function compared to a naive model where all durations
are extended. The CAP is a specialization of the berth and crane problem [17], where
we focus on the detailed scheduling of a single-container cargo’s discharge. A cargo
vessel is made of bays. Bays are transverse sections storing containers. Each bay is split
into above deck and below deck parts. Below and above bays hold containers. A fixed
number of cranes is assigned to the vessel. Cranes are operated on a single rail, they
cannot cross each other. The goal is to minimize the makespan: The terminal has to pay
a fee proportional to the leaving time of the cargo. Crane productivity depends on the
wind and sea conditions, on the driver, and on the position of the containers in the cargo.
To avoid fees, customers wish a fixed “worst case” schedule which guarantees to meet

1r a n g e A= 1 . . 4 0 / / Range of a c t s
2i n t nbc =4; / / nbr o f c r a n e s
3i n t pos [A] = . . . ; / / a c t p o s i t i o n
4i n t t t [A,A] = . . . ; / / a c t s t r a n s i t i o n t ime
5boo l p r e c e d [A,A] = . . . ; / / a c t p r e c e d e n c e
6S o l v e r m() ;
7I n t V a r s [A] (. . .) ; / / s t a r t
8I n t V a r p [A] (m, r and [5 , maxd])) ; / / d u r a t i o n
9I n t V a r e [A] (. . .) ; / / end
10I n t V a r h [A] (m, 1) ; / / r e s o u r c e
11I n t V a r c [A] (m, [0 , nbc−1]) ; / / c r a n e
12I n t V a r k [i∈A] (m, r and ([0 , . 2 5])∗p [i]) ;

Fig. 3. CAP Input Data.

1/ / 1 . cumu c s t r , nbc r e s o u r c e s
2m. p o s t (Cumula t ive (s , p , e , h , nbc))
3/ / 2 . p r e c e d e n c e c o n s t r a i n t s
4f o r (i , j) s . t . p r e c e d [i , j] = = 1 :
5m. p o s t (e [i]<s [j]) ;
6/ / 3 . c r a n e a l l o c , t r a n s i t i o n t i m e s
7f o r (i , j) i != j∧pos [i]<pos [j] :
8m. p o s t (((s [i]<e [j]+ t t [i , j])
9∧ (s [j]<e [i]+ t t [i , j]))
10=> c [i]<c [j]) ;
11/ / 4 . no i n t e r s e c f o r ne a rb y a c t s
12f o r (i , j) i<j∧| pos [i]−pos [j]|<=2:
13m. p o s t (s [i]>e [j] ∨ e [i]<s [j]) ;
14min imize o b j = min ({ e [i]} i∈ A)

Fig. 4. CAP model.

1/ / 1 . f l e x cumu c s t r , nbc r e s o u r c e s
2m. p o s t (FlexC (s , p , e , h , k , nbc))
3/ / 2 . p r e c e d e n c e c o n s t r a i n t s
4f o r (i , j) s . t . p r e c e d [i , j] = = 1 :
5m. p o s t (e [i] +k[i] <s [j]) ;
6/ / 3 . c r a n e a l l o c , t r a n s i t i o n t i m e s
7f o r (i , j) i != j∧pos [i]<pos [j] :
8m. p o s t (((s [i]<e [j]+ t t [i , j] +k[j])
9∧ (s [j]<e [i]+ t t [i , j] +k[i]))
10=> c [i]<c [j]) ;
11/ / 4 . no i n t e r s e c f o r ne a r by a c t s
12f o r (i , j) i<j∧| pos [i]−pos [j]|<=2:
13m. p o s t (s [i]>e [j] +k[i] ∨ e [i] +k[i]<s [j]) ;
14min imize o b j = min ({ e [i]+k[i]} i∈ A)

Fig. 5. Robust CAP model.

a deadline, given a precise robustness definition, as our framework does. Simulation is
not relevant: Uncertainty has to be taken into account a priori in the problem definition.
The maximum allowed slack ka for each activity a is a data. Generating durations a
posteriori is not relevant, as they would have to match the input robustness criteria.

Data. Figure 3 provides the pseudo code for the input data and decision variables.
Line 1 is the range of activities. The cargo has 20 bays with one activity below and
above deck. Line 2 sets the number of resources to 4, the typical number of cranes for
such a cargo of 20 bays. Lines 3-5 declare the bay position of each activity, the transition
time and the presence of a precedence constraint. Transition times are computed based
on the distance between two positions, multiplied by a factor. For each bay, we have
a precedence constraint between below and above deck activities. An additional 5% of
precedences are randomly set to reflect discharge balance constraints on the cargo. Lines
7-10 declare the start, duration, end, and resource variables for each activity. Durations
(in minutes) are randomly chosen in [5,maxd = 800] to capture many scenarios. Value
800 is the maximum duration for discharging a large bay. In lines 11-12, additional
crane and robustness variables are created for each activity. The robust factor k, fixed,
is randomly chosen in [0, 25%] multiplied by the duration of the activity. This is a bad
case for our approach (performance improves as the ratio ka/pa increases).

Constraints. Figure 4 shows the constraints of the CAP model without robustness.
Following [17], we model this application as a cumulative scheduling problem. Lines
2-5 post the cumulative constraint and precedence constraints. Lines 8-10 post the crane
allocation constraints. Given two different activities i and j with i being on the left of
j, if those activities intersect in time, we ensure that crane assignment follows their
position, assuming crane 0 is on the left of crane 1. Those constraints ensure that any
set of activities intersecting with a given point in time has a feasible crane assignment.
The activities should not be assigned to the same crane if they intersect in time while
being extended by the transition time, because a crane would not have the required time
to travel from activity i to activity j. Line 13 ensures that, for security reasons, cranes

should not work on nearby bays. If two activities are two bays away from each other,
they should have no intersection in time.

Robust Model. In Fig. 5, FlexC is used with the k variables in line 2. The prece-
dences constraints are modified in line 5 to accomodate the robust factor. The left side
of the constraint in lines 8-10 is an intersection in time condition. The solution should
ensure that if an activity is pushed or extended and intersects after this change with
another activity, the schedule is still valid. Line 13 posts the negation of an intersection
in time condition, and we can add k[i] to e[i].

Heuristic. For the three models, first the starting variables are assigned based on min
domain and min value, then on crane variables. The search strategy uses propagation-
guided LNS [15] and fixes randomly 70% of the starting time of the activities.

CAP FlexC Naive α γ

1 10.2 (0.08) 20.7 (2.20) 36.2 (3.28) 0.40 2.47
2 8.6 (0) 19.4 (2.13) 32.5 (1.62) 0.45 2.21
3 5.7 (0) 19.2 (3.08) 28.5 (0.60) 0.59 1.68
4 9.3 (0) 17.7 (0.47) 30.9 (3.66) 0.38 2.57
5 6.3 (0) 20.2 (2.10) 35.3 (0) 0.47 2.08
6 6.4 (0) 17.8 (1.37) 30.7 (0.15) 0.46 2.13
7 4 (0) 15.5 (1.08) 35.8 (2.40) 0.36 2.76
8 1.8 (0) 19.8 (2.35) 27.1 (1.42) 0.71 1.40
9 13.2 (0) 15.5 (2.61) 22 (0.31) 0.26 3.82

10 7.2 (0) 19.4 (1.63) 31.6 (0.07) 0.5 2.0
Table 1. Lower bound distance in %.

Performance. We measure the distance of the objective value to a lower bound com-
puted by adding the durations and dividing by the number of cranes. This lower bound
ignores side constraints. We compare the CAP, robust CAP, and a naive model where
all durations are extended. To make a fair comparison with the naive approach, using
FlexC(A,K) we minimize maxa∈A(ea + ka). Table 1 shows ten instances with a time-
out of 5 minutes. Entries in the first columns are the distance in percentage with the
lower bound. The standard deviation on 5 runs is in parenthesis. Column α is the rel-
ative position of the robust approach compared with the initial and the naive model.
Column γ is the ratio between the naive and FlexC results. A value of γ = 2 means the
naive model doubles the distance with respect to the CAP model, compared with FlexC.
Our approach produces a robust solution adding on average 10% to the makespan, while
the naive model adds 20% on average. A fully loaded cargo would take a lower bound
of (20*2*800)/4=8000 minutes to discharge, that is, 5d:13h:20m. The naive model adds
26h:40m. The robust approach adds 13h:20m, a good worst case compromise.

5 Conclusion

This paper has introduced a new declarative paradigm in order to deal with robustness
in cumulative problems. We have defined a new constraint and adapted the Time-Table
dynamic sweep algorithm. The experiments showed that our approach is modular, as
solution performance can be preserved for a problem with many business constraints.
Future work includes the adaption of other solving techniques and the use of a similar
approach for other classes of optimization problems.

References

1. P. Baptiste, C. Le Pape, and W. Nuijten. Satisfiability tests and time-bound adjustments for
cumulative scheduling problems. Annals of Operations Research, 92:305–333, 1999.

2. N. Beldiceanu and M. Carlsson. A new multi-resource cumulatives constraint with nega-
tive heights. In P. Van Hentenryck, editor, CP, volume 2470 of Lecture Notes in Computer
Science, pages 63–79. Springer, 2002.

3. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Journal of Mathe-
matical and Computer Modelling, 20(12):97–123, 1994.

4. C. Bessiere. Constraint propagation. Research report 06020 (Chapter 3 of the Handbook of
Constraint Programming, F. Rossi, P. van Beek and T. Walsh eds. Elsevier 2006.), LIRMM,
2006.

5. J.-C. Billaut, A. Moukrim, and E. Sanlaville, editors. Flexibility and Robustness in Schedul-
ing. Wiley, 2010.

6. Choco. 3.1.0. URL: http://choco.sourceforge.net/, 2013.
7. A.-J. Davenport, C. Jefflot, and J.-C. Beck. Slack-based techniques for robust schedules. In

Proc. European Conference on Planning, pages 7–18, 2001.
8. A. Derrien, T. Petit, and S. Zampelli. Dynamic sweep filtering algorithm for FlexC. Research

report RR14/1/INFO, Mines Nantes, 2014.
9. E. Hebrard. Super solutions in constraint programming. In U. Sattler, editor, IJCAR Doctoral

Programme, volume 106 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.
10. E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming. In J.-C.

Régin and M. Rueher, editors, CPAIOR, volume 3011 of Lecture Notes in Computer Science,
pages 157–172. Springer, 2004.

11. A. Lahrichi. The notions of Hump, Compulsory Part and their use in Cumulative Problems.
C.R. Acad. sc., t. 294:20–211, 1982.

12. A. Letort. Passage à l’échelle pour les contraintes d’ordonnancement multi-ressources. Ph.D
dissertation, 2013.

13. A. Letort, N. Beldiceanu, and M. Carlsson. A scalable sweep algorithm for the cumulative
constraint. In M. Milano, editor, CP, volume 7514 of Lecture Notes in Computer Science,
pages 439–454. Springer, 2012.

14. R. Leus, C. Artigues, and F. Talla Nobibon. Robust optimization for resource-constrained
project scheduling with uncertain activity durations. In Proc. IEEM, pages 101–105, 2011.

15. L. Perron, P. Shaw, and V. Furnon. Propagation guided large neighborhood search. In
M. Wallace, editor, CP, volume 3258 of Lecture Notes in Computer Science, pages 468–
481. Springer, 2004.

16. C. Wei Wu, K. N. Brown, and J. C. Beck. Scheduling with uncertain durations: Modeling
beta-robust scheduling with constraints. Computers & OR, 36(8):2348–2356, 2009.

17. S. Zampelli, Y. Vergados, R. Van Schaeren, W. Dullaert, and B. Raa. The berth allocation
and quay crane assignment problem using a cp approach. In C. Schulte, editor, CP, volume
8124 of Lecture Notes in Computer Science, pages 880–896. Springer, 2013.

