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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Open Scope: A Pragmatic JavaScript
Pattern for Modular Instrumentation

Florent Marchand de Kerchove Jacques Noyé Mario Südholt
ASCOLA team (Mines Nantes, Inria, LINA)
École des Mines de Nantes, Nantes, France

Abstract
We report on our experience instrumenting Narcissus, a JavaScript
interpreter written in JavaScript, to allow the dynamic deployment of
dynamic program analyses. Instrumenting an interpreter is a cross-
cutting change that can affect many parts of the interpreter source
code. We propose a simple open scope pattern that minimizes the
changes to the interpreter, while allowing us to implement program
analyses in their own files, and to compose them dynamically. We ap-
ply our pattern to Narcissus using standard JavaScript features, and
find that the gain in extensibility offsets a small loss in performance.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Scope, JavaScript, Instrumentation, Modularity

1. Introduction
In the context of cloud security and privacy, it is often critical to
track the flow of sensitive information exchanged between scripts
executed in a web browser and remote servers. Information flow
analyses are designed to track such flows. Multiple information
flow analyses already exist for the JavaScript language, the de facto
language of web scripts – see the survey by Bielova [3] for an
exhaustive overview. Information flow analyses are just one kind of
the larger category of dynamic program analyses. To implement a
dynamic program analysis, one approach is to alter the interpreter
for the target language. As JavaScript is a large language, production
interpreters like SpiderMonkey and V8 can be cumbersome to work
with, especially if the program analysis interferes with the evaluation
of code in a major way. A more practical approach is to work with
a simpler interpreter. For JSFlow [8], the authors wrote their own
custom JavaScript interpreter which integrates their information flow
analysis. Austin and Flanagan [2] elected to instrument an existing
interpreter to accommodate their own analysis. However, writing a
JavaScript interpreter or instrumenting one are non-trivial efforts.
When one only wishes to prototype a dynamic program analysis,
there should be a faster solution than writing an interpreter for a full
production language with a 600 pages specification [6]. Moreover,
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there is the issue of maintaining these alternate interpreters when
the language evolves.

In the present work, we define the problem of modular instrumen-
tation after examining the drawbacks of instrumenting an interpreter
directly for the information flow of Austin and Flanagan (section 2).
We then make the following contributions:

1. a generic solution to the problem based on scope manipulation
in an idealized subset of JavaScript (section 3);

2. the open scope pattern, a pragmatic means to achieve modular
instrumentation using standard JavaScript constructs (section 4);

3. an application of the pattern to the Narcissus JavaScript inter-
preter and two information flow analyses (section 5). We find
that a slight performance overhead is offset by a greater gain in
extensibility.

Lastly, we discuss limitations of the pattern, and its relation to
other approaches for modular instrumentation (sections 6 and 7).

2. The Problem of Modular Instrumentation
The problem of modular instrumentation is best illustrated via
an example. We start by examining how Austin and Flanagan
instrumented the interpreter Narcissus to support their faceted
evaluation analysis [2]. We find that if we want to write and
maintain an interpreter and several dynamic analyses together,
another approach is required. Based on this investigation, we define
the problem of modular instrumentation as it applies to interpreters
and instrumentation in general and sketch the ideal solution.

2.1 Case Study: Narcissus Instrumentation for Faceted
Evaluation

Narcissus is a JavaScript interpreter written and maintained by
Mozilla1. Narcissus is written in JavaScript, and meta-circular:
it makes use of the host JavaScript environment as part of its
implementation (e.g., String objects exposed to client code are not
re-implemented from scratch, but are wrappers around the host
String objects). Narcissus is a relatively small (around 6000 lines
of code) implementation of the JavaScript standard, and as such
it has been used as a breeding ground for experimental JavaScript
features.

In 2012, Austin and Flanagan used Narcissus as a basis for
implementing their faceted evaluation analysis to JavaScript [2].
Faceted evaluation is a dynamic information flow analysis that
allows a value to be tagged with a principal – an authority that has
read and write access to the value. When a tagged value is used in a
computation, its tag is propagated to the result of the computation,

1 https://github.com/mozilla/narcissus
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ensuring that no information is leaked, even partially. In the faceted
evaluation analysis, each tagged value has two facets: one facet
holds the “private” value intended for the principal, another facet
holds a “public” value intended for unauthorized observers of the
code. To keep track of tags even in conditionals (indirect flows), the
faceted evaluation analysis keeps a list of branches taken at runtime
called the program counter. For instance, in the following listing, if
the argument x is true, then the function will return true. However, if
we make x a faceted value, with a private value of true, and a public
value of false (written true | false), then the if(x) statement will be
executed twice, once for each facet of the condition. After the second
if statement, the function returns the faceted value true | false. An
unauthorized observer would not have access to the private value of
x by inspecting the result, ensuring confidentiality.

function f(x) { // x : true | false
var y = true // y : true
var z = true // z : true
if (x)

y = false // y : false | true
if (y)

z = false // z : true | false
return z }

We will now focus on the instrumentation of faceted evaluation
rather than the behavior of the analysis itself. Readers interested in
the details of faceted evaluation are encouraged to read the original
article [2]; an overview by Sabelfeld and Myers [17] provides ample
background on information flow analyses.

The instrumentation of Narcissus for faceted evaluation was done
by copying Narcissus as a whole, and making the required changes
to the source code. We obtain the complete set of changes made by
the instrumentation by extracting a diff between the two versions2.

To give a sense of scale, Narcissus totals 6000 lines of code3,
with the two largest files being the parser, at around 1600 lines, and
the main file of the interpreter, “jsexec”, at 1300 lines. The main file
contains the actual logic for interpreting JavaScript abstract syntax
trees, as well as constructing the runtime environment of client
programs. The changes made for faceted evaluation are restricted to
this main file; 640 lines are affected (i.e., half the lines in “jsexec”),
and the changes are not localized but spread out in the file.

Looking more closely, most of the changes made by the instru-
mentation fall into one of three categories:

1. Changes made to accommodate the program counter required
by the analysis. First, the ExecutionContext object is extended
to accept an additional argument on creation, the value of the
current program counter, pc. Here is the excerpt of the diff file
showing this change (a ‘-’ symbol indicates a line deleted from
the original interpreter, a ‘+’ symbol indicates a line added by
the instrumentation):

− function ExecutionContext(type, version) {
+ function ExecutionContext(type, pc, version) {
+ this.pc = pc;

In Narcissus, an ExecutionContext object is created whenever
control is transferred to executable code: when entering a func-
tion, a call to eval, or when entering a whole program. The
ExecutionContext object holds important properties for execut-
ing the code; chief among them is the lexical environment used

2 Extracted from the HEADs of https://github.com/taustin/narcissus and
https://github.com/taustin/ZaphodFacets.
3 All numbers of lines of code given in this article are physical, non-blank
lines of code.

to resolve references made by the code within the context. The
ExecutionContext is a reification of the ECMAScript specifica-
tion mechanism of the same name4.
Since the signature of the constructor of ExecutionContext is
extended, all calls to it must be updated accordingly and provide
a valid value for the program counter argument. There are more
than 80 occurrences of this simple change in the instrumentation.
Here are two such instances:

− x2 = new ExecutionContext(MODULE_CODE);
+ x2 = new ExecutionContext(MODULE_CODE, x.pc);

− getValue(execute(n.children[0], x));
+ getValue(execute(n.children[0], x), pc);

2. Changes made to the execution of the abstract syntax tree
(AST) to propagate the tags on faceted values. For instance,
summing two faceted values should result in a faceted value.
Implementation-wise, this means that rather than summing two
operands, the interpreter now has to first inspect the left-hand
value, and if it is a faceted value, it must proceed to add the right
operand to both the public and private facets. Of course, the
right operand can also be a faceted value, so we have to split the
evaluation again if that is the case. The Narcissus interpreter does
not have any code to deal with summing two faceted values, so
the instrumentation must add this logic in all relevant places. It
does so by wrapping evaluation code with calls to evaluateEach,
which test for faceted values and recursively call the evaluation
function on each facet. About 25 calls to evaluateEach were
added in the instrumentation. The following listing gives the
general form of these changes:

− var v = getValue(node.a)
+ evaluateEach(getValue(node.a), function(v, x) {

... do something with v ...
+ }

On the first line we get a value from inside an AST node (e.g.,
the left-hand of an assignment, or the test expression of a
conditional) and do something with this value. On the second
line, we still get the same value, but this time we split the
execution by calling evaluateEach with the value as an argument,
and the rest of the evaluation as a function of a simple value and
an execution context.

3. Changes made to the host environment of client code. In
JavaScript programs, the runtime environment provides a global
object which contains built-in objects like Array, Math, String
and Object. Since Narcissus is meta-circular, it re-uses the global
object of its host environment to build the global object of client
code. This is achieved in three phases. First, Narcissus creates
a globalBase object with properties that will override those in
the global object from the host environment. Second, it creates
a client global object from the global object of its host environ-
ment, and puts all the properties of globalBase inside this client
global object. Third, it populates the client global object with
reflected versions of built-in objects (Array, String, Function).
The faceted evaluation instrumentation enriches the client global
object by adding 50 properties to globalBase, like the following
one:

var globalBase = {
...

4 Section 10.3 of the specification details Execution Contexts [6]
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+ isFacetedValue: function(v) {
+ return (v instanceof FacetedValue);
+ },

The instrumentation also makes one change to the String prop-
erty of globalBase, to keep track of faceted values passed as an
argument to the String constructor.

Now that we have examined closely how Narcissus was instru-
mented for faceted evaluation, we can draw the following two key
observations.

Code duplication The instrumentation duplicates the whole code
of Narcissus. This is a straightforward solution to create an inter-
preter supporting faceted evaluation. However, code duplication has
a heavy cost in long-term maintenance: more than twice the amount
of code has to be maintained. The changes needed in the source
code to fix a bug in Narcissus, or to add a new feature now must
be mirrored in the instrumentation. The maintenance cost becomes
prohibitive when you intend to maintain several instrumentations
for various dynamic analyses at the same time.

Feature scattering and tangling The changes made by the instru-
mentation are scattered throughout the code of Narcissus. Related
changes – those ascribing to the same pattern – are not expressed to-
gether in the source code, but spread out. As a result, it is difficult to
check at a glance the extent of the instrumentation, or its correctness
with respect to a formal specification. It is also difficult, without
advanced knowledge of both Narcissus and the faceted evaluation,
to know which parts of the code of the instrumented interpreter re-
late to ECMAScript interpretation, and which parts relate to faceted
evaluation. Once again, this problem will only get worse if you wish
to support several dynamic analyses.

Directly modifying the source code of the target interpreter is
sufficient to instrument the interpreter, but unsatisfactory for the two
previous reasons. In the next subsection, we list the properties of a
satisfactory instrumentation.

2.2 Requirements for Modular Instrumentation
The problem of modular instrumentation is to find a mechanism
to allow the instrumentation of an interpreter for several dynamic
analyses, without falling prey to the two defects of the previous
section.

Before listing the requirements that a solution to this problem
should have, we make the following hypotheses:

1. We do not necessarily know the points of extension required
by the analysis in the interpreter. In the instrumentation for
faceted evaluation, we highlighted three recurrent patterns that
could guide us to write a more modular instrumentation. In the
general case, we do not want to use mechanisms that are overly
tailored to a specific dynamic analysis. Therefore, we prefer to
assume that any part of the interpreter can be changed by the
instrumentation.

2. We have access to, and can modify, the source code of the
interpreter. This hypothesis allows a greater degree of liberty
when devising solutions to the problem. Though, as we will
state in the requirements, the idea is not to rewrite the whole
interpreter to be extensible, but rather to find the minimal set of
changes that enables modular instrumentation.

These provisions in place, a modular instrumentation of an
interpreter has the following requirements:

Separation of concerns The code of the instrumentation should
not appear in the code of the interpreter. The interpreter has

one intended purpose: to evaluate programs of the specified
language. Analyses may introduce variations to the evaluation
process, and these variations should be expressed outside of the
interpreter itself. The code of the instrumentation should express
only these variations. This separation of concerns has two aims:
1) to prevent code duplication, hence lowering maintenance
overhead, and 2) to promote locality of the instrumentation code.
An ideal separation would be realized by having all the code
related to the instrumentation stands in its own file.

Minimum changes to the interpreter The scaffolding needed for
realizing the separation of concerns should not impact the
interpreter in a major way. For instance, it may well be the
case that an object-oriented interpreter can be easily extended
via inheritance. As it happens, Narcissus does not follow an
object-oriented design; although it would be feasible to refactor
it using an object decomposition, the amount of changes would
be too great. A mechanism for modular instrumentation should
be applicable to an interpreter regardless of its macro-structure.

Composability It should be possible to apply more than one dy-
namic analysis to the same interpreter. Moreover, these dynamic
analyses can be applied at the same time, when it makes sense
to do so. For instance, a call graph analysis that builds a graph
out of function calls made by the program can be run alongside
the faceted evaluation. Being able to write several analyses and
run them on the same interpreter is helpful for testing variations
of an analysis and comparing results.

Simplicity The mechanisms used to achieve the modular instru-
mentation of the interpreter should be at most as complex as the
analyses themselves, and ideally much simpler. We could for
instance devise our own language in which to write the different
analyses, and write a compiler that would instrument the inter-
preter code at the right places. The amount of code needed to
implement this device would probably rival, or even surpass, the
amount of code needed to write the analyses themselves. The fo-
cus should be on pragmatic means to instrument the interpreter.

In the next section, we show how a solution satisfying all
requirements can be worked out in an idealized subset of JavaScript.

3. Scope Manipulation for Instrumentation
The key ingredient of this section is the notion of scopes, and
how to manipulate them. A scope is the set of visible bindings
at a program execution point, which, in an interpreter, is typically
implemented by an environment. In this section, we assume that
JavaScript objects can take the place of scopes: both act like a
dictionary structure, and both have a link to a parent object (an
outer scope). We will thus use the term ‘scope’ to describe both
the set of bindings and the environment that records them. The
examples we will present are voluntarily trivial, as we focus on scope
manipulation for instrumentation purposes. We start with a subset of
ECMAScript 5.1, but we introduce the ability to manipulate scopes
along the way. It will be useful in this section to explain what the
snippets of code do in terms of scope diagrams. As the goal of the
diagrams is to clarify the examples, not to obscure them, we again
make simplifications from the ECMAScript specification.

3.1 Scoping in the Module Pattern
Narcissus is constructed using a module pattern. As JavaScript has
no standard module system5, a module pattern is commonly used
as a workaround. The module pattern used by Narcissus has the
following form:

5 At least until the ECMAScript 5.1 version of the standard. A module system
is part of the proposed next version of the standard.
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1 var Narcissus = (function(){
2 var globalBase = { ... }
3
4 function ExecutionContext(type, version) { ... }
5 function getValue(v) { ... }
6 function putValue(v, w) { ... }
7 function evaluate(code) { ... }
8
9 return {

10 globalBase: globalBase,
11 evaluate: evaluate,
12 ...
13 }
14 }())

The goal of this pattern is to create a scope under which
all definitions reside. In JavaScript, a top-level definition (a var
statement or function declaration) in a file will create a binding in
the global scope. Bindings in global scope are readable and writable
by any code, even by code loaded from different files. Putting all
your definitions in global scope has two immediate downsides: 1)
any code can overwrite your definitions, without your code taking
notice, and 2) your definitions can easily overwrite definitions made
by other included files, or even definitions part of the standard API.
As overwriting a binding does not trigger any error or warning in
JavaScript, putting your definitions in global scope can easily break
previously loaded code, and put your code in a position to be easily
broken as well. Adding to the issue, different runtime environments
populate the global scope with different bindings. For all these
reasons, JavaScript programmers defensively create a safe scope for
their definitions. This scope is created by wrapping the definitions
with a function, here opening on line 1 and closing on line 14. All
the definitions of variables or functions in lines 2–7 are thus shielded
from foreign code and are inaccessible outside the module.

If the module is there to provide a specific functionality, as is the
case of the interpreter providing an evaluation function, then it must
expose at least some bindings to the outside world – to declare some
exports. Exporting bindings is done by creating a JavaScript object
(which can be seen as a dictionary, associating strings with values),
as is done on lines 9–13. This object, let us call it the exported
object, is the return value of the function that creates the scope for
the module.

Finally, the exported object is assigned to Narcissus (line 1),
a top-level binding which can be used by any code loaded in the
same runtime environment, to use the functionality provided by the
module. The function that creates a scope for the module is invoked
right after it is defined (the () on line 14 calls the function), it is thus
called an immediately invoked function expression, shortened IIFE.

Let us then understand the module pattern by seeing what scopes
are created, and how they relate to each other. First, we will simplify
the previous example by abstracting over what is irrelevant for a
discussion of scopes.

1 var m = (function(){
2 var a = 1
3 var f = function(x) { return x + a }
4 var g = function(x) { return f(x) }
5 return {g: g}
6 }())
7
8 m.g(0) //: 1

Listing 1. A simplified example of module pattern.

Here we have a very simple module which returns only one
function, g. This function merely returns the value of f, which sums

m •
global

a 1
f •
g •

IIFE scope

g •
returned
object

scope •
code x + a

Function object
for f

scope •
code f(x)

Function object
for g

Figure 1. Scope diagram after executing the IIFE of listing 1.

its argument to the value of the variable a. When we call m.g(0)
from outside of the module, we get 1, which is the value of a.

A diagram of the scopes and objects created after executing the
IIFE and before running the call at line 8 is given in figure 1. In this
diagram, JavaScript objects are represented as boxes which contain
lines of pairs. A pair is a property, which has a property name in its
left cell and a value in its right cell. When the value of a pair is a
reference, a bullet is drawn in the cell and an outward dashed arrow
points to the referenced object. E.g., the global object has a property
named m which refers to the (unnamed) object which has g as its
sole property.

We represent scopes as boxes as well, with a solid arrow indicat-
ing the outer scope. When an identifier is not found in a scope, the
search continues in its outer scope, and so on until no outer scope is
defined.

We can now explain the module pattern by looking at figure 1.
Before executing the code in listing 1, the global object is empty.
When the IIFE is called, it creates a scope we named “IIFE scope” in
the diagram. Since the IIFE is defined at the top-level, its outer scope
is the global object. Inside the IIFE, three definitions are made: one
variable a and two functions, f and g (lines 2–4). When a function is
defined, a function object is created. A function object has a code
property containing the body of the function, and a scope property
which points to the scope it was defined in. This scope property will
be used for executing the body of the function when it is called.
Before the IIFE returns, it creates an anonymous object (line 5)
which contains a property g referring to the function g inside the
module. Note that there are now two references to g in the runtime
environment. Finally, the IIFE returns the anonymous object, which
is bound to the variable m in global scope.

Now, we proceed to explain what happens when the call of line 8
in listing 1 is made (see figure 2). First, the reference m.g is resolved
by searching for the m property in the current scope, i.e., the global
scope. The global scope does contain an m property which refers to
an object, so the interpreter is now searching for a g property inside
this object. The g property exists, and refers to a function object, we
can proceed with the call m.g(0). When the global scope calls the
function referred to by m.g, the interpreter creates a scope for the
body of the function called the activation object of g. The activation
object contains bindings for each formal parameter of the function.
Here, the function g has one formal parameter, x, and the call m.g(0)
provided the value 0 as argument. Hence, the activation object of
g contains the property x with value 0. The activation object of g
has the scope property of the function object for g as outer scope.
Then control is transferred to the body of g. To execute f(x), the
interpreter resolves f and x by searching through the scope chain,
starting with the activation object of g. The activation object does
not contain a property f, but its outer scope does. The reference f is
to a function object, so the interpreter can proceed with the call f(x).
The property x is found in the activation object, and its value is used
to call f. When f is called, the interpreter creates an activation object
from the formal parameters of f, and sets the outer scope to the IIFE
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m •
global

a 1
f •
g •

IIFE scope
x 0 Activation of g

x 0 Activation of f

g •
returned
object

scope •
code x + a

Function object
for f

scope •
code f(x)

Function object
for g

Figure 2. Scope diagram for the call m.g(0), line 8 of listing 1.

scope. After that, the interpreter transfers control to the body of f,
and executes the code x+a. The interpreter finds the property x on
the activation object for f, and the property a on its outer scope. The
interpreters substitutes x and a for their values, and returns the value
1 by unwinding the stack.

The diagram in the figure 2 serves to illustrate two important
facts about the module pattern:

1. The only way for code outside the module to refer to definitions
made inside the module is through the returned object. In the
example of listing 1, g is the only reference we have access to,
but is an alias. Observe that if we were to change the value of
m.g by assigning it to another function, m.g = function() { ... },
only the reference m.g would change, but the property g in the
IIFE scope would still refer to the original g function. If we want
to refer to the declarations inside the module, we need access to
the IIFE scope.

2. All functions created inside the module will use the IIFE scope as
outer scope. This is just another way to say that functions close
over the scope used at the time of their definition (their lexical
environment), that is why we also refer to JavaScript functions
as closures. If we had access to the IIFE scope, we could change
the behavior of functions inside the module by changing the
bindings of the scope.

These two facts reveal the importance of the IIFE scope as the
central point where binding lookup happens. This is crucial: if we
can access the IIFE scope from outside, then we can essentially
change the behavior of functions in a very simple way. The next
subsection hinges on this point to construct a generic solution to the
instrumentation problem.

3.2 Opening the Module Pattern
In the previous subsection, we have seen how the objects and scopes
in the module pattern revolved around the scope created by the
anonymous IIFE. At this point the only way to access this scope
seems to be through the scope property of the exported g function.
Unfortunately, this scope property is unreliable: we can easily return
a function g that closes over another environment. Consider the
following example:

1 var m = (function(){
2 function mkG() { return function g(x) { return x }}
3 return {g: mkG()}
4 }())
5 m.g(0)

Listing 2. The returned g function does not close over the module
scope directly.

On line 3 we associate the return value of the mkG function to the
exported g property. The mkG function returns the same g function

m •
global

mkG •
IIFE scope

g • Activation of mkG

x 0 Activation of g

g •
returned
object

code fun...
scope •

Function object
for mkG

scope •
code f(x)

Function object
for g

Figure 3. Scope diagram for listing 2.

as in the previous example, but with an important distinction: this
g function closes over the lexical environment created by the call
of mkG. Figure 3 illustrates the difference by the addition of the
activation object for mkG which serves as scope for g. We have
m.g.scope that refers to the scope created by mkG, not the scope
created by the IIFE. Contrast that with the function f, which closes
over the IIFE directly. Hence, we cannot rely on the scope property
of exported functions to access the inner scope of the module.

Let us now make a simple deviation from the subset of JavaScript
we have been using so far. Let us pretend that we can access the
scope created by the IIFE by a new scope property of the returned
object. We also assume that the scope accessed through this new
property behaves like a regular JavaScript object; we can read and
write property values on it. We shall see in section 4 how these
assumptions can be made true.

1 var m = (function(){
2 var a = 1
3 function f(x) { return x + a }
4 function g(x) { return f(x) }
5 return {g: g}
6 }())
7
8 m.g(0) //: 1
9 m.scope.a = 2

10 m.g(0) //: 2

Listing 3. A module exposing its scope.

In listing 3, we construct the same module m as in listing 1.
When executing m.g(0) on line 8, we still get the result 1. However,
this time we have access to the inner scope of the module via the
scope property. If we change the value of a inside this scope (line
9), then the call m.g(0) will go find the value 2 bound to a, and that
is why we get the result 2 on line 10. Another way to look at it is
through the diagram in figure 4. The additional scope property is
visible on the returned object referenced by the m property of the
global object. This m.scope property points to the scope created by
the IIFE, giving read and write access to it. Thus, when we execute
line 9, we modify the value of a inside the module; a is associated
to the value 2 in the diagram as a result.

By adding this direct reference to the inner scope of the module,
we are already able to change the results of the call to m.g, just
by changing the value of a variable inside the module. Now, if we
want to change the function f outside the module, to return x + 2 ∗ a
instead of x + a, we can do so as well. Listing 4 illustrates how on
line 4. However, we cannot just write 2 ∗ a, as a is a free variable
in this case. We want a to refer to the value of a in the scope of the
module. Since we have a reference to the inner scope, we refer to a
this way. Hence the call m.g(0) made after the redefinition of f uses
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m •
global

a 2
f •
g •

IIFE scope
x 0 Activation of g

x 0 Activation of f

scope •
g •

returned object

scope •
code x + a

Function object
for f

scope •
code f(x)

Function object
for g

Figure 4. Scope diagram for the call m.g(0) on line 10 of listing 3.
The new scope property is highlighted.

the latest definition. By referring to the value of a inside the module,
the redefinition of f will always use the dynamic value associated
with a. On line 6 we modify a again to the value 2, and the final
call to m.g(0) is affected by both modifications to return 4. We are
thus able to alter the behavior of m.g by overriding variables and
functions inside the module, but writing these changes outside of it.
We do not have to touch the module definition to change the result
of calls to m.g.

1 var m = (function(){ ... }())
2
3 m.g(0) //: 1
4 m.scope.f = function(x) { return x + 2 ∗ m.scope.a }
5 m.g(0) //: 2
6 m.scope.a = 2
7 m.g(0) //: 4

Listing 4. Changing the function f and the variable a without
altering the module code.

If we can easily override values inside the module, we cannot
yet easily undo our changes dynamically. Observe, in the examples
above and in figure 4, that by changing the value m.scope.a to 2, we
are erasing its previous value. The same is true of the redefinition
of f in the last example. If we want to preserve the original values in
order to undo our changes, we can do so manually, by putting them
in a temporary variable. There is, however, a more elegant solution
leveraging the mechanism of property lookup in scopes. The next
subsection explains how.

3.3 Layered Scopes for Composability
As we have already seen, a scope has an outer scope. If a property
is not found in a scope, the lookup mechanism will follow the outer
scope link and continue the search for the property there. The lookup
continues in this way until either the property is found, or the outer
scope link points to null. Since we want to be able to override
bindings in the module without destroying the original values, we
can use the lookup mechanism to our advantage.

Let us now change the rules of our JavaScript subset again. We
assume that when the module is created, a fresh, empty scope is
created as well, which we will call the front scope. The front scope
has the scope created by the IIFE as outer scope. Functions defined at
the top-level of the module will have their scope property pointing
to the front scope. Then, the m.scope property we created in the
previous subsection will now refer to this front scope instead of the
scope created by the IIFE.

If we now take the exact same code of listing 3 but execute it
with the changes of the previous paragraph, we get the situation
depicted in figure 5. The new front scope captures the redefinition of
a to the value 2 without altering its outer scope. Since both functions
f and g defined inside the module have their scope property pointing

m •
global

a 1
f •
g •

IIFE scope
a 2 x 0 Activation of g

x 0 Activation of f

scope •
g •

returned object

scope •
code x + a

Function object
for f

scope •
code f(x)

Function object
for g

Figure 5. A front scope (highlighted) is added to the module scope.
Impacted arrows are highlighted.

to the front scope, when these are called, their activation objects
will have the front scope as outer scope. As the lookup mechanism
follows the solid arrows from right to left, we see that any property
put in the front scope will take precedence over the properties found
in the module inner scope. That is why, in the example below, the
call to m.g(0) returns 2 right after we change the value of a on line
4. However, we have also gained the ability to undo the change on a
by simply deleting the property m.scope.a from the front scope. As
the front scope only contained our variation from the base module,
the original value of a is never altered. When the value in m.scope.a
is deleted, the front scope is empty, and the call m.g(0) will find the
property a on the scope created by the IIFE. Hence, after executing
line 6, the call m.g(0) now returns the value 1, as if the change to a
had never been made.

1 var m = (function(){ ... }())
2
3 m.g(0) //: 1
4 m.scope.a = 2
5 m.g(0) //: 2
6 delete m.scope.a
7 m.g(0) //: 1

Using the front scope, we are now able to override and delete
values inside the module without modifying its code. In a practical
setting, we would probably override several properties at once, and
would need to delete them all at once. Also, if we are to experiment
with different sets of changes, we would like to be able to, e.g.,
activate one set, then a second one, then deactivate the first one.
Using a single front scope is not sufficient for this scenario, but we
can put several scopes in front of the module inner scope instead.

Let us make one final addition to our JavaScript subset: the
ability to retrieve and change the outer scope of any scope object
via the property parent. With this property, we can extend the scope
chain used by functions inside the module by putting any number
of scopes in front. Since scope objects have a parent link, and
we have a reference to the foremost front object (m.scope), then
the scope chain is structurally similar to a singly-linked list, with
the front scope being the head of the list. Thus we can insert and
remove a scope object at any point in the scope chain like we would
insert and remove an element in a linked list. The most useful
place to insert a scope for instrumentation purposes is between
the front scope and the inner scope of the module. Suppose that
we have a pushScope(s, chain) function which inserts the scope s
into the chain above the front scope; and a companion function
removeScope(s,chain) which removes the scope s from the chain.
Then we can write the following code:

1 var m = (function(){ ... }())
2
3 m.g(0) //: 1
4 var s = {a:2, f: function(x) { return x + 2 ∗ m.scope.a }}
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m •
global

a 1
f •
g •

IIFE scope
a 2
f •

f •

scope •
g •

returned object

Figure 6. Two scopes are added in front of the IIFE scope. Most
references are omitted for legibility.

5 pushScope(s, m.g.scope)
6 m.g(0) //: 4
7 var s2 = {f: function(x) { return −m.scope.a }}
8 pushScope(s2, m.g.scope)
9 m.g(0) //: −2

10 removeScope(s, m.g.scope)
11 m.g(0) //: −1

Listing 5. Composable scopes as layers.

With the module m written exactly like in listing 1, we can add
all the changes of the scope object s simply by calling pushScope
(line 5). We can add another set of changes, s2 by calling pushScope
again. Calling m.g(0) after that will use the f function found in the
s2 object, and the a defined in the s object, hence the result is -2.
Then, we can remove any scope by calling removeScope. On line 10
we remove the first scope added, s; with the binding of a in s gone,
the last call m.g(0) uses the value of a found inside the module and
the value of f found in the object s2. Figure 6 gives a view of the
scope chain when execution reaches line 9. Each set of changes is
well isolated from the other, and all sets are linearly ordered, like
layers in a cake. Therefore, the precedence of each set of changes is
deterministic: the definitions of foremost layers (nearest to the front
scope) precede over the definitions on the layers nearest the inner
scope module.

The composition we have constructed in this section an ideal
solution to the problem of modular instrumentation. We can change
the behavior of the module object, without changing one line of
code of the module. The changes are written outside the module,
and can be put in separate files. Furthermore, we can dynamically
toggle sets of changes and compose several of them at once. On the
way, we made the following assumptions:

1. that scopes are like standard JavaScript objects: dictionaries we
can add properties to, or retrieve property values from; and that
JavaScript objects can act as scopes;

2. that a front scope was created by a call to an anonymous IIFE
in the module pattern and that we had a reference to this front
scope;

3. that we could refer to and modify the outer scope of any scope
object.

We did not, however, elaborate on how these assumptions apply
to real JavaScript programs. That is the goal of the next section.

4. The Open Scope Pattern
In the previous section, we made four assumptions about the
language we described. In JavaScript, none of these assumptions are
true. Fortunately, we can emulate the scope manipulation techniques
of the previous section by using two JavaScript constructs: with
and prototype delegation. We will create a manipulable scope using

with, and replicate the layer composition examples using prototypes.
All the code of this section is standard ECMAScript 5.1, unless
otherwise specified.

The with statement is grammatically similar to an if statement. It
takes one expression in parenthesis, which evaluates to its binding
object, and takes a block of code between brackets. Below is an
example of using with. We define a function f in the body of with
on line 3. The function f will simply return the value of a. Note
that a is free in this context, but calling f on line 5 still returns the
value 42. When f is defined, it closes over its lexical environment.
As it happens, with defines a lexical environment for the code it
wraps, and this environment is based on the binding object, o. Since
o associates a to 42, the call to f will find the binding a and will
return 42.

1 var o = {a:42}
2 with (o) {
3 function f() { return a }
4 }
5 f() //: 42

From this example, one may get the wrong impression that with
makes the code it wraps dynamically scoped. This is not the case,
as the following example demonstrates. In dynamic scoping, free
variables are looked up by going through the environments on the
stack, rather than going through the lexical environment [7]. Below
we call f inside with, so that with creates a lexical environment on
the stack when f is called. The call fails to find a binding for a, and
an exception is thrown. The function f is not dynamically scoped by
being called inside with.

function f() { return a }
var o = {a:42}
with (o) { f() } //: ReferenceError: a is undefined

Instead, when a function is defined inside with, it closes over
the lexical environment created by with, following standard lexical
scoping rules. However, the environment that with creates is special
in that binding lookup is delegated to the binding object. The binding
object can be dynamic: properties can be added to it or removed
from it. Therefore, it is more precise to state that the function f is
lexically closed over a dynamic environment. And this is just what
we need to open the scope of the module pattern.

In listing 6, we reproduce the example of listing 3 using with to
create a reference to the lexical environment of f and g. We create
an empty object on line 2 named scope. We then use scope as the
binding object of with. In the body of with, we declare the variable
a and the functions f and g exactly like in listing 3. The difference
from listing 3 comes on line 7, where we export the scope object
alongside the function g. On line 11, we call m.g(0), which triggers
the call f(0), which returns 0 + a. Since a is defined to be 1 inside
the module, the stack unwinds and we obtain the value 1. Now, since
we have access to the binding object scope, we override the value
a on line 12. The call m.g(0) shows that f will pick the value inside
m.scope.a over the one defined in the module, as the returned value
is 2.

1 var m = (function(){
2 var scope = Object.create(null)
3 with (scope) {
4 var a = 1
5 function f(x) { return x + a }
6 function g(x) { return f(x) }
7 return {g:g, scope: scope}
8 }
9 }())

10
11 m.g(0) //: 1
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Figure 7. Scope diagram after line 12 of listing 6. The lexical
environment created from the with statement and its incoming
arrows are highlighted.

12 m.scope.a = 2
13 m.g(0) //: 2

Listing 6. Opening the module pattern using with.

It may be surprising that the value in m.scope.a is preferred to
the declaration a = 1. After all, the latter is lexically closer to the
function f than the beginning of the with statement. While it is true
that with creates a scope for the code it surrounds, this scope does not
capture declarations. What happens instead is that declarations are
captured by the scope of the surrounding function – the function we
refer to as the IIFE. Figure 7 reveals the complete picture. The lexical
environment created by with is highlighted; it contains the binding
object. However, the binding object only contains the property a
that we added on line 12. The declarations a, f and g only exist
on the activation object for the IIFE. Since the scope property of
the function f points to the lexical environment of with, lookup of
bindings will start from here, and go up following the solid arrows.
The first binding for a on this scope chain is associated to the value
2, and that is why we get the result of line 13.

One can also observe on figure 7 that when the binding object
for with is empty, the code inside the module will behave exactly
as if with was never used. The only noticeable effect of using with
with an empty binding object would be a slight overhead due to the
extra scope object when looking up for bindings.

A crucial difference between the situations of figure 5 and figure
7, is that in the former, there is no distinction between the lexical
environment and the binding object: they are amalgamated as one
scope object. When using with, the environment and the binding
object are not the same thing: the environment has an outer scope,
but the binding object has no link to the outer scope. In figure 7,
the m.scope property points to the binding object of with, while the
scope property of the function f points to the lexical environment
created by with. The consequence of this distinction is that, while
we can override the declarations made inside the module, we cannot
refer to them from outside via the m.scope property.

We can work around this limitation by creating a parent object
for the binding object. This parent object will contain a reference
for each declaration made inside the module. The parent object is
then assigned as the prototype of the binding object. JavaScript is a
prototype-based language: each object has a prototype link to either
another object, or null. When looking for a property p in an object
that does not contain it, the search continues in its prototype chain
until the property is found, or a prototype link points to null. In
this respect, property access on a prototype chain mirrors binding
resolution in a scope chain.

1 var m = (function(){
2 var scope = Object.create(null)
3 with (scope) {

m •
global

a 1
g •

scope •
f •

IIFE scope
f •
a 2

a 1
f •
g •

Parent object

scope •
g •

returned object

scope •
code x + a

Function object
for f

code x+2*...
scope •

Function object
for f ’

Figure 8. Diagram for listing 7 after line 17. The function object
of g is omitted for legibility.

4 var a = 1
5 function f(x) { return x + a }
6 function g(x) { return f(x) }
7
8 var parent = {a:a, f:f, g:g}
9 Object.setPrototypeOf(scope, parent)

10 return {g:g, scope: scope}
11 }
12 }())
13
14 m.g(0) //: 1
15 m.scope.f = function(x) { return x + 2 ∗ m.scope.a }
16 m.g(0) //: 2
17 m.scope.a = 2
18 m.g(0) //: 4
19 delete m.scope.f
20 m.g(0) //: 2
21 delete m.scope.a
22 m.g(0) //: 1

Listing 7. To make the scope property behave as a reference to the
scope of the module, we create a parent object.

In listing 7, we replicate the situation of listing 4 using pro-
totypes. The two additions are on lines 8 and 9. First we create
the parent object containing one reference for each declaration of
the module. Then we set parent as the prototype of scope using
the Object.setPrototypeOf method6. Thus, when we redefine f via
m.scope.f on line 15, we can now use m.scope.a to refer to the value
of a inside the module. If we then override a through m.scope.a to
the number 2, this value will have precedence over the module defi-
nition of a. This can all be seen on figure 8. The m.scope property
refers to the binding object, which contains the overridden values
for a and f. If the binding object is empty, then property lookup will
happen on the parent object, which mirrors the references of the
module scope. Thus, when we delete the properties f then a on lines
19 and 21, the last call m.g(0) returns the same value as the first,
non-instrumented one.

It seems that the separation between the lexical environment
created by with and the binding object we export as the scope
property only leads to the redundant declarations of line 8. Actually,

6 This method is part of the ECMAScript 6 standard proposal, though the
non-standard way to set the prototype of objects via the special __proto__
property is available in most ECMAScript 5.1 implementations.
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since we have to explicitly write which bindings are exposed, we
have gained additional control. Any declaration not present on
the parent object cannot be referred to from outside the module.
Information hiding can thus still be used when writing the module,
even if with surrounds its inner code. Furthermore, since there
is no reference to the module scope accessible from client code,
the declarations made in the module cannot be altered in any
way. Instrumentation code can only alter copies of the module
declarations, in the parent object. This guarantees the integrity of
the module.

Finally, since the prototype chain of a JavaScript object can also
be seen as a linked list, we can realize the idea of layered scopes from
subsection 3.3. In listing 8, we recreate the example from listing 5 by
defining the function pushLayer(l, chain), which inserts the object l
in the given prototype chain; the function removeLayer(l, chain)
removes the object l from the given prototype chain (l is not
necessarily at the front of the chain). If we then define the module
m exactly as in the previous example, we can put all related changes
in objects (s and s2), and use pushLayer and removeLayer on the
binding object m.scope to change the results of m.g(0).

1 var m = (function(){ ... }())
2
3 function pushLayer(l, chain) {
4 Object.setPrototypeOf(l, Object.getPrototypeOf(chain))
5 Object.setPrototypeOf(chain, l)
6 }
7
8 // Assuming l is on the chain for brevity.
9 function removeLayer(l, chain) {

10 while (Object.getPrototypeOf(chain) !== l)
11 chain = Object.getPrototypeOf(chain)
12
13 Object.setPrototypeOf(chain, Object.getPrototypeOf(l))
14 Object.setPrototypeOf(l, null)
15 }
16
17 m.g(0) //: 1
18 var s = {a:2, f(x) { return x + 2 ∗ m.scope.a }}
19 pushLayer(s, m.scope)
20 m.g(0) //: 4
21 var s2 = {f() { return −m.scope.a }}
22 pushLayer(s2, m.scope)
23 m.g(0) //: −2
24 removeLayer(s, m.scope)
25 m.g(0) //: −1

Listing 8. Using the prototype chain of the binding object to
implement the layered scopes of subsection 3.3.

By leveraging the with construct of JavaScript, we have thus
been able to replicate all the scope manipulation techniques of
the previous section. Consequently, we have produced a working
solution to the problem of modular instrumentation, albeit on a
trivial example. As the fundamental ingredient of this solution is to
access the scope of the module, we refer to the use of with in the
way demonstrated in this section as the open scope pattern.

How does the open scope pattern satisfy the four criteria of
subsection 2.2? For the separation of concerns, we have certainly
been able to write changes to the interpreter outside of it. We could
have written the changes in separate files, but did not as the gain
would not be obvious on examples of this size. We had to make
three changes inside the module: add the with around the inner
code, add the scope property to the returned object, and create a
parent object for the binding object. While the first two changes
are always the same regardless of the size of the module they are
applied to, the creation of the parent object needs to be adapted to

the declarations made in the module. Since we had to change the
code inside the module, the open scope pattern may not reach the
ideal of the “minimum changes” requirement, but the changes are
nonetheless minimal. This pattern is also simple, as it makes use
of standard JavaScript constructs. Its only complexity may lie in
understanding how with affects scoping rules for the module code;
we provided a guiding model through our scope diagrams.

Although we have shown the ability to compose sets of changes
as layers, the trivial module we used in the examples of this section
may not be convincing enough. In the next section, we apply the
open scope pattern to the Narcissus interpreter and evaluate its
compliance to the four requirements of modular instrumentation.

5. Applying the Open Scope Pattern to Narcissus
The Narcissus interpreter follows the module pattern described in
subsection 3.1. We are thus able to apply the open scope pattern of
the previous section directly. The only lines that need to be added
are shown below prefixed by a ‘+’ symbol:

Narcissus.interpreter = (function() {
+ var scope = Object.create(null);
+ with (scope) {

...
+ var parent = {globalBase: globalBase,
+ execute: execute,
+ getValue: getValue, ...}
+ Object.setPrototypeOf(scope, parent)

return {
evaluate: evaluate,
...

+ scope: scope
};

+ }
}());

The changes are localized to the top and bottom of the file. As
the module object already export a few declarations, we just have
to add the scope property at the bottom. We also have to expose
a few declarations from the module in the parent object. In our
instrumented version of Narcissus7, the parent object contains 14
such bindings. With these added lines in place, we are now ready to
start instrumenting the interpreter.

5.1 Adding the Faceted Evaluation Analysis
We have seen in the case study of subsection 2.1 that the faceted
evaluation instrumentation of Narcissus had three categories of
changes. The first of these changes is the addition of state – the
program counter – by extending the ExecutionContext object and
adding extra arguments to the getValue function. We can now realize
this change outside the module by writing the following code:

1 var N = Narcissus.interpreter.scope
2
3 var EC = N.ExecutionContext
4 function ExecutionContext(type, version) {
5 EC.call(this, type, version)
6
7 this.pc = getPC() || new ProgramCounter()
8 }
9

10 ExecutionContext.prototype = Object.create(EC.prototype)
11
12 function getPC() {

7 Our version of Narcissus with the open scope pattern is available at
https://github.com/fmdkdd/narcin.
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13 var x = EC.current
14 return x && x.pc
15 }
16
17 var GV = N.getValue
18 function getValue(v, pc) {
19 pc = pc || getPC()
20
21 if (v instanceof FacetedValue)
22 return derefFacetedValue(v, pc)
23
24 return GV(v)
25 }
26
27 N.ExecutionContext = ExecutionContext
28 N.getValue = getValue

We start by declaring the shortcut N on line 1 to refer to
the exported scope of the interpreter. The original constructor of
ExecutionContext is saved as EC on line 3 to be able to refer to it
once we have replaced the binding on line 27. On line 4 we define
a new constructor for ExecutionContext which calls the original
constructor (line 5) and adds the current value of the program counter
to this instance. Other properties of the ExecutionContext object
are inherited from the original one using the common JavaScript
idiom on line 10. On line 18, we define a wrapper to the original
getValue that gets the current value of the program counter pc as
an argument, or through a getPC call if the argument was not
supplied. This way, the original interpreter can continue to call
getValue without providing the extra pc argument, but the code of
the instrumentation can provide it directly. Finally, we override
the bindings for ExecutionContext and getValue in the original
interpreter and replace it with our own (lines 27–28).

The second change of the instrumentation is the extension of the
execute function for each AST node, in order to split the evaluation
of faceted values by calling the evaluateEach function. The execute
function is a large (600 lines) switch statement with one case for
each AST node type. We follow the same structure by writing
a switch of our own on line 3 of the listing below. The faceted
evaluation instrumentation does not need to redefine the behavior
for all node types, so we wrap the original execute function and
delegate to it using the catch-all default of line 14. As in the previous
example, we modify the interpreter on the last line. We omit several
other case statements for brevity as they follow the same pattern.

1 var EX = N.execute
2 function execute(n, x) {
3 switch (n.type) {
4 case IF:
5 var cond = N.getValue(N.execute(n.condition, x), x.pc)
6 evaluateEach(cond, function(v, x) {
7 if (v) N.execute(n.thenPart, x)
8 else if (n.elsePart) N.execute(n.elsePart, x)
9 }, x)

10 break
11
12 ...
13
14 default: var v = EX(n, x)
15 }
16 return v
17 }
18
19 N.execute = execute

Finally, the third category of changes required by the instru-
mentation is the addition of properties to the globalBase object.

This is easily implemented outside the module by creating a new
globalBase object that inherits from the original one, and defines
additional properties.

1 var globalBase = Object.create(N.globalBase)
2
3 globalBase.isFacetedValue = function(v) {
4 return (v instanceof FacetedValue)
5 }
6
7 ...
8
9 N.globalBase = globalBase

However, extending the globalBase object this way is insuffi-
cient. In the Narcissus module, the globalBase object is used right
after being created to populate the global object for client code.
This process happens in the module, before the exports are returned.
Therefore, if we try to extend the globalBase object after the mod-
ule is created, it will have no effect on the client global object. We
could override all the calls made to populate the client code inside
the module, but that would lead to a convoluted control flow and
obscure code. We rather chose to slightly refactor the module by
providing a populateEnvironment function which can be called at
a later point, leaving the time for an instrumentation to extend the
globalBase object. This refactoring involved moving the 30 calls
relating to populating the environment into the new function.

There is one final change that required a refactoring, albeit an
quite innocuous one. One crucial function, the function that is used
by client code to initiate a function call, was created anonymously
in the interpreter module. This function having no name, there is no
way we could refer to it from outside the module; the open scope
pattern can only override values which have identifiers after all. In
order to replace this function, we simply gave it a name.

5.2 Evaluation
Separation of concerns The instrumentation of faceted evaluation
using the open scope pattern stands in its own file and consists of
440 lines, whereas the original instrumentation totalled 640 lines.
Factorization in our instrumentation explains the difference. The
changes of behavior brought by the instrumentation can all be
grasped by looking at the instrumentation file alone; there is no
more feature scattering or tangling. In addition to faceted evaluation,
we defined two other analyses: the FlowR tainting analysis [16], and
a simple tracing analysis. Both instrumentation could be written in
their own file as well.

Minimum changes to the interpreter We added 19 lines to the
original interpreter for the open scope pattern (14 lines for ex-
posing the bindings), and changed another 32 lines to add the
populateEnvironment function and name the anonymous function.
51 lines out of 1300 lines file may not be the minimum, but it is not
many. The important insight is that using the open scope pattern still
required refactoring inside the module code for the faceted evalua-
tion instrumentation. While this refactoring was minor, knowledge
of the internal working of the interpreter was nevertheless required.
Instrumentation for the FlowR analysis and tracing did not require
any change to the interpreter.

Composability The tracing analysis outputs the type of the AST
node as they are executed by the interpreter. We are able to activate
tracing along with another analysis and obtain helpful debugging
output. However, the FlowR analysis and faceted evaluation both
override the function call procedure of the interpreter, and are thus
incompatible. Activating both at the same time breaks the evaluation
of client code. From their specification, it is unclear if the two can
in theory be combined, and what the resulting evaluation would
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Interpreter Original Refactored Original Refactored
+ Facets + Facets

Mean time 1040.34 1218.77 1215.01 1301.74

Table 1. Mean time (in seconds) it took for each variant of inter-
preter to run the test262 suite.

produce. In any case, we can run client code by activating one
without the other.

Simplicity The open scope pattern uses only standard JavaScript
constructs: with and prototype delegation. The scope manipulations
that it produces may not be easy to understand at first, but they are
not overly complex. Compared to modifying the semantics of the
JavaScript interpreter to enable access to scopes, our solution can
be applied to any standard-compliant implementation without any
additional library.

We have tested our refactoring of the Narcissus interpreter for
correctness using the test262 suite8. The test262 suite contains over
11000 compliance tests for the ECMAScript 5.1 standard. We ran
a subset of the suite used for the SpiderMonkey JavaScript engine
on both the original interpreter and the refactored one, then we
compared their output for each test case. We found both versions
to be equivalent. We also ran the tests for the interpreter with the
faceted instrumentation activated, and verified that with an empty
program counter, the analysis did not alter the semantics of client
code.

When running the tests, we also measured the time they took
to complete. For each interpreter, the tests were run ten times,
on a single thread; all on the same machine. Table 1 shows the
arithmetic mean of the times in seconds. The standard deviation was
under 10 seconds for all the interpreters. The refactored interpreter,
without any instrumentation activated, has an overhead of 17%. This
overhead can be attributed to the addition of with alone, as it has
a notorious negative impact on performance. However, when we
compare the original instrumentation of faceted evaluation with our
own, the overhead falls to 7%, indicating that the analysis has a
larger performance impact than the open scope pattern. In any case,
as Narcissus is written in JavaScript, performance is one order of
magnitude slower compared to C++ engines like SpiderMonkey
or V8. When running small snippets of code, which take under a
second to execute, the overhead of the open scope pattern is not
noticeable.

On the other hand, the gain in the ease of writing and debugging
analyses is tangible. In order to run the test262 suite with Narcissus,
we had to correct a few bugs in its interpretation of JavaScript code.
As we fixed those bugs in the original interpreter, we had to port
those fixes in our refactored version as well. However, we also had to
fix them again in the original faceted instrumentation, but not in our
instrumentation of faceted evaluation. Since our instrumentation had
minimized the duplication of code, fixing the interpreter bug in the
interpreter was enough. This illustrates the benefit of the adequate
separation of concerns we achieved.

6. Discussion
An interface for instrumentation The principal insight of the
open scope pattern is that having access to the bindings of the
module is sufficient for instrumenting the interpreter from outside.
We can view the exported scope property of the open scope pattern
as providing a special kind of “protected” interface, in the sense of
the protected Java keyword, which allows methods to be overridden
by subclasses. As all the bindings of the module are exposed, the
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surface of this interface is large, and instrumentations are liable to
break at even the slightest internal change made to the interpreter
(e.g., any renaming of identifiers). However, we argue that such
brittleness cannot be avoided in general. The public interface of a
module can be small and robust, but the needs for instrumentation
are hard to predict. The practical instrumentation interface should
thus be as close to the internal working of the module as possible.
The open scope pattern provides a convenient means to build such
an interface.

One key construct The functionality of creating a scope that could
then be exported and manipulated by instrumentation was essential
to the open scope pattern. In JavaScript, this was realized using
only one construct: the with statement. Though with is not strictly
necessary, to achieve the same effect in standard ECMAScript would
require rewriting hundreds of reference and declarations by prefixing
them with the scope identifier. Using with is faster, easily undone,
and does not affect the readability of the code. It is interesting to note
that using with is considered bad practice [5], and is even banned of
the strict subset of ECMAScript 5.19 precisely because its ability
to change the scope of identifiers is considered detrimental to code
clarity and affects performance. We feel that the open scope pattern
is a legitimate use case for with, as the alternatives do not satisfy the
requirements of modular instrumentation.

Caveats As the open scope pattern relies on overriding identifiers
for instrumentation, there are limits to its applicability. First, anony-
mous functions cannot be instrumented; they have to be named. We
encountered this problem with the faceted evaluation instrumenta-
tion in subsection 5.2 for one function. Second, aliased references
must be overridden once for each alias. If the references o and p both
point to the same object, and the instrumentation needs to override
this object, then we must redefine both references; we have no way
to override all aliases at once. We did not run into this issue while
writing the instrumentations for Narcissus however. Third, the open
scope created by with can only override declarations made at the
top level in the module. That is, a declaration made in a lower scope
(e.g., local to a function) cannot be instrumented; such declarations
would have to be moved to the top level of the module. Again, this
has not prevented us from writing instrumentations. Lastly, while the
open scope is appropriate to instrument interpreters defined using
the JavaScript module pattern, it might not be the most adequate
mechanism to use if the interpreter is written in another way. For in-
stance, had the interpreter been written in an object-oriented fashion,
then inheritance could have been a more straightforward solution.

7. Related Work
Aspect-Oriented Programming (AOP) The requirements of the
problem of modular instrumentation strongly evoke the AOP
paradigm [10]. In AOP, we could use predicates (pointcuts) to
target specific parts of the code (joinpoints) and provide the new
instrumentation behavior that should take over (advices). The FlowR
analysis [16] for instance has been applied to the Ruby language
using an AOP framework which lowered the complexity of a previ-
ous implementation. Achenbach and Ostermann [1] also defined a
meta-aspect protocol for implementing dynamic program analyses,
and provided a Ruby implementation.

Lerner, Venter, and Grossman [11] implemented an AOP subset
to solve related problem: writing extensions for the Firefox web
browser. In their review of Firefox extensions source code, they
found that extension writers used any means at their disposal
to override the behavior of the browser when no interface was
available – including dynamically patching the source code of
functions (a practice dubbed “monkey patching”). The authors

9 See section 12.10.1 of the ECMAScript specification.
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report that their language was expressive enough to refactor the
extension code without sacrificing functionality. However, their
aspect implementation is specific to a Microsoft Research JavaScript
compiler and not freely available.

AspectScript [18] is an expressive AOP implementation for
JavaScript with advanced scoping strategies, the ability to capture
join points inside function bodies, and to intercept reads and writes
to variables. AspectScript works by rewriting all client code into
reified calls, even code that is not targeted by pointcuts. As its
authors note, the transformation multiplies execution time by a
factor of 5 to 13, and make debugging the client code rather difficult.
The transformation also uses a custom parser that is not up to date
with current JavaScript syntax, and can introduce discrepancies with
the host JavaScript environment. Finally, AspectScript does not
support rewriting JavaScript code that contains with statements.

We initially sought to instrument interpreters for dynamic analy-
ses using AOP techniques [13], but it turned out that merely using
the flexibility of JavaScript was sufficient to solve the problem of
modular instrumentation satisfactorily.

Context-Oriented Programming (COP) The composition of lay-
ers of subsection 3.3 is reminiscent of COP [9]. ContextJS [12] is
a COP extension for JavaScript, that allows layers to refine a class
with partial methods. Layers can be toggled dynamically on all or
specific instances of the class, and layers can stack, enabling the
expressive dynamic redefinition of behavior. However, as the layers
of ContextJS can only refine a class and not a function, they are not
applicable to the module pattern used by Narcissus.

Other approaches to modular instrumentation We are not alone
in trying to improve the process of writing and maintaining dynamic
analyses. DiSL [14] is a framework for writing dynamic analyses of
Java bytecode using the AOP paradigm. The Jif language [4] which
extends Java with information flow functionality uses the extensible
Polyglot [15] compiler front-end. However, these approaches target
the Java language; it is unclear whether we could reuse their results
on JavaScript compilers.

8. Conclusion
We presented the open scope pattern as a pragmatic means to
instrument a JavaScript interpreter for dynamic program analyses.
We applied it to the Narcissus interpreter for two information
flow analyses: faceted evaluation and FlowR, along with a tracing
analysis for debugging; our instrumentations satisfactorily avoided
code duplication and feature scattering.

Although we have focused on information flow analyses, we
think that the open scope pattern more broadly applies to any behav-
ioral variation of code ascribing to the module pattern. Moreover,
we feel that the techniques of scope manipulation we described
are sufficiently removed from JavaScript peculiarities as to provide
a model for applying the open scope pattern to other languages
sharing the same dynamic foundations.
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