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ABSTRACT

In the one-machine scheduling problems analysed in this paper, the processing time of a

job depends on the time at which the job is started. More precisely, the horizon is divided

into time windows and with each one a coe�cient is associated that is used to determine

the actual processing time of a job starting in it. Two models are introduced, and one

of them has direct connections with models considered in previous papers on scheduling

problems with time dependent processing times. Various computational complexity results

are presented for the makespan criterion, which show that the problem is NP-hard, even

with 2 time windows. Solving procedures are also proposed for some special cases.

Keywords: scheduling; one-machine; time dependent processing time; time windows; com-

putational complexity.

Introduction

One of the most classic problems in scheduling theory consists in scheduling a set J =

{1, . . . , n} of independent jobs on a single machine. Preemption is not allowed (a job cannot

be interrupted while being processed) and no more than one job can be processed at a time.

Processing times of the jobs are usually considered to be given and constant. However,
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in practical settings, the processing time of a job may depend on the time at which an

operation starts on a resource. Looking at the vast body of literature in scheduling, only

a few papers have considered time dependent processing times. The �rst papers on the

subject are cited in Gawiejnowicz 1. A very extensive survey can be found in Alidaee and

Womer 2, and a more recent survey is provided in Cheng et al. 3.

From now on, we only consider problems with the makespan criterion, i.e for the min-

imisation of the schedule length. When processing times are linear, pj = xj + αjtj , where

αj is the rate at which the processing time of the job increases (or decreases, if αj < 0). The

problem can be solved in O(n log n) time. This result was proved independently by Tanaev

et al. 4, Gupta and Gupta 5, Browne and Yechali 6 and Gawiejnowicz and Pandowska 7.

In the case of piecewise linear processing times, three models have been studied. In

the model proposed by Sundararaghavan and Kunnathur 8, pj = xj if tj ≤ d, where d is

a given date, and pj = xj + αj else. The problem has been shown to be binary NP-hard

by Mosheiov 9, whereas Alidaee and Womer 2 have shown that it can be solved in time

O(n log n) if the xj 's are identical. In a more general model introduced by Mosheiov 9, the

processing times are subject to multi-step deteriorations, i.e each job j has several dates

d1,j < d2,j < · · · < dw,j and coe�cients α1,j < α2,j < · · · < αw,j such that pj = xj + αi,j

if di−1,j < tj ≤ di,j . In the third model, there are two given dates, d and D, and pj = xj

if tj ≤ d, pj = xj + αj(tj − d) if d < tj < D, and pj = αj(D − d) otherwise. The

problem has been shown to be binary NP-hard by Kononov 10, Cai et al. 11 and Kubiak

and van de Velde 12, even if D = ∞. For the case where D = ∞, a pseudopolynomial time

algorithm that runs in O(nd
∑

xj) and a branch-and-bound algorithm have been proposed

by Kubiak and van de Velde 12. In the same paper, two pseudopolynomial time algorithms

are proposed for the case where D < ∞.

Since the problems studied in this paper have few connections with the nonlinear pro-
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cessing time case, the reader is referred to the paper of Alidae and Womer 2.

In our problem, a sequence of dates (d1, . . . , dw+1) de�nes w time windows [di, di+1[

where di < di+1, d1 = 0 and dw+1 = +∞. With each job j is associated a normal processing

time xj and w coe�cients αij , one for each time window. The actual processing time pj

of a job j depends on the coe�cient of the time window in which it starts. For a job j

starting at time tj , we de�ne the two following models:

• Model M+: pj = xj + αij if di ≤ tj < di+1.

• Model M×: pj = αijxj if di ≤ tj < di+1,

The objective is to �nd a schedule that minimises the makespan Cmax = maxj∈J Cj ,

where Cj = tj + pj is the completion time of job j.

In model M+, the coe�cient αij models a waste of or a saving on the normal processing

time of job j when it starts in time window [di, di+1[: job j can take more time (i.e αij > 0),

less time (i.e αij < 0) or the same time (i.e αij = 0) than the normal processing time. This

model has some connections with the two �rst piecewise linear processing time models

we have presented. First, it is a generalisation of the one proposed by Sundaraghavan

and Kunnathur 8, where pj = xj if tj ≤ d and pj = xj + αj otherwise. Indeed, to get

their model we just have to consider two time windows such that α1j = 0, α2j = αj and

d2 = d + ε (with ε being strictly positive and smaller than the smallest processing time

in a window). First, the case of M+ where αi < αi+1 is equivalent to a special case

of the model proposed by Mosheiov 9 where di,j = di, for all j. There are actually two

di�erences between Mosheiov's model and M+: (i) contrary to Mosheiov's model where

only deteriorating processing times are considered, any kind of step function can be used in

M+ to model the processing times; (ii) in Mosheiov's model, each job has its own sequence

of time windows whereas in our model the jobs share the same sequence of time windows.
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The model M+ can be useful to solve practical scheduling problems when the processing

times depend on time periods. For instance, consider a workshop where the processing time

of job j is xj when all the workers are present (e.g. there are k workers), and suppose there

is a delay p−j (a saving p+
j ) to process job j if the number of workers is smaller (larger)

than k. The problem of scheduling the jobs in minimum time is modelled by associating

with each day a time window, and with each pair (day i, job j) a coe�cient αij according

to the number of workers present in day i : we set αij = p−j if the number of workers is

smaller than k, αij = −p+
j if the number of workers is larger than k, and αij = 0 otherwise.

Contrary to M+, the model M× has no direct link to previous models. However,

it deserves to be studied since in some practical cases the processing time of a job is

proportional to the availability of a resource. For instance, if in a network of processors the

speed of a task depends linearly on the number of available processors, we set pj = xj/ni,

that is αij = 1
ni
, where ni is the number of available processors in time period i. Moreover,

as we shall see, there exist interesting di�erences between M+ and M∗ from a complexity

point of view.

Finally, another application of M+ and M× could be the approximation of non linear

processing times (see the survey of Alidaee and Womer 2 for examples of this type of

processing time), by using time windows as intervals for the discretisation of the non linear

function.

In the next section, we present an optimal algorithm for both models when the sequence

of jobs is given. Then, the M× model with two time windows is studied: It is shown that the

problem is NP-hard in the general case and can be solved using a pseudo-polynomial time

algorithm when the coe�cient of a time window is the same for each job, i.e αij = αi ∀j.

Next, the M+ model is analysed: The problem is shown to be polynomial when αij = αi

∀j and the coe�cients are increasing or decreasing in the order of the time windows;
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complexity results for the remaining cases are also discussed. Finally, some conclusions

and perspectives for future research are given.

Scheduling in M+ and M× according to a given sequence

We introduce an algorithm which solves the problem in both models. The following dom-

inance property is used.

Theorem 1 In models M+ and M×, there exists an optimum schedule such that each job

starts either at the beginning of a time window or at the completion time of the previously

scheduled job.

Proof Suppose there is a job j scheduled just after a job k. If tj = Ck the property is

true, otherwise let i be the window in which j starts. If tj = di, the property is true, else

by setting tj = max{Ck, di}, the actual processing time of j does not change, neither in

M+ nor in M×, since j still starts in the same time window [di, di+1[. 2

Without loss of generality we suppose now that the sequence is (1, . . . , n). Let C(j, t) be

the completion time of job j if it starts at time t (note that Cj = C(j, tj)). The algorithm

is the following:

Algorithm 1:

1. t1 = dk with C(1, dk) = mindi
C(1, di)

2. for j = 2 to n

tj =
{

Cj−1 if C(j, Cj−1) ≤ min{di:Cj−1≤di} C(j, di)
dk if C(j, Cj−1) > C(j, dk) = min{di:Cj−1≤di} C(j, di)

Let t∗j and C∗
j be the starting time and completion time of job j in an optimum schedule.

Theorem 2 In models M+ and M×, when the sequence of jobs is given, there exists an

optimum schedule such that C∗
j = Cj for every job j.
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Proof Consider the �rst job. By Theorem 1, t∗1 = di for some i. So it cannot be completed

before time mindi
C(1, di) = C1. Therefore if C∗

1 > C1, Job 1 is shifted to the left in the

optimum schedule, i.e t∗1 = t1 and thus C∗
1 = C1.

Now, suppose C∗
j = Cj for 1 ≤ j ≤ k and k < n. By Theorem 1, which applies to both

models, t∗k+1 = C∗
k or t∗k+1 = di for some i such that di ≥ C∗

k . Therefore job k + 1 cannot

be completed before time min{C(k + 1, C∗
k),min{di:C∗

k≤di} C(k + 1, di)} = Ck+1. Again, if

C∗
k+1 > Ck+1, the job is shifted to the left in the optimum schedule by setting t∗k+1 = tk+1.

So C∗
k+1 = Ck+1 and, by induction, the proof is completed. 2

Theorem 3 When the sequence of jobs is given, the minimum makespan problem can be

solved in models M+ and M× in time O(nw) by Algorithm 1.

Proof - From Theorem 2, which applies to both models, it follows that Cmax = C∗
max.

Finally, because Step 2 of the algorithm is run n−1 times and there are O(w) comparisons

each time, the total computation time is O(nw). 2

The algorithm also solves the following special case, in both models.

Corollary 1 When the sequence is not given, but the normal processing times are identical

and the time window coe�cients do not depend on the jobs, the minimum makespan problem

can be solved in models M+ and M× in time O(nw)

Proof Since xj = x, for some x, and αij = αi, we have pj = αix in M× and pj = x + αi

in M+: The actual processing time of a job does not depend on the job. Consequently,

Algorithm 1 can be used with any sequence to get an optimum schedule. 2

Scheduling in M× with two time windows

NP-hardness

We �rst prove that minimising the makespan is NP-hard if either αij = αi or xj = 1,

by reductions to the following problems:
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• Problem Π1:

INSTANCE: A set of jobs J , a sequence of two time windows W = (d1, d2, d3),

normal processing times xj , coe�cients αij such that αij = αi, and an integer T .

QUESTION: is there a schedule with makespan less than or equal to T?

• Problem Π2:

INSTANCE: A set of jobs J , a sequence of two time windows W = (d1, d2, d3),

normal processing times xj = 1, coe�cients αij , and an integer T .

QUESTION: is there a schedule with makespan less than or equal to T?

These problems are in NP since one can check in polynomial time if a schedule has

a makespan less than or equal to T . We prove the NP-completeness of Π1 and Π2 by

polynomial transformations from the PARTITION problem (Garey and Johnson 13):

INSTANCE: Integers b1, . . . , bn such that
∑n

i=1 bi = 2B.

QUESTION: Is there a subset S ⊂ {1, . . . , n} such that
∑

i∈S bi = B?

Theorem 4 Problem Π1 is NP-complete.

Proof With an instance of PARTITION is associated an instance of Π1 as follows :

- J = {1, . . . , n}

- d1 = 0, d2 = 2B and d3 = +∞

- xj = bj for 1 ≤ j ≤ n

- α1j = 2 and α2j = 1, for 1 ≤ j ≤ n

- T = 3B

Figure 1 illustrates the transformation. The construction can be done in polynomial

time. Now, suppose there is a �yes� answer for PARTITION. We get a solution of Π1 as

follows: jobs associated with S are scheduled �rst, followed by the remaining jobs. Since
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jobs associated with S are completed by time d2 exactly, the makespan is 2
∑

j∈S bj +∑
j∈{1,...,n}−S bj = 2B + B = T , and the schedule is a �yes� answer for Π1. Conversely,

suppose there is a �yes� answer for Π1. Let J1 be the set of jobs starting before time d2,

J2 the set of jobs starting at or after time d2, x =
∑

j∈J1
xj and y =

∑
j∈J2

xj . First, note

that 2
∑

j∈J1
xj +

∑
j∈J2

xj ≤ T , i.e 2x + y ≤ 3B, since
∑

j∈J1
pj +

∑
j∈J2

pj ≤ T . Next,

observe that
∑

j∈J1
xj +

∑
j∈J2

xj = 2B, i.e x + y = 2B, since xj = bj . Consequently,

y ≥ B. But y ≤ B because
∑

j∈J2
pj ≤ T − d2 = B. Therefore x = y = B and the sets J1

and J2 de�ne a �yes� answer for PARTITION. 2

Theorem 5 Problem Π2 is NP-complete.

Proof An instance of problem Π2 is constructed by using the transformation in the proof

of theorem 4 with xj = 1, α1j = 2bj and α2j = bj . The remainder of the proof is the same

except that x = 1
2

∑
j∈J1

αj and y =
∑

j∈J2
αj . 2

A pseudo-polynomial time algorithm for the αij = αi case

Lemma 1 If α1 < α2, there exists an optimum schedule such that the last job to start in

the �rst time window has the largest normal processing time.

Proof Let m be a job with the largest normal processing time. Suppose we have an

optimum schedule (without idle times since α1 < α2) such that the last job to start in the

�rst time window is not m but a job j. We have two cases to consider according to the

time window in which m starts:

1. If m starts in the �rst time window, the job can be interchanged with j since jobs

starting in the same time window can be sequenced according to any order.

2. Otherwise, m starts in the second time window. As jobs starting in the same time

window can be sequenced according to any order, m can be interchanged with the
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�rst job starting in the second time window and consequently m starts at the time

j is completed (remember that the schedule has no idle time). The completion time

Cm is equal to tj +α1xj +α2xm. If we interchange m and j, C ′
j (the new completion

time of j) is equal to tm + α1xm + α2xj = tj + α1xm + α2xj . Let us now compare

Cm and Cj . We have C ′
j − Cm = (α1 − α2)(xm − xj). Since α1 < α2 and xm ≥ xj ,

we get C ′
j ≤ Cm and, as a result, the schedule remains optimum if the two jobs are

interchanged. 2

Theorem 6 If there are two time windows and αij = αi, the makespan minimisation

problem, for model M×, can be solved in pseudo-polynomial time.

Proof We shall prove that the problem can be modeled as a knapsack problem (see Garey

and Johnson 13 for example), which is a well-known problem that can be solved in pseudo-

polynomial time with very e�cient algorithms (for up to several thousands of items, see

Martello and Toth 14). The knapsack problem with n items can be written as follows:


max

∑
j ajyj∑

j bjyj ≤ d

yj ∈ {0, 1}, ∀j ∈ {1, . . . , n}

where aj and bj are respectively the cost and the weight of item j, and d is the capacity

of the knapsack. The binary variable yj is equal to 1 if item j is placed in the knapsack,

and is equal to 0 otherwise. In our case, with each job j is associated a weight bj equal to

α1xj , and a boolean variable yj such that yj = 1 if and only if job j starts in the �rst time

window. The values of aj and d are de�ned as follows.

1. If α1 < α2, there is an optimum schedule without idle times and such that (by

Lemma 1) a job with the largest normal processing time is the last one to start in

the �rst time window. Let m be that job. The makespan of the schedule veri�es

Cmax =
∑

j 6=m α1xjyj + α1xm +
∑

j 6=m α2xj(1− yj). Moreover, jobs starting in the
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�rst time window must complete before d2 − 1 since since m is the last job to start

in the �rst time window (recall that d2 is the start time of the second time window).

Hence we must have
∑

j 6=m α1xjyj ≤ d2− 1 . Therefore, the makespan minimisation

problem can be modeled as:


min Cmax =

∑
j 6=m α1xjyj + α1xm +

∑
j 6=m α2xj(1− yj)∑

j 6=m α1xjyj ≤ d2 − 1
yj ∈ {0, 1}, ∀j ∈ J

Minimising Cmax is equivalent to maximising
∑

j 6=m(α2 − α1)xjyj since α1xm +∑
j 6=m α2xj is a constant. Hence, we have to solve a knapsack problem where aj =

(α2 − α1)xj and d = d2 − 1:


max

∑
j 6=m(α2 − α1)xjyj∑

j 6=m α1xjyj ≤ a2 − 1
yj ∈ {0, 1}, ∀j ∈ J

2. If α1 > α2, there may be an overlapping job in the optimum schedule. Hence, there

are two cases:

• If no job overlaps the two windows, the makespan depend on the jobs that start

in the second time window, that is Cmax = d2 +
∑

j α2xj(1 − yj). Moreover∑
j α1xjyj ≤ d2 since jobs starting in the �rst time window cannot be completed

after time d2 (otherwise there would be an overlapping job). Since d2 +
∑

j α2xj

is a constant, the minimisation of the makespan is equivalent to the following

knapsack problem where aj = α2xj and d = d2:


max

∑
j α2xjyj∑

j α1xjyj ≤ d2

yj ∈ {0, 1}, ∀j ∈ J

• If one job (say m) overlaps the two windows, the makespan depends on the

starting time tm of the overlapping job m. It veri�es Cmax = tm + α1xm +
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∑
j 6=m α2xj(1− yj) since job m is only followed by jobs that start in the second

time window. Since job m starts in the �rst time window, it is completed before

time d2 +α2xm: Otherwise, we would get a schedule with no overlapping job by

starting m in the second time window, at time d2 exactly. Hence, tm + α1xm ≤

d2 + α2xm, that is tm ≤ d2 + (α2 − α1)xm. Since the jobs that start in the �rst

time window are completed before time tm,
∑

j 6=m α1xjyj ≤ d2 + (α2 − α1)xm.

Finally, minimising the makespan is equivalent to maximising
∑

j 6=m α2xjyj

because tm+α1xm+
∑

j 6=m α2xj is a constant, and we get the following knapsack

problem where aj = α2xj and d = d2 + (α2 − α1)xm:


max

∑
j 6=m α2xjyj∑

j 6=m α1xjyj ≤ d2 + (α2 − α1)xm

yj ∈ {0, 1}, ∀j ∈ J

Therefore, we get a solution to the problem by solving n+1 knapsack problems.

Indeed, we just have to solve the case with no overlapping job, and n cases with

an overlapping one (one problem for each possible overlapping job). Then, the

optimum schedule is the best schedule among these n + 1 schedules. 2

Scheduling in M+

The αij = αi and increasing (or decreasing) αi case

Lemma 2 If αi < αi+1, there exists an optimum schedule such that the jobs are scheduled

according to the non-decreasing normal processing time order.

Proof Consider a schedule with two jobs j and j′ such that tj < tj′ and xj′ ≤ xj . Let

α and α′ be the coe�cients associated with the time windows in which j and j′ start

respectively. Let us denote by S the sequence of jobs scheduled during the time interval

[Cj , tj′ [, i.e after j completes and before j′ starts.
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If j and j′ are interchanged, the new schedule is such that j′ starts at time t′j′ = tj ,

followed by the jobs in S and then by job j, without idle times. To show that this

interchange is always possible, we are going to prove that C ′
j ≤ Cj′ , where C ′

j is the

completion time of j in the new schedule.

First, C ′
j = t′j′ + p′j′ +

∑
k∈S p′k + p′j = tj + xj′ + α +

∑
k∈S p′k + xj + α′′, where α′′

is the coe�cient of the time window in which j starts. Then, because there may be idle

times in the former schedule, Cj′ ≥ tj + xj + α +
∑

k∈S pk + xj′ + α′. Hence, the following

inequality holds:

C ′
j − Cj′ ≤

∑
k∈S

(p′k − pk) + α′′ − α′

Note that C ′
j′ ≤ Cj because xj′ ≤ xj . It follows that jobs in S start earlier in the new

schedule and thus
∑

k∈S p′k ≤
∑

k∈S pk. Therefore, α′′ ≤ α′ since job j also starts earlier

in the new schedule which implies that C ′
j ≤ Cj′ . 2

Lemma 3 If αi > αi+1, there exists an optimum schedule such that the jobs are scheduled

according to the non-increasing normal processing time order.

Proof By using a similar interchange argument. 2

Theorem 7 If the model is M+ and αij = αi, the makespan minimisation problem can be

solved in time:

• O(n log n), if αi < αi+1,

• O(n log n + nw), if αi > αi+1.

Proof - If αi < αi+1, there exists an optimum schedule without idle times (it is always

possible to shift a job to the left). Thus, to get an optimum schedule, it is enough to

know how to sequence the jobs, that is, by Lemma 2, to sort the jobs according to the
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non-decreasing normal processing time order. The time to solve the problem is then the

time to sort n jobs, that is O(n log n).

If αi > αi+1, there may be idle times in an optimum schedule. By Lemma 3 we know

how to sequence the jobs. To get an optimum schedule, Algorithm 1 can be applied, which

is de�ned for the case of a given sequence in Section . Sorting the jobs and applying the

algorithm takes time O(n log n) and O(nw) respectively, that is time O(log n + nw). 2

Complexity of the case with a �xed number of time windows

Let us �rst consider the case with two time windows. Alidaee and Womer 2 have shown

that the makespan minimisation problem, for the piecewise linear model where pj = xj if

tj ≤ d and pj = xj +αj otherwise, can be solved in time O(n log n) if the xj 's are identical.

Mosheiov 9 proved that it is a binary NP-hard problem if we have arbitrary xj 's. We

deduce from these two results that our problem (in which d2 corresponds to d + ε, where

ε can be chosen as small as we want) can be solved in polynomial time if α1j = 0 and

the xj 's are identical, but is NP-hard if α1j = 0 and the xj 's are arbitrary. Moreover, a

consequence of Theorem 7 is that �nding an optimum schedule if αij = αi is a polynomial

time problem (with two time windows, either α1 < α2 or α1 > α2).

Therefore two open questions are (i) the complexity of the case where the αij 's are

arbitrary but the xj 's are identical, and (ii) the complexity of the case where αij = αi and

there are three time windows. In order to prove the NP-hardness of these two cases, the

two following problems are considered:

• Problem Π3:

INSTANCE: A set of jobs J , a sequence of three time windows W = (d1, d2, d3, d4),

normal processing times xj , coe�cients αij such that αij = αi and an integer T .

QUESTION: is there a schedule with makespan less than or equal to T?
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• Problem Π4:

INSTANCE: A set of jobs J , a sequence of two time windows W = (d1, d2, d3),

normal processing times xj = 1, coe�cients αij and an integer T .

QUESTION: is there a schedule with makespan less than or equal to T?

It can be checked in polynomial time if a schedule has a makespan less than or equal to

T , so the two problems are in NP. The NP-completeness of Π3 and Π4 is proved by poly-

nomial transformations from a subcase of the PARTITION problem (Garey and Johnson

13):

INSTANCE: Integers b1, . . . , bn such that
∑n

i=1 bi = 2B.

QUESTION: Is there a subset S ⊂ {1, . . . , n} such that
∑

i∈S bi = B and |S| = n
2 ?

Theorem 8 Π3 is NP-complete.

Proof The transformation is the following (see Figure 2 for an illustration):

- J = {1, . . . , n + 1}

- xj = bj , for 1 ≤ j ≤ n

- xn+1 = n
2 B + 1

- d1 = 0, d2 = B + n
2 B + 1, d3 = 2B + nB + 1, and d4 = +∞

- T = 3B + 3
2nB + 1

- α1j = α3j = B, and α2j = T , for 1 ≤ j ≤ n + 1

The construction can be done in polynomial time. Now, suppose there is a �yes�

answer for PARTITION. Jobs associated with S are �rst scheduled, followed by job n + 1,

then by the remaining jobs. Jobs associated with S are processed from time 0 to time∑
j∈S(bj + B) = B + n

2 B, since there are exactly n
2 jobs in S. Hence, job n + 1 starts at

time B + n
2 B = d2 − 1 and is completed at time d2 − 1 + xn+1 + α1n+1 = d3. Finally,
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the remaining n
2 jobs are processed from time d3 to time d3 +

∑
j∈{1,...,n}−S(bj + B) =

d3 + B + n
2 B = T . Therefore the answer for Π3 is also �yes�. Conversely, let us consider a

�yes� answer for Π3. First, observe that no job can start within the second time window

since α2j = T . Moreover, job n + 1 cannot start in the third time window (otherwise

Cn+1 > T ). In fact, job n + 1 must start at time d2 − 1: Indeed, if tn+1 ≤ d2 − 2, then

at most (d2 − 2− d1) + (T − d3) = 2B + nB − 1 units of time are available for scheduling

jobs 1 to n. But since these jobs start in time windows with coe�cients equal to B, they

need
∑n

j=1(xj + B) = 2B + nB units of time to be processed: This is a contradiction.

Suppose now that at least n
2 + 1 jobs start before job n + 1. Since their normal processing

times are greater than or equal to 1 (recall the transformation), the last scheduled one is

completed at least at time
∑n

2
+1

j=1 (1 + B) = (n
2 + 1)(1 + B) > d2. But then job n + 1

cannot start at time d2− 1. Similarly, there cannot be more than n
2 jobs starting after job

n + 1. Therefore, there are exactly n
2 jobs processed before job n + 1 and n

2 jobs processed

after. Let J1 and J2 be the set of jobs starting before and after job n + 1, respectively.

We know that
∑

j∈J1
(xj + α1j) ≤ d2 − 1, i.e n

2 B +
∑

j∈J1
xj ≤ n

2 B + B. Similarly, we

have n
2 B +

∑
j∈J2

xj ≤ n
2 B + B. As a result, we get

∑
j∈J1

xj =
∑

j∈J2
xj = B, and the

schedule de�nes a �yes� answer for PARTITION. 2

Theorem 9 Π4 is NP-complete.

Proof The following polynomial time transformation is used:

- J = {1, . . . , n}

- xj = 1, for 1 ≤ j ≤ n

Let K = B + 1, we set

- d1 = 0, d2 = K(n
2 + 1)B, d3 = ∞

- α1j = K(bj + B)− 1 and α2j = bj + B − 1, for 1 ≤ j ≤ n.
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- T = K(n
2 + 1)B + (n

2 + 1)B

Suppose there is a �yes� answer for PARTITION. Jobs in S are �rst scheduled from time

0 to time
∑

j∈S pj =
∑

j∈S(1+K(bj +B)−1) = K(n
2 +1)B = d2. The remaining jobs are

then processed in the second time window and are completed by time d2+
∑

j∈{1,...,n}−S(1+

bj + B − 1) = d2 + (n
2 + 1)B = T : The schedule de�nes a �yes� answer for PARTITION.

Now, suppose we have a �yes� answer for Π4. First, note that no more than n
2 jobs can

start in the second time window. Otherwise, as pj = bj + B and bj ≥ 1, these jobs would

be processed during at least (n
2 + 1)(1 + B) time units, which is not possible since the

time window is of length (n
2 + 1)B time units. Similarly, no more than n

2 jobs can start

in the �rst time window. Otherwise, as pj = bj + B and bj ≥ 1, these jobs would be

processed during at least (n
2 + 1)(K + KB) = K(n

2 + 1)B + (n
2 + 1)K > T , since K > B.

Hence n
2 jobs start in the �rst time window and n

2 in the second. Now, let J1 be the set of

jobs starting before time d2, J2 the set of jobs starting at or after time d2, x =
∑

j∈J1
bj

and y =
∑

j∈J2
bj . First, note that x + y = 2B. Since

∑
j∈J2

pj ≤ T − d2, we also have

y ≤ B, and consequently x ≥ B. Finally, because
∑

j∈J1
pj +

∑
j∈J2

pj ≤ T , we have

n
2 KB + Kx + n

2 B + y ≤ T , i.e Kx + y ≤ KB + B, which implies x ≤ B. Therefore,

x = y = B and the sets J1 and J2 de�ne a �yes� answer for PARTITION. 2

Conclusion

This paper has introduced a new type of scheduling problems with time dependent pro-

cessing times, where the time horizon is divided into time windows and the processing

time of a job is associated with the time window in which the job starts. Two models

are investigated. The �rst one is related to two other models proposed in the literature.

The second model handles the case of jobs with processing times that are proportional to

the availability of a ressource. Both models can also be used to approximate nonlinear
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time dependent processing times by discretising the time horizon. The results presented in

this paper are summarised in Table 1. Our current research aims at developing heuristic

and exact procedures. In particular, two original integer programming models have been

proposed, whose tight linear relaxations allow rather large instances to be solved using

standard solvers.
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T = 3B

job j
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xj = bj

d1 = 0

α2j = 1

2B B

α1j = 2

n
2 jobsn
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Figure 1: polynomial transformation for Theorem 4.
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d1 = 0

B + n
2 B + 1

d2 d3

B + n
2 B

n
2 jobsn

2 jobs

α1j = B

T

α3j = Bα2j = T

B + n
2 B

job n + 1

job j

xj = bj

Figure 2: polynomial transformation for Theorem 8.
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M× M+

Given sequence
or O(nw) O(nw)

αij = αi and xj = x
if 2 windows : NP-hard if αi < αi+1 : O(n log n)

αij = αi but can be solved if αi > αi+1 : O(n log n + nw)
in pseudo-polynomial time else NP-hard if 3 windows

xj = 1 NP-hard if 2 windows NP-hard with 2 windows

2 windows and α1j = 0 Open if xj = x : O(n log n)
(Alidaee and Womer 2)
else NP-hard (Mosheiov 9)

Table 1: summary of computational complexity results.
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