
Assessing the bus factor of Git repositories

Valerio Cosentino, Javier Cánovas Izquierdo, Jordi Cabot

To cite this version:

Valerio Cosentino, Javier Cánovas Izquierdo, Jordi Cabot. Assessing the bus factor of Git
repositories. 22nd International Conference on Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE, Mar 2015, Montreal, Canada. 2015, <10.1109/SANER.2015.7081864>.
<hal-01257471>

HAL Id: hal-01257471

https://hal.inria.fr/hal-01257471

Submitted on 18 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01257471

Assessing the Bus Factor of Git Repositories

Valerio Cosentino, Javier Luis Cánovas Izquierdo, Jordi Cabot
AtlanMod team (Inria, Mines Nantes, LINA), Nantes, France
{valerio.cosentino, javier.canovas, jordi.cabot}@inria.fr

Abstract—Software development projects face a lot of risks
(requirements inflation, poor scheduling, technical problems,
etc.). Underestimating those risks may put in danger the project
success. One of the most critical risks is the employee turnover,
that is the risk of key personnel leaving the project. A good
indicator to evaluate this risk is to measure the concentration
of information in individual developers. This is also popularly
known as the bus factor (“number of key developers who would
need to be incapacitated, i.e. hit by a bus, to make a project
unable to proceed”).

Despite the simplicity of the concept, calculating the actual
bus factor for specific projects can quickly turn into an error-
prone and time-consuming activity as soon as the size of the
project and development team increase. In order to help project
managers to assess the bus factor of their projects, in this paper
we present a tool that, given a Git-based repository, automatically
measures the bus factor for any file, directory and branch in the
repository and for the project itself. You can also simulate with
the tool what would happen to the project (e.g., which files would
become orphans) if one or more developers disappeared.

I. INTRODUCTION

Software development projects are by nature risky. Ev-
idences reported over time, e.g. [1], point out that a high
percentage of software projects experience failures like cost
or schedule overruns. Such failures are often related to un-
derestimated risks that can range from personnel shortfall to
developing the wrong functionalities [2].

This situation is only getting worse since complexity of
software projects is increasing over time. As a response, risk
management solutions [3] are being more and more put in
place by companies in order to reduce project failures. Risk
management relies on indicators that help to evaluate the
risk of a given project property (cost, time, quality, etc.)
[4]. To asses the employee turnover risk, that is the risk of
key personnel leaving the project, a good indicator is the
concentration of information in individual developers. This is
also popularly known as the bus factor [5] (“number of key
developers who would need to be incapacitated, i.e. hit by a
bus, to send the project into such disarray that it would not
be able to proceed”) 1. A low bus factor means that the risk
is high since the information/knowledge is held only by few
developers. In the worst case scenario, only one of them holds
key knowledge of important components of the project, making
his presence a single factor that could make the project fail.
On the other hand, a high bus factor means that the risk for the
project is low since many developers know enough to carry on
in the case some of them would quit the project (dramatically
or not).

1Note that there exist different alias for the term bus factor. It is also known
as truck factor, bus/truck number or lottery factor.

Even though the concerns about shared project knowledge
are raising and we see more and more development prac-
tices (like pair programming, code review sessions and cross-
training) aimed to increase the shared knowledge within the
development team [6], and therefore, its bus factor, assessing
the actual bus factor for a project can turn into a time-
consuming and error-prone activity for any non-trivial project.
For instance, a project manager can have a hard time to
understand who keeps the key knowledge to maintain a source
code file that has been modified several times.

In order to ease the assessment of the bus factor, we present
a tool2 that automatically calculates such indicator for any
software development project relying on a Git [7] software
repository. The tool provides bus factor information for any
file, directory, branch and file extension in the Git repository,
highlighting the key (i.e., most knowledgeable) developers
for each of them and for the project itself. In addition, the
tool allows to simulate the impact of one or more developers
leaving the project, showing the file, directories, branches and
file extensions that would be affected if they disappeared.

The bus factor indicator is related to the concept of code
ownership ([8], [9]) in collaborative software development.
Nevertheless, beyond potentially sharing an initial step to
identify developers with certain knowledge on an artifact, the
way this information is used is significantly different since
our goal is to minimize the employee turnover risk and not
to recommend people that could have some expertise on the
topic/technology of a given artifact.

The work in [10] was the first to propose an algorithm
to measure the bus factor by using information about code
ownership derived from a code repository. However, the au-
thors calculates the bus factor according to the files modified in
commits and they rely on the assumption that all the developers
that have made at least a commit on a file, have the same
knowledge of that file. The work presented in [11] provides
an implementation of [10] for SVN repositories, however, it
also lacks of support for filtering the files to analyse, merging
the activities of developers that use several accounts, or tuning
the file coverage threshold to make a developer be part of the
corresponding bus factor.

The remainder of the paper is organized as follows. Section
II describes the process we follow to calculate the bus factor,
Section III presents the tool architecture and its functionalities,
Section IV reports on the evaluation of our tool and finally
Section V ends the paper.

2A demo of the tool is available at: http://youtu.be/fo9qy0ksX0Q

Git repo

Bus factor
assessment

Tuner

VisualizationFile
analyzer

Dev. knowledge
calculation

Key Dev.
identification

Fig. 1: Process overview.

II. PROCESS DESCRIPTION

The bus factor indicator is conceptually simple to under-
stand but there is no formal definition that can be used to
calculate it. Therefore, this section presents our own pro-
posal to compute it. The process can be parameterized at
several points so that companies can tailor it to their needs.
For instance, some companies may be more risk-averse and
therefore opt to require stronger conditions for a developer
to be considered part of the bus factor (resulting in a lower
bus factor, and thus, in a more conservative risk evaluation
that could trigger countermeasures early on) while others
may be happy accepting a higher risk and consider that even
developers with little knowledge on a file would be able to
take it over if the situation requires so.

The process we follow to assess the bus factor for a given
Git repository is shown in Fig. 1. It is composed of 6 steps,
respectively File analysis, Developer Knowledge calculation,
Key developers identification, Tuner, Bus factor assessment
and Visualization. They are described in the remainder of this
section.

A. File Analysis

This step is used to retrieve all information regarding who
(and when) modified each file in the repository. It starts by
examining the commits in each branch of the repository. For
each commit, it collects the author name, the time when the
commit was pushed and the information related to the affected
(i.e., modified, added, renamed, deleted) files. For binary files
(e.g., images, executable files), the process collects only the
change event type. For text files (source files, configuration
files, documentation, etc.), it goes one step further and collects
the previous information at the line level. Regular expressions
are used to identify the addition and deletion symbols in the
diff information with respect to the previous version of the file.

Besides, for each file, the process also records the number
of times it has been included in a commit, the branch and
directories in which is contained, its file extension and the
history of the file to check whether the file has been renamed or
moved across the repository. If so, the process recursively finds
and groups together all the corresponding previous versions.

B. Calculating the Developer’s Knowledge

Based on the file information, this step assigns a percentage
value of knowledge for that file to each developer in the
project. This value is then propagated to assign a knowledge
percentage to the developer for each directory, branch and the
project itself. As an auxiliary value, this is also aggregated
at the file extension level. This propagation is performed
by simply adding up the knowledge on individual files and

scaling the results based on the number of files in that
directory/branch/project. This ensures that developers with a
little bit of knowledge on many files are still represented in
the knowledge chart for the, for instance, directory where those
files are located. The resulting knowledge value will be the
basis of the bus factor assessment calculation for the different
artifacts in the project, as described in the next section.

The developer’s knowledge on a file is measured according
to one of the four different metrics described in what follows.
It’s up to the organization to choose which one it prefers, also
based on their typical development method (e.g., in terms of
the frequency and size of commits). All metrics play with the
information of the file modifications aggregated in the previous
step, again, either at the file level, based on the number and
order of modifications each developer made on the file [?], or
the line level, based on the number and order of modifications
on each line ([8], [12]) later summed up and scaled to a
percentage value to get the corresponding developer knowledge
at the file level.

Metrics

The metrics differ on how they combine the importance of
the number and order of modifications to assign the knowledge
value (e.g., is the last developer to modify a file more knowl-
edgeable than the former ones?). We explain the four metrics
(for the case of text files) using as illustrative example the
following scenario. Let A, B and C be 3 users that modified a
file f, composed of two lines. The history of the modifications
on such lines are:

A→ B → A→ B → B → C (1)
A→ B → A→ C → B → C (2)

1) M1 - Last change takes it all: This metric assigns all
knowledge of a line/file to the last developer that modified that
line (or file for binary files). Thus, in the example C would
be assigned 100% of the knowledge for the two lines, and
consequently 100% of f.

2) M2 - Multiple changes equally considered: This metric
counts the number of times a line has been modified during
the life-cycle of the project. It assigns more knowledge to the
developers that modified the line/file most times. Therefore,
with this metric, the result can be biased towards people with
a coding style using smaller but more frequent commits.

Applying this metric to our example would give, for line
1: A knows 33,3% (2/6), B knows 50% and C the remaining
16,7% while for line 2, A, B and C get 33,3% each. Thus,
the overall knowledge of f for B is 41,7% (83,3/200), for A is
33,3% and for C is 25%.

3) M3 - Non-consecutive changes: In order to balance
the effect of multiple changes on a line, this metric assesses
the developer knowledge according to the number of non-
consecutive changes on the line. By applying this metric, the
modifications on line 2 do not change, but those ones on line
1 would now look like:

A→ B → A→ B → C (3)

since the two consecutive changes by B are merged and
counted as one.

Thus, the result of this metric for line 1 is: A and B know
the 40% of it and C the rest; while for line 2 the result is the
same as before. The knowledge of f is then shared according
to the following proportions: A and B know 36,7% each while
C 26,6%. Note that, with this metric, the knowledge of f for
B has decreased with respect to the previous metric.

4) M4 - Weighted non-consecutive changes: This metric
assesses the developer knowledge by relying of the previous
metric modified to take into account the position of the
modifications in the time-line evolution of the line. It is used
to assign an incremental importance to the later modifications
on the line. By applying this metric, the modifications for the
two lines are transformed into:

A ∗ 1→ B ∗ 2→ A ∗ 3→ B ∗ 4→ C ∗ 5
A ∗ 1→ B ∗ 2→ A ∗ 3→ C ∗ 4→ B ∗ 5→ C ∗ 6

The result of this metric for line 1 is: A knows 33,3%
(4/15), B 40% and C 26,7%. On the contrary, for line 2, A
knows 19%, B 33,3% and C 47,7%. Thus, C knows 37,1%, B
36,7% and A 26,2% of f.

C. Key developer identification

This step identifies the developers that have enough knowl-
edge (as calculated on the previous section) on any given
software artifact to be part of the bus factor since any of them,
if “surviving”, would be able to keep working of the artifact.

Again, how much knowledge is enough to be the sole
responsible developer to take over an artifact if needed (con-
dition to be included in the bus factor, remember that a bus
factor of three means that if the three developers are hit by
a bus the project fails but if only two of them are hit the
last one knows enough to continue) has no unique answer.
As before, we provide a flexible formula that can be easily
adapted to represent different situations, for instance, you can
represent with it that a fixed minimum threshold of knowledge
automatically puts you in the bus factor or more complex
situations in which the top developers (relative to the total
number of developers involved in the file) are selected.

Our formula has two different components to give more
flexibility to the calculation process. We first calculate the
primary key developers and then the secondary ones. Their
sum gives the bus factor for the artifact. Primary developers
are those that have modified a minimum percentage X of the
artifact. Secondary developers know at least a subset Y of X.
By default (and based on our own experience), X is set to 1/N
where N is the overall number of developers that have ever
modified the artifact and Y is set to half of X.

For instance, given 4 users A, B, C, D that hold a knowledge
of the file f of 36%, 32%, 20% and 12% respectively, with our
default settings A and B would be classified as the primary
developers since they know more than 25% (1/4) of f while
C would be considered a secondary developer due to knowing
more than half of the threshold for the primary developers.
Instead D is not part of the bus factor, giving a total bus factor

of three (meaning that if at least A, B or C continue in the
project, it can go on, if only D is there, the project will fail
since D doesn’t know enough about f).

D. Tuner

This step is used to tune the bus factor analysis. In
particular, it allows the user to 1) control the resources and the
developers to be analyzed and 2) parameterize the computation
choosing the metric and the values for the bus factor formula.

The second part is based on what we have previously
explained so we won’t repeat it here. Regarding 1), the tuner
allows users to filter out some files/directories/branches from
the analysis (e.g., to focus only on source code files and
remove libraries and other components), choose the granularity
of the analysis (file or line-level) and group developers either to
merge different user names corresponding to the same physical
person or to calculate the bus factor at the development sub-
team level by merging all developers in the same sub-team.

E. Bus factor assessment

The whole process is repeated at each level of the project to
assign a bus factor to each file, directory, branch, file extension
and the project itself. Note that the way the bus factor is
calculated a given developer could be part of the bus factor
of a file but not of the directory where that file is included.
That is, she could be a key developer to maintain the file but
if she leaves the project, the project itself could survive (even
if maybe that file needs to be rewritten from scratch if its bus
factor was 1 and therefore nobody else can take over it).

F. Visualization

This step depicts the bus factor with a graphical visualiza-
tion. It shows the bus factor for each file, directory, branch, file
extension and for the project itself. It provides a short summary
(e.g., number of contributors, most used file extensions, etc.)
of the project as well as the list of developers (i.e., primary and
secondary ones and the rest) contributing the repository with
their corresponding knowledge. See Figure 4 as an example.

III. TOOL DETAILS

This section gives some details about the tool. We first
describe the tool architecture and then its main function-
alities. To facilitate the visualization of the tool results, a
live demo for a project called GiLA is available online at
http://youtu.be/fo9qy0ksX0Q.

A. Tool Architecture

The tool3 relies on different technologies. The bus factor
calculation is done by a script in Python that uses the version
0.3.1 of the library GitPython4 to analyse the repository. The
output of the tool is a JSON file, that is exploited with
JavaScript to visualize the bus factor information in a web-
page.

The tool takes as input parameters a Git repository plus
the additional parameters that are used to tune the bus factor

3The tool can be downloaded at https://github.com/atlanmod/busfactor
4http://pythonhosted.org/GitPython/0.3.1/

a

file-ext: STRING

file-exts: {file-ext ","}*

b

resources: {branch ":"
 directory ":"
 file ","}*
branch: STRING | "*" | ""

directory: STRING | "*" | ""

file: STRING | "*" | ""

c

user-name: STRING

aliases: {user-name ":"
 alias ","}*

alias: STRING

Fig. 2: Structures of the files used to parameterize the tool

analysis as mentioned in Section II-D. The information about
the elements to filter out from the analysis are given via three
files following the structure shown in Fig. 2.

B. Tool Functionalities

The tool is launched thanks to a simple GUI interface (Fig.
3) that allows to select the Git repository to analyse and tune
the bus factor analysis. Once the process has finished, the tool
starts a SimpleHTTPServer instance and redirects the user to a
web-page (Fig. 4 shows the generated page for a project called
GiLA5) displaying the results of the bus factor analysis.

A short summary of the project (name of the project,
number of files, etc.) and the corresponding bus factor are
shown at the top. All branches, directories, files and file
extensions that have not been filtered are grouped into scroll-
panes in the page and represented as clickable boxes, which
sizes are reduced in half as soon as the number of boxes in
the scroll-pane exceeds a tuneable threshold. Clicking on the
boxes shows the corresponding relations with the other boxes
(e.g., files in a directory), its details (e.g., its name), its bus
factor and the knowledge percentages hold by key developers
(see an example in Fig. 5).

The page also shows the project developers as boxes. When
a developers is clicked, the web-page highlights the software
artifacts where she is a key developer. Developers can also be
temporally removed to simulate the effect of those developers
leaving the project. This recalculates the bus factor and shades
the files, directories, branches and file extensions that would
be affected (Fig. 6) because of their disappearance.

IV. EVALUATION

We have evaluated the tool by using it to analyze a number
of repositories and checking its results with the developers
involved in those repositories to confirm that the results
matched their feeling about who were the key developers in
each project component.

We first did this for three of the tools developed in
our research group6 (Collaboro, GiLA and EMFtoCSP). The
feedback we got allowed us to refine our default settings for the
different calculations in the process. To give just an example,
in one of the projects we got an unexpected high value for
one of the developers. A detailed analysis revealed that she
was performing smaller but much more frequently commits
than the rest and therefore “stealing” knowledge points from
the rest. In that scenario, a metric like M3 or M4 can help
correct the deviation.

5The result web-page is available at: http://atlanmod.github.io/busfactor/
6https://github.com/atlanmod/

We later repeated the experiments with the private reposi-
tories of Nelio Software 7 company where one of the authors is
also involved (though not currently as a developer), discovering
that some components exposed a low bus factor, thus triggering
some discussions within the company.

Finally, in order to evaluate the performance of our tool
when analysing large repositories, we tested it on some large
projects available on GitHub (note that our tool works with any
Git repository, thus it can be easily applied to GitHub ones).
For instance, the analysis of the master branch of Angular.js
took 49 minutes (6,145 commits over 2,505 files modified
22,867 times involving 601,828 line modifications). This heavy
analysis does not produce instant results, but we believe the
delay is reasonable.

V. CONCLUSION

In this paper we have presented a tool for assessing and
visualizing the bus factor for software development projects
using Git. The tool calculates the bus factor for the project
and for any file, directory, branch and file extension in it. The
calculation process underlying can be easily tuned to better
fit the development process in place in a given company.
In addition, the tool allows to simulate what-if situations of
developers leaving the project.

As further work, we plan to calculate the bus factor for
a number of open source projects and see how they compare
to each other based on different dimensions (language, size,
etc.). Moreover, we would like to come up with different
combinations of configuration parameters for the tool that
can be recommended to end-users based on their development
process.

REFERENCES

[1] M. Bloch, S. Blumberg, and J. Laartz, “Delivering large-scale IT
projects on time, on budget, and on value,” Harvard Business Review,
2011.

[2] B. W. Boehm, “Software risk management: principles and practices,”
Soft., IEEE, vol. 8, no. 1, pp. 32–41, 1991.

[3] J. McManus, Risk management in software development projects, 2012.
[4] J. Menezes Jr, C. Gusmão, and H. Moura, “Indicators and Metrics for

Risk Assessment in Software Projects: A Mapping Study,” in ESELAW,
2008.

[5] M. Bowler, “Truck factor,” Tech. Rep., May 2005. [Online]. Available:
http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/

[6] A. Cockburn and L. Williams, “The costs and benefits of pair program-
ming,” Extreme progr. examined, pp. 223–247, 2000.

[7] S. Chacon and J. C. Hamano, Pro git, 2009, vol. 288.
[8] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers

drive software evolution,” in IWPSE, 2005, pp. 113–122.
[9] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t

touch my code!: examining the effects of ownership on software
quality,” in FSE, 2011, pp. 4–14.

[10] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and
K. Schneider, “Are developers complying with the process: an xp study,”
in ESEM, 2010, p. 14.

[11] F. Ricca, A. Marchetto, and M. Torchiano, “On the difficulty of
computing the truck factor,” in Product-Focused Software Process
Improvement, 2011, pp. 337–351.

[12] L. Hattori and M. Lanza, “Mining the history of synchronous changes
to refine code ownership,” in MSR, 2009, pp. 141–150.

7https://neliosoftware.com/

Fig. 3: GUI to tune the bus factor analysis

Fig. 4: Landing page for GiLA

Fig. 5: Bus factor analysis of a file in GiLA

Fig. 6: Simulation of a primary key developer loss in GiLA

