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Cyclic creep damage in thin-walled structures

H Altenbach'*, D Breslavsky’, O Morachkovsky”** and K Naumenko'
'Department of Engineering Sciences, Martin-Luther-University Halle-Wittenberg, Halle, Germany
2Department of Theoretical Mechanics, Kharkov State Polytechnical University, Kharkov, Ukraine

Abstract: Thin-walled structural elements are often subjected to cyclic loadings. This paper presents a
material model describing creep behaviour under high-cycle loading conditions (N = 5 X 104-10°).
Assuming that the load can be split into two joint acting parts (a static and a superposed, rapidly varying
small cyclic component), the asymptotic expansion of two time-scales has been applied to the governing
equations of the initial-boundary value creep problem. The system of equations determine two problems.
The first is similar to the creep problem by quasi-static loading. The second is the problem of forced
vibrations. Both the problems are coupled by constitutive equations. The model is applied to the simulation
of the cyclic creep damage behaviour of thin-walled structural elements. The results are discussed for two
special numerical examples (a conical shell and a circular plate). The simulations show that the creep and
the damage rates as well as the failure time are strongly sensitive to the redistribution of the stress state
cycle asymmetry parameter As. The values of A increase during the creep process. For particular cases of
the loading frequency, A5 can exceed the critical value. In this case the material model must be extended in
order to consider the creep—fatigue damage interaction.

Keywords: creep, damage, high-cycle loading, thin-walled structures

NOTATION

A " stress cycle asymmetry parameter
As stress state cycle asymmetry parameter
c creep strain

cij creep strain tensor

Eiju Hookean tensor

f cyclic frequency of the surface load
k, I, m, n, r exponents in the uniaxial creep damage laws
K] stiffness matrix

[M] mass matrix

n; outer normal to the body surface

N number of cycles

Di surface load vector

Sij stress deviator

t, T time

x rupture time

T cycle period

U; displacement vector

Xi, Z coordinates

0 generalized displacement vector

&y strain tensor
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o stress

Oeq equivalent stress in the damage evolution
equation

o stress tensor

owm von Mises equivalent stress

w damage variable

Q angular frequency of the surface load

Subscripts and superscripts

a amplitude of the cyclic part
cr creep

e finite element

el elastic

eq equivalent

h hydrostatic

i, j, k, I 1,2,3

T transpose

s axial

0 tangential

0,1 slow and fast components respectively

1 INTRODUCTION

Creep damage phenomena in materials and structural
members (tubes, pressure vessels, chambers, etc.) have
been widely studied in recent years. The material model
describing the creep behaviour of metals and alloys can be
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2 H ALTENBACH, D BRESLAVSKY, O MORACHKOVSKY AND K NAUMENKO

represented as a set of first-order differential equations
which contains the constitutive equation for the creep strain
rate tensor as a function of the stress tensor, temperature
and some internal state variables and appropriate evolution
equations [1]. The sensitivity of the minimum strain rate
(secondary creep) to the stress level can be described by
different stress functions (power law, hyperbolic function,
etc.) formulated for different mechanisms of creep defor-
mation [2]. Primary creep by stationary or varying loading
can be characterized by introducing empirical functions
(time or strain-hardening functions) or suitable hardening
variables with evolution equations. Models which are able
to describe creep and creep—plasticity interaction by differ-
ent kinds of loading have been reviewed in reference [3].
The effect of tertiary creep can be described using
continuum damage mechanics (CDM) originated by Ka-
chanov [4] and Rabotnov [5]. The state of the art of CDM
has been reported in several review papers, monographs
and textbooks (see, for example, references [6] to [12]).
Here the creep behaviour in the case of fast oscillations
(frequencies greater than 1-2 Hz) with amplitudes of the
cyclic stress significantly smaller than the value of the
constant stress is discussed. Such loading conditions are
widespread in engineering applications, where techno-
logical or operational conditions (non-stationary flow, com-
bustion, acoustic action, load oscillation, etc.) favour the
development of forced vibrations. Creep behaviour ob-
served in such a loading (known as dynamic creep [13—
15]) can be characterized by an acceleration of creep strain
and a decrease in the fracture time in comparison with
classical creep by static loading. The creep strain rate
becomes additionally dependent on the amplitude of the
applied cyclic stress. The available constitutive models
representing the creep strain rate by static or slowly varying
loading can be used for the dynamic creep behaviour.
However, numerical problems can occur in applications to
structural analysis. Because of fast oscillations, very small
time steps are necessary for stable time integration.
Furthermore the influence of the small amplitude of the
fast oscillating stress on the strain rate is observable in the
global ‘slow’ time. The numerical effort can be signifi-
cantly decreased using a suitable time-averaging procedure.
The first investigations were directed at the evaluation of
dynamic creep uniaxial models. Most of them are based on
experimental data from tension tests with specimens jointly
acted upon by static and harmonic varying tension stresses.
The approach which has been proposed by several
researchers, but most notably by Lasan [16], Rabotnov [5]
and Taira [13], substitutes the equivalent stress terms in the
corresponding material model for constant loading.
Although there was general agreement between the results
of experimental studies by the proposed equations, the
question about the laws of structural behaviour remained.
The possibility for considering rapidly oscillating load-
ing in multiaxial cases has been discussed in reference [17]
by applying the asymptotic expansions of two time-scales
to the governing mechanical equations of creep. Using a
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similar procedure a multiaxial creep damage model has
been proposed in reference [18]. In the uniaxial case this
model coincides with the Lasan—Taira—Rabotnov descrip-
tion. Verification of the suggested constitutive equations in
the case of complex stress states was reported in reference
[19] for cyclically loaded thick cylinders, in references [20]
and [21] for plates in bending and in reference [22] for
notched plates, based on experimental data and results of
numerical simulations.

The satisfactory agreement obtained in these investiga-
tions permits the numerical simulation of cyclic creep
damage behaviour for other types of structural model. Here
the cyclic creep behaviour of thin-walled models, discussed
previously in reference [23] for static loading conditions, is
investigated.

2 MATHEMATICAL MODEL

The creep equations for bodies, subjected to rapidly
oscillating loads, can be formulated using the two time-
scales (‘fast’ and ‘slow’) method of asymptotic expansions
[17]. Here the method proposed is extended in order to
consider creep damage evolution with application to thin-
walled structures.

Assume that the body is determined by the domain &/
with the boundary & = %| U &,. The body is fixed on &
and loaded by cyclic forces with constant p? and amplitude
p? components, p; = p? + p*®(ft) (i=1,2,3) on %,
where @D(ff) is a periodic function with frequency
f = 2/2m and ¢ denotes time.

As follows from experimental observations [5, 13] for
the case of fast cyclic loading with uniaxial stress ¢® and
relatively small amplitude o2 the shape of the creep curve
is the same as that of the typical static curve. The stress
cycle asymmetry parameter is determined as A4 =
0%/06°<1 and the number of cycles to fracture is
Nx= txf >0.5X10°. Even such a small cyclic action
leads to an appreciable increase in the creep rate, decrease
in the fracture time and fracture strain. It is suggested that
the maximum uniaxial stress 6° + o® is moderate, lying
below the yield limit. In the following it will be assumed
that the level of loading and the frequency of its cyclic
component correspond to the conditions which are neces-
sary for the realization of the phenomenon of dynamic
creep in the arbitrary point of the volume.

Under the assumption of small strains and displacements
the kinematical equations are

e = €5 + ¢y = Yuyj + uy) (O]

where &, s? and c; denote the components of the strain
tensor and its elastic and creep parts respectively, u;
denotes the components of the displacement vector and
(...),; denotes the partial derivative with respect to the
coordinate x;. The equilibrium equations under the restric-

tion of negligible volume forces can be written as

S06598 © IMechE 2000



CYCLIC CREEP DAMAGE IN THIN-WALLED STRUCTURES 3

Oijj = Pt )

where ¢ are the components of the stress tensor and p is
the density. The dot means the derivative with respect to
the time ¢. Constitutive equations follow from the general-
ized Hooke’s law:

0 = Eyu(en — cn) 3)

with Ej;; the components of the tensor of elastic material
constants. Appropriate boundary and initial conditions have
to be added to equations (1) to (3):

U; :Hl‘, aijnj :p?—i—p?@(ft)

g] %2
ui(0) = 1,(0) = 0, ci(0)=0
where %; are given boundary displacements. The constitu-
tive model of creep will be formulated following Rabot-
nov’s [5] theory of structural parameters and assuming that

the creep strain rate is not influenced by the hydrostatic
stress:

é'VM
OvMm

. 3 . .
Ckl = 5 St CyM = CVM(CVM5 OvM, w) (4)

where

_ 1 3
S =0 — O0nOu, op = 300, 383784

Owm =
are the deviator, the hydrostatic stress and the von Mises
equivalent stress. Equations (4) are regarded as independent
of the kind of stress state. Assuming power-law creep the
constitutive and evolution equations can be written as

(0eg)*
(11—

(ovm)"

d-onymw =P

cym =B

0<w=< wx

)

where w is the phenomenological damage parameter. The
constants B and D, the exponents n, m, k, [ and r and the
critical damage value wx are material dependent. They
should be identified from uniaxial creep tests.

Now two main assumptions are presented which allow
the use of the method of asymptotic expansions for the
solution of equations (1) to (5). The first deals with the
possibility of asymptotic representation for the principal
unknowns by introducing the small parameter
u="T/ts=1/(fty) < 1. As follows from experimental
observations [5, 13], for the fast cyclic loading the global
creep process occurs there as close to an averaged process,
which can be observed in the usual slow time. The second
assumption determines that such asymptotic expansions are

506598 © IMechE 2000

admissible by using functions which depend on two time-
scales: ‘slow’ and ‘fast’.

The asymptotic expansions of the displacement vector
u;, the stress tensor o; and the strain tensor ¢
(i, j=1,2,3), which are collected in the vector
z = z{u;, 0y, €;}, can be represented as follows:

2(x1, X2, X3, £, T) = ZO(XI, X2, X3, 1)
+ uzt (v, X2, X3, 7) + (6)

where the functions of oscillatory motion are varied in the
time-scale 7=1¢/u, and ¢ and 7 are considered as
independent variables. ¢ denotes the ‘slow’ time variable
and 7 is the ‘fast’ time variable.

The total derivative of the function z can be presented in
the following form:

Dz dz 1 dz
(2% had 7
Dt (dt Tt dr> il ™

The displacements, the stresses and the strains are
functions of the coordinates x; and the time. It is presumed
that, after averaging over the period 7,

(2°Cx1, %2, 33, ) = 2°(x1, 32, X3, )
(z'(x1, %2, X3, 7)) = 0

where

0=t ae= e

0 0

is the operator of the averaging and & = t/T. The functions
with index 0 and 1 correspond to coefficients of the
expansions (6). i

Substituting equation (6) into the general system of
equations of the creep problem and after applying to the
obtained expressions the procedure of averaging, the equa-
tions of the initial-boundary value problem will be
formulated. The averaging over time produces two sets of
equations. The unknowns of the first set are dependent on
the ‘slow’ time variable ¢ only. The unknowns of the second
(remaining) set are dependent on the ‘fast’ time variable 7.
The system of equations that determines the global multi-
axial creep process in the ‘slow’ time-scale has the
following form:

0! 0,

_ 0 _ 1,0 0
i = &5 = 5(Uy; + 1))

0 0 0
0y = Eyu(ey — cp)

®)

with the boundary conditions

JOURNAL OF STRAIN ANALYSIS VOL 35 NO 1
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The equations which can be obtained after using the
procedure of asymptotic expansions for ‘fast’ oscillatory
motion with time-scale are:

T _ .1 1 __ 10,1 1
Tijj = Phiger €5 =5, + ),

1 _ .1
0, = Eijuey

©)

with the boundary and initial conditions

_ 1
Ho=m o] =—ple®
% z, M

u;(0) = u;£(0) = 0, k=0

pi = pi y
The constitutive equations corresponding to cyclic creep
should be added to the system of equations (8).

Assuming that the variation in the creep and damage
rates during the small cycle period T is negligible in
comparison with their averaged values, the averaging of the
constitutive and evolution equation in the uniaxial case
yields

dc® _ (O.O)n
@~ T e
da® A (O.O)k

ar PRI ET (@

(10)
with
®) = | [1 +u%§] s
(11)

Here (H) and (K) are slowly varying functions of time z.
The asymptotically averaged values of the creep strain
® = (c) and damage parameter @° = (w) vary in the slow
time-scale and determine the global creep process.
Consider a function @(f7)=sin(2nf7), so that
D(&) = sin(2n&). The creep deformation cannot be suc-
cessfully partitioned within the fast time-scale &. This
makes it possible to assume system (9) for the coefficients
of fast asymptotic expansions, corresponding to elastic
non-stationary motion under the action of a harmonic
oscillatory load p?sin(2mw) on the surface %, where

JOURNAL OF STRAIN ANALYSIS VOL 35 NO 1

p? = pi(x1, x2, x3). Taking into account the periodicity of
the surface load, the following separation can be per-
formed:

1 .
a}j = ;O?j(xla X2, X3) sin(2m&)

u;, = iu?(xl, X2, x3) sin(2m§)
12)

These variables are determined by solution of the system of
equations (9), which presents the forced oscillations
problem. Thus ~

o+ p*u? =0, o= %Ei]-kl(u’}{’, +uiy) (13)

with respect to the boundary conditions

a _ ) __ a
i i Oyhj| = Pi
& 783

30
.0 _2CM 0 20 _ 0 (.0 0
Cp = 350 Ski> Com = Com(Coms Oy @) (14)
OVM

where cy; are the components of the creep strain tensor and

0 _ 0 0 0_1.05.
Sg =0 —0p0u, Oh =300

ol = 35050
0 \n
-0 (o)
= B(H) I
e T T

1
(H) = E%L[l + A sin(2n§)]” d&

(15)

The coefficient (H) can be calculated by using the value of
the stress state cycle asymmetry parameter 45 = 0%,/0%,

Jada 3 3 a __
28585 1s the von Mises stress, s5=

0% — 030y is the deviator, and of = J0%0; is the mean
stress for the oscillating process.

The equivalent stress in the right-hand side of the
damage evolution equation (5) has to correspond to the
criterion of the durable strength under complex stress state.
In the case of quasi-static loading, the Leckie—Hayhurst
[24] criterion is mostly used as a damage equivalent stress

a —
where ody =

ogq =aohy+ (1 —ayo! (16)

where a is a scalar value (0 <a<1) and of is the
maximum principal stress.

S06598 © IMechE 2000



CYCLIC CREEP DAMAGE IN THIN-WALLED STRUCTURES 5

Experimental observations of uniaxial creep of metals
and alloys under cyclic loading show a significant accelera-
tion of creep and decrease in the time to rupture in
comparison with pure static loading. The essential quanti-
tative difference between quasi-static and cyclic damage
accumulation behaviour can be observed. The uniaxial
dynamic creep can be assumed to be frequency indepen-
dent but strongly influenced by the uniaxial stress cycle
asymmetry parameter 4 = 0®/0% < 4.,. The limiting value
of A, can be obtained from creep tests by cyclic loading
(see, for example, references [13] and [25]). This value
corresponds to two different situations: 4 < A4, fracture
occurs as the result of the cyclic creep damage process;
A > A, fracture due to creep—fatigue interaction. Here the
discussion is limited to the first case. The frequency range
of the considered phenomenon is referred to high-cycle
loading, when the cycle period is essentially small and the
number of cycles is rather high.

Applying the averaging procedure to the damage evolu-
tion equation (5) gives

(%)

.0 _
& = DK oy

1 1
(K) =5 L[l + Aeq sin(2mé)]* d&

(17)

where deq = 0%,/0%, 08 = ao?+ (1 —a)o}. Thus the
damage rate in the case of rapidly oscillating loading
becomes additionally dependent on the value of the equiva-
lent stress state asymmetry parameter 4eq. Such a depen-
dence has been established by experiments on cyclically

loaded steel and aluminium tubular specimens [26].

3 NUMERICAL SOLUTION TECHNIQUE

The equations of the initial-boundary value problem can be
summarized as follows: for the equivalent static creep
problem (slow process),

0 _ 1,0 0 .
g =5yt g, w| =1
)
0 0
at]',j:O’ Oiin; = p;
&>
-0
0 _ 0 0 0 _3&M 0
0 = Eju(ey — cp), Cu=75"0 Su
v 20
vM

0 _ 0 0
S =0y — 00k,

0o _ 3,00
oM = \/isijsij

S06598 © IMechE 2000

0 _ 1505
Uh—30,-j5y

0 \n
-0 (oym)
= B(H)——M__
S = B oy
1 1
(H) = EJ [1 + Agsin(2m)]” d&
0
(0.0 )k
-0 eq
= D(K)——___
O = PR Wy T
1! . .
(K) = ﬁj [1+4 Aeq sin2mé)]* d&
0
a
A= ol =i
vM
s = 0% — 049y, 0% = %oj‘jdij
oq
Aeq = O—Oq, 03, = aoly + (1 —a)al
eq
Ogq = a0y + (1 — a)oi
Cjj =0, w =0
t=0 t=0

and for the problem of forced vibrations (fast process),

O‘i-lj’j + pQ%ut =0

a __1 a a
Gij - iEijk](uk,l + ul’k)

a
U;

2

—a a4 _
=U;, oyn;
Z

=i

i i
&=0

£E=0

Equations describing the static creep problem can be solved
in the usual way if the functions (H) and (K) are known.
These functions can be determined by calculating fields of
amplitude stresses from the solution of the forced-
vibrations problem. Both the problems can be solved using
the finite element method [27].

As an example the creep damage behaviour of thin shells
of revolution under axisymmetrical loading is considered.
The surface of revolution produced by rotation of an
arbitrary curve is considered as the middle surface of the
shell. The finite element in the form of a truncated conical
shell was used in the calculations. This element has been
discussed in detail in reference [27]. The coordinate shell
surface is presented by a set of the truncated cones, which
are connected by nodal circles. Both regular and irregular
finite element grids have been used for discretization of the
shell meridian. As usual, the grid condensation was used in
the regions of significant stress gradients.

For both the problem of creep damage and the problem
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of forced vibrations, the following generalized displace-
ments are used as the principal unknowns:

&' = {u', w', 0'}7, 1<i<N; (18)
where the radial w' and the axial u’ displacements along
the global coordinate axes and the angles of rotation of the
normal vectors, 6’, are included. N; is the number of nodes.
The displacements which are normal to the shell origin are
approximated by third-order polynomials. For the tangen-
tial displacements a linear dependence is used. The

kinematical equations can be presented in the following
form:

0_ 0 0 0_ 0 0
s =€, ¢, €g=ey+cy (19)

€
where €0 and ¢} are the total strains, ) and e} are the
elastic strains and ¢? and ¢ are the creep strains. s and 6
are the indices which correspond to axial and tangential
components respectively. Assuming that the creep strains
are known at a fixed time step the generalized Hooke’s law
takes the form

Ez

E
05 =753 (& +veg) + T (1) +vip)
- 1— V2 (c(s) +'VCg)
E Ez
oy :1—_;5(62 + ved) + = Gy + v
-1 _Vz(cg—f—vcg)

(20)

where y? and xg are the changes in curvature in the s and 6
directions respectively.
Equations (20) can be rewritten in the matrix form

0° =[Dle — o° 3))

where 0° denotes the stress vector and [D?] is the Hookean
matrix. The vector ¢° is fully determined by the creep
strains

0’ = [Pnlcm (22)

The matrix [Py,] can be obtained from equations (20) and
the components of the vector ¢y, = {c1, ¢2, 3, c4}T can be
calculated as

h/2
c = J Cg dZ,

12
cy) = J c(s)z dz
—h/2

—h/2
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/2
3= J cg dz,

h/2
cy = J cgzdz
—h)2

—h/2
(23)

where £ is the shell thickness. The cyclic creep laws (14)
and (15) with consideration of the constitutive equation for
the damage parameter (17) take the form

) (03 )n—]

X :EB(Hﬁi‘%(US —30%)
5 a0

¢ —§B<H>ﬁhz)0)—r]m(02 ~309)

24

The system of linear algebraic equations for the principal
unknowns has to be solved at each time step and can be
written as follows:

[K]6° = F° (25)

Here [K] denotes the global stiffness matrix, 6° is the
generalized displacement vector and F° is the vector of
nodal forces. The local (element) matrices

K°] = j [B°]T[DF][B*] d7.,

e

Fe= j NI p* dS. — J (BT [D ] Ve
Se Ve
26)

are included as submatrices for the discretizing shell
model. [N]® denotes the matrix of shape functions; [B]° is
the matrix which realizes the strain—displacement relation
in each finite element.

The creep deformation process is addressed by use of a
time step algorithm (third-order predictor—corrector meth-
od [28]). As a result the system (25) has been solved with
constant stiffness matrices in every time step. The right-
hand side is integrated by the Gauss method for the surface
coordinates and the Newton method for the thickness.

The second system of equations (the forced-oscillations
problem) is solved by the finite element method as is the
first system of equations. By analogy to equation (25) the
equations of motion can be presented in a matrix form as
follows:

[K]6' + [M]&',; = F' (27)
Here [M] denotes the mass matrix. The solution of the

system (27) in the frequency range which does not include
the resonance zone can be found in the following form:

o' = 6%sin(2né) (28)

S06598 © IMechE 2000
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With 6, ;, = — £ sin(2n&) the resolving system is
(K] — 2 [M]$* = F* (29)

where 0® and F* are the vectors of the amplitude values of
nodal displacements and forces respectively. The amplitude
stress vector o2 = [D][B]é* obtained after solution of
system (29) is used to determine the values of influence
functions (H) and (K). Further details of the used
algorithms have been presented in references [17], [18] and
[29].

4 NUMERICAL RESULTS
¢

4.1 Conical shell

The first example is the creep of a thin conical shell simply
supported and axisymmetrically loaded by cyclic internal
pressure p = p° + p*sin(2nf7) uniformly distributed
along the shell meridian (Fig. la). The shell length is
L=0.144m, the radii of the middle surface are
R, = 0.08m and R, = 0.12 m and the shell thickness is
h = 0.001 m. The static pressure component is assumed to
be p° =3 MPa and the amplitude of the cyclic load, p?,
has been chosen as 0.15 of p° for different values of the
loading frequency f. The eigenfrequencies of the shell are
calculated first. For the axisymmetrical oscillations the first
three eigenfrequencies are f) = 6.45X10° Hz, f, =
6.93 X 10 Hz and f3 = 7.47 X 10° Hz. The following
material constants for the constitutive equations (5) and
(17) have been obtained by processing experimental data
on tubular specimens made from steel 20H13 at a tempera-
ture of 773K [30]: E=17X10°MPa, v=0.3,
B=3.19 X107 MPa~"/h, D = 1.78 X 1017 MPa~"/h,
n=k=m=6.12, r=1 and [ = 11.513. The equivalent
stress (16) was used in the simulation with a = 1.

Figure 2 shows the distributions of the damage parameter
obtained after the final time steps for the static and
dynamic creep with different frequencies of loading. In the
case of dynamic creep with frequencies much less than the
first eigenfrequency the calculated damage distribution is
approximately the same as for the static case (Fig. 2, curves
1 and 2) but the fracture time in the cyclic case is slightly
smaller. With increasing frequency of oscillation the values
of the fracture time significantly decrease (Table 1). For
frequencies of loading beyond the first eigenfrequency of
the shell (f = 6700 Hz) the zone of maximum damage
moves along the shell meridian (Fig. 2, curve 3). The
damage evolution at the points of spatial discretization,
where fracture occurs, is illustrated in Fig. 3. It is seen that
increasing the loading frequency leads to higher damage
rates.

In the case of static pressure, the damage rate, the
damage distribution and consequently the fracture time are
sensitive to the stress level and stress state expressed by ogq
in the damage evolution equation. For cyclic loading
conditions the damage rate becomes additionally dependent
on the value and distribution of the stress state cycle
asymmetry parameter A;. For frequencies of loading below
the first eigenfrequency the distribution of 4 is constant in
the initial state (Fig. 4, curve 1) because the dynamic stress
distribution for the first vibration mode corresponds to the
static stress distribution. During the creep process the
values of A increase due to relaxation of the stress
component 0%, (Fig. 4, curve 2). For frequencies beyond
the first eigenfrequency the distribution of the dynamic
stress component 0%, corresponds to the second vibration
mode, which leads to qualitatively different distributions of
A, and w (Fig. 4, curve 3, and Fig. 2, curve 3). The values
and distribution of A4, which influence the creep rate and
the damage rate in the case of cyclic creep, are strongly
sensitive to the ratio of static to cyclic components of the
loading and to the loading frequencies.

P =P+ Posin2nfr

/)| \
T

2R

|

l

Fig. 1 Models of the structural members: () conical shell; (b) plate with a hole
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Fig.2 Damage parameter versus shell length: curve 1; = 26.1 h, f =0Hz; curve 2, t+=21.8 h, f = 25 Hz;

Table 1 Dependence of fracture time on
the frequencies of loading

curve 3, tx = 15.2 h, f = 6700 Hz

4.2 Circular plate

The second example is a circular plate, clamped at the

J (Hz) tx (h) external radius (Fig. 1b). For the calculations, R = 0.05 m,
0 26.1 h=0.001 m and d = 0.003 m were given with R as the
25 21.8 plate radius, A as the plate thickness and d as the diameter
5888 ?;‘2‘ of the central hole. The plate is loaded by a cyclic force on
6700 152 its internal radius in the normal direction. The static force
component is assumed to be P° = 100 N and the amplitude
w
1
3 2 1
0.8
0.6
04 / / /
0.2 S e — /
0 é—é
0 5 10 15 20 25 t,h

Fig.3 Damage parameter versus time: curves 1 to 3 are as in Fig. 2
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- ™
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Fig. 4 Stress state cycle asymmetry parameter versus shell length [outer shell surface (z = —/4/2)]: curve 1, initial

distribution at 7 = 0 h, f = 25 Hz; curves 2 and 3 are as in Fig. 2

of cyclic component is 0.2P° for different values of the
loading frequency f. For axisymmetrical oscillations the
first three eigenfrequencies are calculated as f; =
1.732 X 103 Hz, f, = 4.758 X 10* Hz and f3 = 9.437 X
10% Hz. The material constants in the constitutive equations
(5) and (17) are those for the aluminium alloy AICuMg, at
573K [23] as follows: E = 0.65X 10° MPa, v =0.3,
B=034X10"7"MPa"/h, D=19X10""MPa~"/h,
m=n=k=I[1=3,r=138anda = 1.

The creep behaviour of the plate in the frequency range

0—3500 Hz has been simulated similarly to the case of the
conical shell. According to the numerical results, fracture
occurs on the border of the hole due to significant stress
concentration. The results of damage accumulation in the
neighbourhood of the hole by cyclic loading ( f = 25 Hz)
are presented in Fig. 5. Curves 1, 2 and 3 show the damage
growth at different points of the spatial discretization. The
fracture time of the plate has been obtained as 3.89 h in the
case of pure static loading. In the cyclic cases the fracture
time decreases to 3.52h for the loading frequency

, w
0.8 //
0.6 /

e P /

0.2 =

i

0 1 2

3 t,h

Fig. 5 Damage parameter versus time at different points in the neighbourhood of the hole: curve 1,
r=15X102m;curve2, r = 1.75 X 10> m; curve 3, r =2 X 10> m
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Fig. 6 Stress state cycle asymmetry parameter versus plate radius: curve 1, initial distribution, ¢ = 0 h; curve 2,
ty+=3.52h, f =25 Hz; curve 3, tx = 3.17 h, f = 500 Hz; curve 4, tx+ = 3.82 h, f = 3500 Hz

f =25Hz and to 3.17 h for f = 500 Hz. The estimated
values of the stress state cycle asymmetry parameter A
depend on the frequency of forced oscillations. The distribu-
tion of A along the radius is presented in Fig. 6. In the case
when the frequency of the cyclic force component is smaller
than the first eigenfrequency, the values of 45 increase up to
4-5; this is particularly observed in the neighbourhood of
the hole [Fig. 6, curve 2 (f =25 Hz) and curve 3 (f =
500 Hz)]. If the frequency of excitation is greater than f}
[Fig. 6, curve 4 (f = 3500 Hz)], the values of A4 are much
less than in previous cases, and consequently the time to
fracture, t = 3.82 h, is close to the static value.

5 CONCLUSIONS

The aim of the present paper was the formulation of a
numerical concept for the analysis of cyclically loaded
thin-walled structures. Under the assumption that the
period of the cyclic loading is much smaller than the global
period of the whole creep process, the asymptotic expan-
sion method of two time-scales has been applied to the
governing mechanical equations of the creep problem. As a
result of time averaging, two sets of equations have been
obtained. The first corresponds to an ‘equivalent’ initial-
boundary value problem of quasi-static creep and the
second to the problem of forced vibrations. Both equation
sets are coupled by constitutive and evolution equations of
the creep damage process by means of functions of stress
state cycle asymmetry parameters. This method leads to the
numerical procedure which is similar to that conventionally
used for quasi-static creep problems. Based on the
numerical examples for the conical shell and circular plate,

JOURNAL OF STRAIN ANALYSIS VOL 35 NO 1

the results of creep deformation and damage evolution for
static and cyclic loading are discussed. The significant
influence of the small cyclic component of the external
load on fracture time has been illustrated. Further the
sensitivity of lifetime predictions in thin-walled structures
to the frequencies of the applied cyclic loading is
discussed. The investigations are limited to the case of
small values of the stress state cycle asymmetry parameter.
However, the numerical results obtained for both examples
show that the values of 4, which are small in the initial
state, can increase during the creep process due to the stress
redistribution. If the values of 4 exceed the critical
material constant A4, the creep—fatigue damage mechan-
ism must be considered in the material model by means of
appropriate internal state variables.
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