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Abstract The constitutive model with a single damage
parameter describing creep-damage behaviour of metals
with respect to the different sensitivity of the damage
process due to tension and compression is incorporated
into the ANSYS ®nite element code by modifying the user
de®ned creep material subroutine. The procedure is veri-
®ed by comparison with solutions for beams and rectan-
gular plates in bending based on the Ritz method. Various
numerical tests show the sensitivity of long-term predic-
tions to the mesh sizes and element types available for the
creep analysis of thinwalled structures.

1
Introduction
Engineering structures operating at elevated temperatures
such as fossil power plants, chemical plants, reactors, etc.
are designed with respect to increased requirements of
safety and assurance of long-term reliability. One of the
main factors which must be considered in the long-term
structural analysis is time-dependent material behaviour
coupled with damage evolution (Roche et al., 1992). A
powerful tool for the lifetime prediction is the continuum
damage mechanics approach which is based on the for-
mulation of constitutive and evolution equations for in-
elastic strains and material damage. Incorporating these
material models into the ®nite element code predictions of
time-dependent stress, strain and damage ®elds can be
performed by numerical solution of nonlinear initial-
boundary value problems (e.g. Hayhurst, 1994). The ®rst
problem arising by creep damage analysis is the formu-
lation of a phenomenological material model that is able to

describe the sensitivity of creep strain and damage rate to
the stress level, stress state, temperature level, environ-
mental effects, etc. Such a model must be able to extra-
polate the experimental creep data usually available from
uniaxial short-term creep tests and realised for narrow
stress ranges to the in-service loading conditions in the
real structure. The second problem can be related to the
quality of the ®nite element predictions particularly by
analysis of structures with complex shapes.

The structural analysis of thinwalled components
(pressure vessels, pipes, pipe bends, etc.) can be per-
formed using the mechanical models of plane stress
(strain) states or equations of shell theory. In the case of
plane stress (strain) problems numerous ®nite element
simulations considering creep damage effects has been
made because of experimental data available for veri®ca-
tion. Examples are discussed by Saanouni et al. (1989),
Othman et al. (1994), Becker et al. (1994), Murakami and
Liu (1995), and Fleig (1996).

Since these examples con®rm the ability of ®nite ele-
ment simulations to predict stress redistributions and
failure times with accuracy enough for engineering appli-
cations and can be used as benchmark tests by develop-
ment of user de®ned material subroutines incorporating
damage evolution a little effort has been made for the
analysis of transversely loaded thinwalled structures. Nu-
merical results for rupture times of rectangular plates in
bending are given by Bodnar and Chrzanowski (1994),
Bialkiewicz and Mika (1995) based on in-house ®nite el-
ement codes and Altenbach and Naumenko (1997) for
rectangular plates and Altenbach et al. (1997b) for shells of
revolution using special numerical methods. The experi-
mental study of creep damage of plates and shells is very
complicated and available experimental data obtained for
short times (e.g. Naumenko, 1996) cannot be used for the
veri®cation of long-term predictions. However by some
simpli®cations, e.g. for geometry or loading, it is possible
to formulate the creep problems which can be solved by
direct variational methods using the shape functions de-
®ned for the whole domain. Such solutions can be used for
the veri®cation of user de®ned material subroutines and
®nite element predictions. If mechanical models of thin
shells or plates are used in creep analysis the following
questions require a special consideration. The ®rst is how
sensitive are the long-term predictions of thinwalled
structures with predominating bending stresses to the type
of elements available in ®nite element codes for their
analysis and to the mesh sizes. The second question is
related to the ability of the shell theory used in ®nite
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element codes (usually the Reissner±Mindlin type theory)
to represent the time dependent stress redistributions
caused by damage evolution.

This paper presents the results of ®nite element solu-
tions using the ANSYS code. Basing on the numerical
analysis only we discuss the following questions. First we
construct special solutions for beams and plates including
damage effects based on the Ritz method. These solutions
are used for the veri®cation of the ANSYS user de®ned
creep material subroutine which we modify taking into
account the damage evolution. Basing on various numer-
ical tests we show the mesh sensitivity of long-term solu-
tions in creep bending of beams and plates. Finally we
compare the results for time-dependent de¯ections and
stresses based on different plane stress, shell and solid
elements available in the ANSYS code for the plasticity and
creep analysis. For the simplicity of numerical studies we
limit our discussion to steady state loads and tempera-
tures. Further we do not consider the problems of damage
localization which can cause spurious mesh dependency
and require special regularization techniques (e.g. Saa-
nouni et al., 1989; Murakami and Liu, 1995).

2
Constitutive model
The constitutive model for creep behaviour can be for-
mulated as a set of ®rst order differential equations for the
creep rate tensor as a function of the stress tensor, the
temperature and possible internal state variables with
appropriate evolution equations

_ecr � oF�req;T; H1; . . . ;Hn;x1; . . . ;xm�
or

;

_Hi � _Hi�req
H ;T; H1; . . . ;Hn;x1; . . . ;xm�; i � 1; . . . ; n;

_xk � _xk�req
x ;T; H1; . . . ;Hn;x1; . . . ;xm�; k � 1; . . . ;m ;

�1�
where _ecr is the creep strain rate tensor, r is the stress
tensor, F denotes the creep potential, Hi, xk are hardening
and damage variables. req

H , req and req
x denote the equi-

valent stresses which control the primary, secondary and
tertiary creep, respectively. The internal state variables and
the form of the creep potential can be chosen basing on
known mechanisms of creep deformation and damage
evolution as well as possibilities of experimental mea-
surement and engineering applications (e.g. Chosh and
McLean, 1992). The ®rst step by the conventional creep
modelling is the formulation of an empirical function
describing the sensitivity of minimum creep rate to the
stress level and temperature. Using the von Mises type
potential the secondary creep constitutive equation can be
written as follows (e.g. Altenbach, 1999)

_ecr � 3

2

fr�req�
req

sfT�T�; req � rvM �
������������
3

2
s � �s

r
;

s � rÿ 1

3
tr r :

�2�

The mostly used function describing the stress depen-
dency fr is the power law function fr�rvM� � A�rvM�n with
A and n as material constants determined from uniaxial

creep tests at constant temperature conditions. The tem-
perature dependence can be described, for instance, by the
Arrhenius function (e.g. Nabarro and de Villiers, 1995).

After veri®cation of secondary creep behaviour the
minimum creep rate functions can be modi®ed by suitable
hardening and damage variables for the description of
primary and tertiary creep. Following the classical concept
proposed by Kachanov (1986) and Rabotnov (1969) the
creep rate equation (2) can be extended by a scalar damage
parameter x and the damage rate is postulated to be a
function of the stress, the temperature and the current
damage states. The constitutive and evolution equations
for secondary and tertiary creep behaviour can be written
as follows

_ecr � 3

2

fr�rvM=1ÿ x�
rvM

sfT�T�;
_x � gr�req

x �gT�T�gx�x� :
�3�

Using the power law functions for fr, gr and gx and as-
suming the temperature to be constant during the creep
process the material model can be formulated as (e.g.
Leckie and Hayhurst, 1977; Hyde et al., 1996)

_ecr � 3

2

A�rvM�nÿ1

�1ÿ x�n s; _x � B hreq
x i

ÿ �v
�1ÿ x�/ ;

req
x � arI � �1ÿ a�rvM;

hreq
x i � req

x for req
x > 0;

hreq
x i � 0 for req

x � 0; 0 � x � x� :

�4�

Here rI is the maximum principal stress and B, v, /, x�, a,
are material constants. This model allows a simple de-
scription of creep behaviour and has been veri®ed for
uniaxial and multiaxial creep of metals and alloys. The
coef®cient a controls different damage mechanisms. At the
same time the model re¯ect different sensitivity of the
damage rate to tension and compression loads. However,
the models including another kind of functions for stress
and damage dependency (e.g. exponential and hyperbolic
functions) are preferred in last years. The approach pro-
posed by Kowalewski et al. (1994) and Perrin and Hayhurst
(1994) is based on the introduction of internal variables
and corresponding empirical functions of the stress, the
temperature, etc. based on the mechanisms of deformation
and damage evolution known from the material science
and physics of solids. From the numerical studies of ®nal
stage of damage evolution and failure propagation Liu and
Murakami (1998) propose to replace the power law damage
dependence in the evolution equation (4) by the expo-
nential one. The exponential or the hyperbolic functions
provide stable solutions particularly for the ®nite element
studies of crack propagation. On the other hand, they can
be motivated by metallographical observations. The studies
of creep in shells discussed by Altenbach et al. (1997b)
using the material model (4) and the model presented by
Kowalewski et al. (1994) con®rm the ability of mechanism
based empirical functions of stress and damage to
provide more adequate life-time predictions. In this paper
we focus our attention to the mesh sensitivity of ®nite el-
ement based life-time predictions of thinwalled structures
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incorporating the material model (4) into ANSYS ®nite
element code and limit our discussion to the numerical
studies of creep behaviour only.

Assuming the elastic properties to be in¯uenced by
creep-damage the elastic constitutive equation coupled
with damage can be represented as follows

rij � Cijkl�x��ekl ÿ ecr
kl� �5�

Considering isotropic material the tensor of elastic prop-
erties can be written as (Lemaitre and Chaboche, 1990)

Cijkl � E�x�
2�1ÿ m2� �1ÿ m��dikdjl � dildjk� � 2mdijdkl

� � �6�
The function E�x� is speci®ed as (Liu et al., 1994)

E�x� � E�1ÿ x� (fully coupled approach)

E�x� � E if x < x�
0 if x � x�

�
(partly coupled approach) ;

�7�
E and m denote the Young modulus and the Poisson ratio,
respectively. For the numerical convenience we will use
here the following equation

E�x� � E�1ÿ fx�; 0 � f � 1

x�
: �8�

The constant f controls the in¯uence of the material de-
terioration on the elastic properties. For f � 0 we obtain
the damage uncoupled classical Hooke law, for f � 1=x� ±
the fully coupled approach that means the zero stiffness
(E � 0) for the critical damage state.

3
Creep-damage of beams

3.1
Closed estimations
The Bernoulli beam is one of the simplest mechanical
models which allow to construct a special reference solution
and test the ®nite element software incorporating a user
speci®ed material model. First we recall the classical closed
solution for uniaxial steady state creep of a beam (e.g. Boyle
and Spence, 1983). Neglecting the elastic strain eel � ecr and
the damage evolution in the material model (4) the consti-
tutive equation for the beam can be written as

_e�x; z; t� � _ecr�x; z; t�
� ÿ _w�x; t�00z � Ajr�x; z; t�jnÿ1r�x; z; t� ; �9�

where w�x� is the de¯ection function, x is the beam axis
(0 � x � l) and z is the normal axis (ÿh=2 � z � h=2).
From Eq. (9) follows

r�x; z; t� � ÿ _w�x; t�00
A

� �1
n

jzj1ÿn
n z : �10�

The integration over the beam cross section Ac � hb�z�,
which is assumed to be symmetrical, yields

M�x� �
Z

Ac

rz dAc � In ÿ _w�x; t�00
A

� �1
n

�11�

with

In �
Z h=2

ÿh=2

jzjn�1
n b�z�dz � 2

Z h=2

0

jzjn�1
n b�z�dz ;

as the generalised moment of inertia.
For a statically determined beam the Eq. (11) yields a

solution for the de¯ection function in steady state creep.
As an example we consider a beam simply supported on
both edges and loaded by a uniformly distributed force q.
In this case M�x� � qx�lÿ x�=2 and the Eq. (11) can be
rewritten as

_w�x�00 � ÿ A

In
n

qn

2n
xn�lÿ x�n; 0 � x � l : �12�

For integer values of the power n the solution is a poly-
nomial of the order 2n� 2

_w�x� � A

In
n

qn

2n
x�lÿ x�

Xn

k�0

Xn�k

i�0

akl2nÿixi;

ak � �ÿ1�k
 

n

k

!
1

�n� k� 1��n� k� 2� :

Comparing with the approximation from the elastic
solution

w�x� � q

24EI
x�xÿ l��x2 ÿ lxÿ l2� ;

with I as the moment of inertia one can conclude that if
the creep problem is numerically solved using variational
or energy based methods the shape functions for the de-
¯ection or de¯ection rate should contain the polynomial
terms of the order 2n� 2. Further even for analysis of
steady state creep using the power low stress dependence
an accurate solution cannot be obtained with approxima-
tions justi®ed for the elasticity solution.

In order to estimate the solution including damage we
make two simpli®cations that the damage do not accu-
mulate during the transition from the elastic to steady
creep state and the damage rate is the same for positive
and negative stresses. From the constitutive equation (4)
follows

r�x; z; t� � �1ÿ x�x; z; t�� ÿ _w�x; t�00
A

� �1
n

jzj1ÿn
n z : �13�

The integration over the cross section yields

M�x� �
Z h=2

ÿh=2

rb�z�z dz

� �In ÿ Inx�x; t�� ÿ _w�x; t�00
A

� �1
n

�14�

with

Inx�x; t� � 2

Z h=2

0

x�x; z; t�jzjn�1
n b�z�dz : �15�

For the example considered we can write the following
differential equation
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_w�x; t�00 � ÿA
qn

2n
xn�lÿ x�n 1

�In ÿ Inx�x; t��n : �16�

With respect to Eq. (13) the damage evolution equation (4)
can be written as

_x�x; z; t� � B�1ÿ x�x; z; t��vÿ/ ÿ _w�x; t�00
A

jzj
� �v

n

z :

�17�
Averaging over the cross section yields

_Inx�x; t� � 2

Z h=2

0

_x�x; z; t�jzjn�1
n b�z�dz

� 2B ÿ _w�x; t�00
A

� �v
n

�
Z h=2

0

�1ÿ x�x; z; t��vÿ/jzjn�v�1
n b�z�dz :

�18�
This equation can be simpli®ed for the special case v � /
as

_Inx�x; t� � B ÿ _w�x; t�00
A

� �v
n

Inv �19�

with

Inv � 2

Z h=2

0

jzjn�v�1
n b�z�dz :

Using the Eq. (16) we obtain

_Inx�x; t� � BInv
qv

2v
xv�lÿ x�v 1

�In ÿ Inx�x; t��v : �20�

After the integration with respect to time we get

In ÿ Inx�x; t�

� In

�
1ÿ �v� 1�BInv

qv

2vIv�1
n

xv�lÿ x�vt

� 1
v�1

: �21�

Substitution into Eq. (16) yields

_w�x; t�00 � ÿA
qn

2nIn
n

xn�lÿ x�nf �x; t� �22�

with

f �x; t� � 1ÿ �v� 1�BInv
qv

2vIv�1
n

xv�lÿ x�vt

� �ÿ n
v�1

:

�23�
From Eq. (15) follows that the condition Inx�xf; tf � � In is
possible in the case of completely damaged cross section
xf only. In this case the left part of Eq. (21) vanishes and
the function f �xf ; tf � in Eq. (23) tends to in®nity for the
cross section xf . If the numerical study performed until the
damage parameter x�x; z; t� attains the critical value in a
point P�xf ; zf � for t � t�, Inx�x; t� < In holds true and
Eq. (23) can be represented as a convergent polynomial

series of x for each 0 � t � t�. Consequently there exist
a convergent solution _w�x; t� which can be represented
as a polynomial series of x containing at least the order
2n� 2. In the following we con®rm these estimations
solving the problem by the Ritz method and construct
some convergent test solutions.

3.2
Solutions based on the Ritz method
Starting from Hooke's law (5) applied to the beam bending
problem (Pilkey and Wunderlich, 1994)

r � E�1ÿ fx��eÿ ecr�
� ÿE�1ÿ fx��ÿu00 ÿ w00z� ecr� ; �24�

with u0 as the axial displacement of the beam centreline,
the principle of virtual displacements yieldsZ

V

rde dV � E

Z
x

�I ÿ xzzz�w00dw00 dx

� E

Z
x

�Ac ÿ xz�u00du00 dx

� E

Z
x

xzzd�u00w00�dx� E

Z
x

Mcrdw00 dx

ÿ E

Z
x

Ncrdu00 dx

�
Z

x
qdw dx

with

Mcr �
Z

Ac

�1ÿ fx�ecrz dAc; Ncr �
Z

Ac

�1ÿ fx�ecr dAc;

xz �
Z

Ac

x dAc; xzz �
Z

Ac

xz dAc; xzzz �
Z

Ac

xz2 dAc :

Assuming the creep strain and the damage parameter to be
known functions of the coordinates x and z for the ®xed
time t we can formulate the following functional

Pt�w; u0� � 1

2
E

Z
x
�I ÿ xzzz�w002 dx

� 1

2
E

Z
x

�Ac ÿ xz�u020 dx� E

Z
x

xzzu00w00 dx

� E

Z
x

Mcrw00 dxÿ E

Z
x

Ncru00 dx

ÿ
Z

x

qw dx :

This leads to the problem to ®nd such functions w and u0

that yield an extremal value of the functional. The solu-
tions for ®xed time t can be represented as

w�x� � aw
0 uw

0 �x� �
XN

i�1

aw
i uw

i �x�; u0�x� �
XM

i�0

au
i u

u
i �x� :

�25�
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For the simply supported beam discussed above the shape
functions can be formulated as follows:

uw
0 �x� � x �xÿ l��x2 ÿ lxÿ l2�

is the ®rst approximation following from the elastic solu-
tion. For uw

i �x� we use functions satisfying the boundary
conditions w � 0 and M � 0 for x � 0 and x � l:
� polynomials

uw
i �x� � xi�2�lÿ x�i�2 �26�

� eigenfunctions of a transverse vibrating beam

uw
i �x� � sin

�2iÿ 1�px

l
: �27�

Assuming u0 � 0 for the edge x � 0 the functions
uu

i �x� � xi�1 can be used. Summarising the unknown
constant coef®cients into the vector aT � �awT

; auT � with
awT � �aw

0 ; a
w
i �, i � 1; . . . ;N and auT � �au

i �, i � 1; . . . ;M,
the Ritz method yields a set of linear algebraic equations

oPt
oak
� 0;

Rww Rwu

Ruw Ruu

� �
aw

au

� �
� fw

fu

� �
�28�

with

Rww
kj � E

Z l

0

�I ÿ xzzz�uw
k
00uw

j
00 dx;

k � 1; . . . ;N; j � 1; . . . ;M

Rwu
kj � E

Z l

0

xzzuw
k
00uu

j
0 dx; k � 1; . . . ;N; j � 1; . . . ;M

Ruu
kj � E

Z l

0

�Ac ÿ xz�uu
k
0uu

j
0 dx;

k � 1; . . . ;M; j � 1; . . . ;M

Ruw
kj � E

Z l

0

xzzuu
k
0uw

j
00 dx; k � 1; . . . ;M; j � 1; . . . ;N

f w
k � q

Z l

0

uw
k dxÿ E

Z l

0

Mcruw
k
00 dx; k � 1; . . . ;N

f u
k � E

Z l

0

Ncruu
k
0 dx; k � 1; . . . ;M :

After the solution of the system (28), the stress r�x; z; t�
can be calculated from the Eq. (24). For the known values
of the stress and the damage parameter the constitutive
model (4) yields the rates of creep strain and damage for
the time t. From these the new values for time t � Dt are
calculated using the implicite time integration procedure

ecr�x; z; t � Dt� � ecr�x; z; t� � Dt��1ÿ h� _ecr�x; z; t�
� h _ecr�x; z; t � Dt��;

x�x; z; t � Dt� � x�x; z; t� � Dt��1ÿ h� _d�x; z; t�
� h _x�x; z; t � Dt��;

ecr�x; z; 0� � 0; x�x; z; 0� � 0; x�x; z; t� < x� :

For the calculation of the creep force Ncr, the creep
moment Mcr as well as damage averages xz, xzz and xzzz

in Eq. (24) the Gauss method with 9 integration points in
the thickness direction is used. For the calculation of the
matrices Rmn and the right parts of the equation set (28)

the Simpson quadrature rule with Ns integration points in
the beam axis x is used. The values of creep strain and
damage for a current time step t are stored in all inte-
gration points along the beam axis and over the thickness
direction for calculations in the next time step. The ac-
curacy of the numerical solution depends on the number
of shape functions in Eq. (25), on the number of integra-
tion points and on the time step size. The sensitivity of
creep solutions to time step sizes has been previously
studied by Altenbach and Naumenko (1997) on the plate
bending problems. In the following numerical examples
we will put our attention to the convergence study of the
time dependent solution using different number of shape
functions in Eq. (24).

As a ®rst example we consider the above discussed
simply supported beam with a rectangular cross section
b�z� � const. For the calculation we set q � 60 N/mm,
l � 1000 mm, h � 80 mm, b � 30 mm and use the creep-
damage material model (4) modi®ed with time-hardening
function which allows the description of the primary creep

_ecr � 3

2

A�rvM�nÿ1

�1ÿ x�n stm; _x � B�hreq
x i�v

�1ÿ x�/ tm : �29�

In the following we will use the material constants iden-
ti®ed by Kowalewski et al. (1994) for an aluminium alloy:
A � 3:511� 10ÿ31 MPaÿn=hm�1, B � 1:960� 10ÿ23

MPaÿv =hm�1, v � 8:220, n � 11:034, / � 12:107,
m � ÿ0:3099 and E � 7:1� 104 MPa, m � 0:3. Eq. (29) can
be transformed into Equation (4) introducing the time
variable s � tm�1=�m� 1�. For the ®rst example we ne-
glect the in¯uence of creep damage on elasticity setting
f � 0 in Eq. (8). Further we assume the damage rate to be
the same for tensile and compressive loading setting a � 0
in Eq. (4). Both the assumptions lead to a signi®cant
simpli®cation of the numerical procedures. Using the ®rst
one we can set Ruw � Rwu � 0 in Eq. (28) and keep the
matrices Rww, Ruu constant during the time step calcula-
tion. The second results to symmetric stress redistribu-
tions across the z direction for the arbitrary time step
which leads to Ncr � 0 and fu � 0. Consequently the
number of functions in the approximation for the dis-
placement u0 has no in¯uence on the numerical solutions.

Figure 1 shows time dependent solutions for maximum
de¯ection and maximum stress obtained by different
number of polynomial terms (26) in Eq. (25). The time
step solutions are performed until the critical damage is
achieved in one of the integration points. The condition
of termination of the time step solution is
x�xf ; zf ; t�� > 0:9, where the integration point P�xf ; zf �
can be speci®ed as a point of failure initiation and the
time step t� as the time to failure initiation.

Since all approximations of the de¯ection function
used for the Ritz method yield the exact elasticity solution,
the life-time predictions are strongly sensitive to the
number of shape functions, Fig. 1. Even for the case of a
statically determined beam one can conclude that the
approximation adjusted for the elastic solution cannot be
used for the creep-damage predictions. The difference
between the life-time predictions based on an approxi-
mation following from the elastic solution (fourth order
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polynomial), curves 1, and approximation which follows
from above discussed steady state creep solution (poly-
nomial of the order 24, curve 4) is approximately six times.
From the Fig. 2 can be seen that the creep-damage solution
converges with the increasing number of shape functions.
The approximations with N � 5, N � 7 and N � 8 yield
the same solutions for the transition and steady state creep
state but differ in the last stage. This is in agreement with
the above conclusion that the consideration of damage
needs an increased order of approximation in comparison
with the steady state creep solution. Since the difference
between the cases 4 and 6 (approximately 17%) is not
acceptable comparing with the accuracy of the available
material description one can conclude that the order of
approximation adjusted for the steady state creep solution
can be enough for the numerical life-time predictions
using continuum damage mechanics approach. Compar-
ing with the polynomial approximation (26) the eigen-
functions of transverse beam vibration (27) provide a
better convergence, Fig. 3. These functions we will use in
the analysis of plates in bending below.

In addition to convergence studies, we show the
in¯uence of the constant f in Eq. (8) which allows to
take into account the drop of elastic stiffness with creep

damage accumulation. For the beam considered we
compare two convergent solutions obtained by setting
f � 0 and f � 1 in Eq. (28). The results for the time
dependent maximum de¯ection, maximum stress, as well
as creep strain and damage parameter for the integration

Fig. 1a, b. Solutions for a Bernoulli beam based on the Ritz method using the approximation (25) and polynomial functions (26):
a time variation of maximum de¯ection; b time variation of maximum stress, 1±approximation using elastic de¯ection function,
2 ± N � 1; 3 ± N � 2; 4 ± N � 8

Fig. 2a, b. Convergence of time-dependent solution for a Bernoulli beam using polynomial functions (26): a time variation of
maximum de¯ection; b time variation of maximum stress, 1 ± N � 1; 2 ± N � 2; 3 ± N � 3; 4 ± N � 5; 5 ± N � 7; 6ÿ N � 8

Fig. 3. Convergence of time-dependent solution for a Bernoulli
beam using the approximation (25) and eigenfunctions of
transverse vibration (27): 1 ± N � 2; 2 ± N � 3; 3 ± N � 4
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point corresponding to x � l=2; z � h=2 are plotted in Fig.
4. The results for the both cases differ on the last stage
before the failure initiation. The fully coupled approach
f � 1 yields the complete stress relaxation and a larger rate
of de¯ection growth for the last stage. The consideration of
such effects can be necessary for numerical studies of
failure propagation within the framework of continuum
damage mechanics (e.g. Saanouni et al., 1989; Murakami
and Liu, 1995). But if only the life-time to the failure ini-
tiation have to be analysed the uncoupled approach f � 0 is
enough for the numerical predictions. The difference be-
tween failure times for both cases is not signi®cant. In
addition, it should be noted that by using the coupled ap-
proach f > 0 the computational effort suf®ciently increases
because the matrices R in Eq. (28) have to be modi®ed on
each time or iteration step with the damage ®eld functions
obtained in the discretization points. Since the damage
localizes at the last stage of calculation it needs a very
precise integration (great number of integration points)
and a very accurate time step method. This has been pre-
viously observed in different ®nite element calculations
(e.g. Saanouni et al., 1989; Murakami and Liu, 1995).

3.3
Finite element solution
Using the ANSYS User Programmable Features we have
incorporated the material model (4) into the ANSYS ®nite
element code by modi®ying the user creep material sub-
routine. For details of time integration and equilibrium

iteration methods used in ANSYS for creep calculations we
refer to ANSYS User's Manual Volume I±IV (1994) and
Zienkiewicz and Taylor (1991).

For testing of the implemented material law we intro-
duce the beam considered below as the ®rst example. For
the meshing we use the 4 node shell element SHELL 43
available for creep computations. This element is based on
the Reissner±Mindlin type shell theory and contains 2� 2
Gauss points in the plane and ®ve integration points
through the thickness. The automatical time stepping
feature with a minimum time step 0:1 h has been used.
Figure 5 shows the solutions with respect to different
meshes. The convergent solution (case 6) has been ob-
tained with 200 elements and after 96 time steps. This
solution has a very good agreement with the solution ob-
tained using the Ritz method, Fig. 2. Similarly to the
sensitivity of the solution to the degree of the polynomial
discussed below the mesh sensitivity of the ®nite element
solution can be observed. The mesh justi®ed for the elastic
solution (case 1) is not ®ne enough. The solutions in the
cases 3±6 are approximately the same in the steady state
and slightly differ in the last stage. Since for the large
structures including stress singularities is dif®cult to test
the mesh sensitivity performing the whole creep damage
calculations one can conclude that convergent solution for
the steady state creep which does not require many time
steps, can provide an adequate (at least qualitatively cor-
rect) solution within the framework of continuum damage
mechanics.

Fig. 4a±d. In¯uence of the parameter f in Eq. (8) on time variations for: a maximum de¯ection; b maximum stress; c creep strain;
d damage parameter, 1 ± f � 0 uncoupled approach, 2 ± f � 1 fully coupled approach
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In the previous examples we assumed the damage
evolution to be the same by tensile or compressive loading.
The next example illustrate the time dependent solutions
of a beam setting damage rate to zero in the Gauss points

with negative maximum principal stress. In order to
compare the in¯uence of the element type on the creep
damage solutions we performed the calculations using the
element SHELL 43 with 80 elements and the 4-node plane
stress element PLANE 42 meshing the beam with 80 ele-
ments along the beam axis and 4 elements along the
normal axis. Figure 6 shows the time dependent solutions
for maximum de¯ection obtained with shell elements,
plane stress elements and using the Ritz method. It can be
seen that if the sensitivity of material damage to the kind
of stress state is taken into account results obtained by
shell and plane elements substantively differ. The differ-
ence in the life-time prediction is approximately 30%. For
the comparison two convergent solutions based on the
Ritz method applied for a beam with the Bernoulli as-
sumptions are plotted. The ®rst solution is obtained with 5
Gauss points for the thickness integration (curves 3), and
the second with 9 Gauss points (curves 4). Both the
solutions are obtained with the same number of the shape
functions, N � 8, M � 8 in Eqs. (25). The solution with 9
Gauss points is in better agreement with the plane stress
solution which is seen particularly on the time variation of
maximum negative stress, Fig. 7b. The solution with 5
Gauss points agree better with the solution with the shell
element. Since the element SHELL 43 contains 5 Gauss

Fig. 5a, b. Solutions for a Bernoulli beam using the ANSYS code with plastic shell elements SHELL 43: a time variation of maximum
de¯ection; b time variation of maximum stress, 1 ± 8 elements, 2 ± 10 elements, 3 ± 20 elements, 4 ± 40 elements, 5 ± 80 elements,
6 ± 200 elements

Fig. 6. Time dependent de¯ection of a beam: 1 ± SHELL 43, 2 ±
PLANE 42, 3 ± Ritz method with 5 Gauss points for thickness
integration, 4 ± Ritz method with 9 Gauss points for thickness
integration

Fig. 7a, b. Time dependent stresses for a beam: a positive stress on the bottom side; b negative stress on the top side, curve symbols
see Fig. 6
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points for the thickness integration (see ANSYS User's
Manual Volume I±IV, 1994), one can conclude that more
accurate thickness integration should be performed using
shell elements in creep damage computations with mate-
rial models re¯ecting different sensitivity of damage evo-
lution to tensile and compressive loading.

4
Creep-damage of plates in bending
As the second mechanical model for the veri®cation of
user material subroutine let us introduce the thin plate
problem. Analogously to the Bernoulli beams we formulate
the variational problem for the thin plate using the
Kirchhoff assumptions. Further we include geometrical
nonlinear terms for consideration ®nite de¯ection in the
sense of the von KaÂrmaÂn plate theory. In Altenbach and
Naumenko (1997) and Altenbach et al. (1997a) we dis-
cussed the governing equations of the plate theory in-
cluding creep strains and damage. The variational
functional in the mixed form can be written as follows
�i; j; k; l � 1; 2�

P�U;w� � 1

2

Z
A

�ÿ�gI
ijkl�ÿ1Nij�U�Nkl�U�

� gII
ijkllij�w�lkl�w��dA

�
Z

A

1

2
Nij�U�lij�w�w dA

ÿ
Z

A

�qw� �gI
ijkl�ÿ1Ncr

ij Nkl�U�

�Mcr
ij lij�w��dA ; �30�

where w is the de¯ection function, lij denote the curvature
changes and twist of the midsurface, Nij are membrane
forces, A is the plate area and h is the plate thickness. Nij

can be expressed with the Airy stress function U and lij
with the de¯ection function as follows

N11�U� � U;22; N22�U� � U;11; N12�U� � ÿU;12;

lij�w� � ÿw;ij :

The de¯ection function and the Airy stress function de-
pend on the cartesian coordinates x; y � �. . .�; 1; �. . .�; 2
denote the derivatives with respect to x and y. For the ®xed
time variable we can introduce the thickness averages of
creep strains, assuming for the simplicity f � 0 in Eq. (8)

Ncr
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Z
h

Cijkle
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kl dz; Mcr
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Z

h

Cijkle
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klz dz ;

with

gI
ijkl � Cijklh; gII

ijkl � Cijklh
3=12; i; j; k; l � 1; 2

�gI
ijkl�ÿ1 � 1

2Eh
��dikdjl � dildjk��1� m� ÿ 2mdijdkl� :

This simpli®cation can be made due to the small in¯uence
of f on the failure times (as was shown by beam calcula-
tions) and the signi®cant increasing of the computational
efforts. Limiting our discussion to rectangular plates
�l1 � l2� we can solve the variational problem with fol-
lowing approximations �n � x=l1; g � y=l2)

w�n; g� � a0Xw
n0�n�Xw
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XN

i�1

XN

j�1

aw
ij X

w
ni�n�Xw

gj�g�;

U�n; g� �
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i�1

XM

j�1

aU
ij XU

ni�n�XU
gj�g� ; �31�

with the shape functions de®ned for the whole plate do-
main. The product function Xw

n0�n�Xw
g0�g� is formulated as

the elastic de¯ection function by given applied load. The
procedure for the construction of such a function basing
on the Vlasov-Kantorovich method and variational itera-
tions is discussed in Altenbach et al. (1998a), Altenbach
et al. (1998b). The functions Xw

ni�n� and XU
ni�n� are chosen

as eigenfunctions of transversely vibrating beam

Xw
ni�n� � sin lnÿ sinh ln

ÿ sin lÿ sinh l
cos lÿ cosh l

�cos lnÿ cosh ln�;

XU
ni�n� � sin ipn; i � 1; 3; 5; . . .

�32�

with

l � 2i� 1

2
p; i � 1; 3; 5; . . . :

These functions satisfy exactly the essential boundary
conditions for the edges x � const

w � 0; w;1 � 0; n11 � U;22 � 0

and y � const

w � 0; w;2 � 0; n22 � U;11 � 0

The solution method for the creep problem of a plate
which is similar to the above discussed procedure for a
beam is discussed in detail in Altenbach and Naumenko
(1997) and Altenbach et al. (1997a).

On Fig. 8 the time-dependent maximum de¯ection for a
clamped square plate transversely loaded by q � 10 MPa
uniformly distributed on a square area is presented. The

Fig. 8. Time-dependent maximum de¯ection of a clamped
square plate: 1 ± SHELL 43, 2 ± SOLID 95, 3 ± solution basing on
the Ritz method (Kirchhoff's theory)
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plate length is l � 800 mm and the thickness ± h � 27 mm.
The material constants are the same as in examples for
beams. In the ®rst example we set a � 0 in Eqs. (4) as-
suming the damage evolution to be dependent on the von
Mises stress only. This dependency assume the same
damage rate for the tensile and compressive loading. The
®rst solution (Fig. 8, curve 1) has been obtained using the
rectangular shell elements and a 20� 20-element mesh for
a quarter of the plate. The second solution (Fig. 8, curve 2)
is based on 20-nodes solid element (3D) and 20� 20-
elements for a quarter of the plate and 3 elements in the
thickness direction. The third solution is obtained using
the Ritz solution technique. All solutions are in a good
agreement. In addition, the good agreement of these three
solutions can be seen on Fig. 9 for time variation of the
von Mises stress plotted in two Gauss points (in the middle
of the plate, bottom side and in the middle of the clamped
edge, top side). In the second example we set a � 1 in the
material model (4) assuming the rI-dependency of the
damage evolution.

Figure 10 shows three convergent solutions for the
time-dependent maximum de¯ection obtained using shell
elements, solid elements and the Ritz method. The dif-
ferences between the cases 1 (SHELL 43, Reissner±Mindlin
type element) and 3 (Ritz method, Kirchhoff theory) can
be explained as the in¯uence of the shear correction. This
in¯uence is possible due to the differences of damage
evolution by tensile and compressive loading which induce
a nonsymmetric deformation in the thickness direction.
Since the elastic solutions are the same for the starting
time, the time dependent de¯ection obtained using the
Reissner±Mindlin theory is greater during the creep pro-
cess. The failure times predicted using ®nite element
concept with shell elements agree with that basing on the
Kirchhoff plate theory and the Ritz method. In contrast,
the result obtained with solid elements signi®cantly differs
from both the previous cases (curve 2). The explanation
of this is presented in Fig. 11, where the maximum prin-
cipal stress is plotted as a function of time in two Gauss
points of the plate domain. Since both the plate theories
yield approximately the same values of the maximum
principal stress during the whole creep process, the 3D
theory yields the principal stress in the midpoint of the

plate edge which is too high comparing with those for
plate theories.

For the further explanation we refer to Okumura and
Oguma (1998) where a closed series solution of 3D equa-
tions of elasticity for a clamped rectangular plate is dis-
cussed. The authors have shown that at the upper (lower)
corners of the plate edge the 3D elasticity equations yield a
singular solution for the normal stresses (the shear stresses
are ®nite). The ®nite element result con®rms the closed
solution yielding to high values of normal stresses and the
corresponding value of the maximum principal stress lead
to a short failure time. Further as shown by Okumura and
Oguma (1998) ry � rz in the middle point of the plate. In
contrast, the plate theories yield either zero or small values
of the normal stress rz compared with rx and ry. Since
rx; ry and rz are much greater than the shear stresses, the
principal stresses are approximately equal to the normal
stresses rI � rx; rII � ry and rIII � rz. Because rII � rIII

in the midpoint of the clamped edge Okumura and Oguma
(1998) we can estimate the von Misses stress a
rvM � rI ÿ rIII. Since the ®nite element solution yield
large but nonsingular values of rI and rIII (rI > rIII) the
von Mises stress rvM � rI. This gives the explanation that

Fig. 9a, b. Time variations of the von Mises stress in two points: a midpoint of the bottom side; b midpoint of the clamped edge
(top side), curve symbols see Fig. 8

Fig. 10. Time-dependent de¯ection of a clamped square plate,
with rI damage criterion: 1 ± SHELL 43, 2 ± SOLID 95, 3 ±
solution based on the Ritz method (Kirchhoff theory)
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the von Mises stress in the ®rst example using 3D ap-
proach is less then that obtained using plate theories
(Fig. 9b). In contrast, the ®rst principal stress in the
midpoint at the plate edge using 3D mesh is much greater.
Therefore the use of rI in damage evolution equation
yields to a very short failure time comparing with those for
plate models.

5
Conclusions
The standard FE-code ANSYS which allows elastic and
inelastic analysis of beams, plates and shells taking into
account different constitutive equations was used for the
long-term predictions in the case of creep-damage be-
haviour of the material at stationary elevated tempera-
tures. The damage evolution is included using Kachanov±
Rabotnov's scalar damage parameter and Norton's creep
law for the creep process. The creep-damage material
model is incorporated into the ANSYS code by writing a
user creep material subroutine.

The accuracy of the creep-damage ®nite element pre-
dictions in thinwalled structures was estimated comparing
with solutions based on the Ritz method. As examples the
beam and the plate in bending problems were discussed in
detail. Various numerical tests verify the implemented
user material subroutine and show the sensitivity of the
long-term predictions for beams and plates to the mesh
sizes and the element types. Basing on some analytical
estimations, solutions with the Ritz method and ®nite
element solutions we conclude the following:

1. The approximations or meshes justi®ed for the elastic
solutions using displacement based variational methods
cannot be used for the creep damage analysis.

2. The mesh established basing on a convergent steady
state creep solutions can be used for the continuum
damage mechanics analysis of thinwalled structures in
bending.

These conclusions can be related to the ®nite element
concept in general applying any ®nite element code.

If the material behaviour depends on the kind of stress
state (e.g., different damage rate to tensile and compres-
sive stresses) the results for beams and plates are sensitive

to element type. First the structure mechanics equations
for beams, plates and shells have to be based on re®ned
cross section kinematics (e.g., shear deformable theories).
This has been demonstrated on plates using the Kirchh-
off's and Reissner±Mindlin's theories. Second, let us note,
that the ®nite element studies in the case of plates have
been based on the Reissner±Mindlin type elements avail-
able in the ANSYS code for plasticity and creep simula-
tions. Further investigations should be directed to the
performance of shell or plate theories and corresponding
types of ®nite elements available in other commercial
systems (e.g. ABAQUS) in the long-term predictions using
continuum damage mechanics material models.
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