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In order to develop the direction of "structural engineering nitride coatings" in the work conducted sys-

tematic analysis of the impact of the negative bias potential (direct and high-voltage pulse) on the struc-

ture, substructure and mechanical properties of ZrN coatings obtained by vacuum arc evaporation. Defined 

boundary value of (– 100 V) DC potential applied to the substrate, below which a high-voltage pulse poten-

tial (– 1200 ... – 2000 V quantity that allows to form peaks bias) makes a decisive contribution to the for-

mation of preferred orientation of the crystallites with the [110] axis. The highest values of hardness 

43 GPa are achieved at a constant potential -70 V. Supply high-voltage pulse shifts the maximum hardness 

in the direction of a greater value of the constant potential. 
 

Keywords: Vacuum-arc Deposition method, Mechanical characteristics of coatings, Bias potential, Zirco-
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1. INTRODUCTION 
 

Zirconium nitride (ZrN) in recent years has attract-

ed increasing interest due to the unique combination of 

good corrosion resistance, low electrical resistivity, high 

melting point (about 3263 К) with a sufficiently high 

mechanical properties and high chemical stability  

[1-12]. The latter makes it popular as a coating on the 

blade instrument operating at high speeds. 

At a high degree of ionization of the plasma, as in 

the case of the vacuum-arc method for producing the 

structure and properties of coatings are largely deter-

mined by the bias potential applied to the substrate 

during deposition [13]. However, in this case, the use of 

high potentials is limited considerable heating surface 

during the deposition, resulting in a loss of properties. 

For the purpose of reduce the heat in the deposition 

in the conditions of filing the substrate bias potential, 

used in the constant potentials less -300V and higher  

(– 800 ... – 2000 V) submitted in a pulsed mode with a 

frequency of 7 kHz and the duration of exposure to 

10 s (~ 7 % the total deposition time). It is possible to 

perform deposition at temperatures below 700 K. 

 

2. MODES OF RECEIVING COATINGS AND 

METHODS OF RESEARCH 
 

To solve the problem of structural engineering at 

modernized installation "Bulat-6", equipped with a high-

voltage pulse generator which is further supplied to sub-

strate during the deposition process, ZrN coatings were 

obtained at a pressure of nitrogen atmosphere 

PN  0,65 Pa, the value of the negative DC bias potential 

of the substrate supplied to the Ub  (– 27 ... – 300) V 

and high-voltage pulse potential Uip  (– 0.8 ... –2.0) kV 

applied at a frequency of 7 kHz and the duration of ex-

posure to 10 s. The duration of the deposition process 

is 1 to 2 hours. Stainless steel plate 12X18H10T 

18  18  2 mm sizes and copper foil used as the sub-

strates. 

Micrographs of coatings obtained by raster electron 

microscope JEOL JSM 840. For the electron microscopy 

studies of the coating deposited on the copper substrate 

thickness of 0.2 mm. 

Structural studies of the samples were carried out 

by X-ray diffraction on the "DRON-3M". Radiation Cu-

Kα has used in all studies. 

Texture parameter was determined by calculation of 

the pole density Phkl by the method Harris in the direc-

tion normal to the sample surface [14]. To calculate Phkl 

used the relation: 
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where hklI s , hklI st  – the experimentally measured inte-

grated intensities of reflections from planes (hkl) for 

the investigated coating and non-oriented standard 

(JCPDS 35-0753); hklI
s , hklI

st

 
– total relative intensi-

ties of all the reflections of the sample and the stand-

ard. To calculate the total integrated intensity was 

used range of angles 2θ  30 ... 80° in which one gets to 

reflect all the major planes.  

The size of grain-crystallites (regions of coherent 

scattering) in the nitride film was determined by using 

a method for approximating the shape of the diffraction 

curves [15]. 
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Fig. 1 – The surface morphology and fractographs breaks ZrN coatings (РN  0,65 Pa): a, b – Ub  – 40 V; c, d – Ub  – 220 V 
 

The hardness of the samples was determined by us-

ing a installing "Micron-gamma" equipped pyramid 

Berkovich [15] at room temperature (up to a maximum 

load of 0.5 H). 

 

3. RESULTS AND DISCUSSION 
 

Research of morphology ZrN coatings showed that the 

coatings produced at a relatively low constant potential 

bias – 40 V are in the bulk and on the surface of a suffi-

ciently large amount of the droplet phase (see Fig. 1a, 

b). The structure does not have a expressed by the co-

lumnar. Increasing the bias potential leads to a de-

crease in the droplet phase and the appearance of the 

columnar structure. In Figure 1c, d shows the surface 

morphology and fractographs fracture coatings deposit-

ed at bias potential supply quantity Ub  – 220 V. Obvi-

ously that the coatings are practically no microparticles 

droplet phase, both in the bulk and on the surface, and 

the growth structure of coating has a columnar form 

(see Fig. 1c). This significant reduction of the droplet 

phase can be explained by the fact that the droplet 

component, like any other cluster of atoms placed in a 

plasma acquires a negative (floating) potential and 

pushes the surface to which a negative potential (in 

this case the surface of the substrate) [17]. The diffrac-

tion spectra of the coatings obtained at different values 

of Ub without additional high-voltage pulse stimulation 

are shown in Figure 2. Obviously that over the entire 

range of bias potentials submitted bias (– 27... –300) V 

is the formation of a single-phase structural state char-

acteristic of ZrN with a face-centered cubic lattice 

(structural type NaCl). Thus, depending on the magni-

tude of the negative bias potential supply varies the 

ratio of intensities of reflections from different planes, 

which indicates the appearance of texture (preferred 

orientation of crystallites). At low bias potential (–

 27 ... – 40) V large intensity peak of a (200) indicates 

the texture [100] axis perpendicular to the plane of 

growth. A change of texture occurs with the increase in 

Ub: at Ub  (– 70 ... – 150) V – on bitextural with a pre-

ferred orientation of the crystallites with the [311] and 

[111] perpendicular to the plane of growth, and at Ub 

exceeding meaningfully – 150 V on nearly uniaxial texture 

with [111] axis (see. Fig. 2 spectra 6 and 7). 
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Fig. 2 – Plots X-ray diffraction spectra of coatings ZrN, ob-
tained by РN  0,65 Pa, Uip  0 V, Ub: 1 – – 27 V; 2 – – 40 V; 3 – 

– 70 V; 4 – – 100 V; 5 – – 150 V; 6 – – 220 V; 7 – – 300 V 
 

When an additional high voltage potential submits to 

the substrate in the pulsed mode (– 1200 V or  

– 2000 V) the general trend is observed for the formation 

of texture [111] for large Ub and significant change in the 

structural state at smaller Ub (see Fig. 3 and 4). The 

latter indicates the presence of the boundary energy (po-

tential) in which the definition of the structural state is 

given by the high-voltage pulsed stimulation, passing 

with a cascade formation. 

Submitting potential Uip  – 1200 V during the entire 

range of Ub  (– 27 ... – 300) V misses texture [100]. In 

this case, supply Uip for a small value  

Ub  (– 27 ... – 70) V stimulates the formation of texture 

with the [110], which is manifested in increasing reflec-

tion from the (220) (see Fig. 3, spectra 1-3). With a larger 

Ub  (– 70 ... – 100) V as in the case without pulse stimu-

lation formed bitextural state with axes texture [311] 

and [111], and at Ub  (– 150 ... – 220) V formed in al-

most uniaxial texture from the [111] axis. However, un-

like the formation of coating without impulse stimula-

tion feed Uip  – 1200 V resulted when Ub  – 300 V 

weaken the relative intensity of (111) (i.e., reducing the 

degree of texturing axis [111] and the appearance of tex-

ture with the [110] (Fig. 3, the spectrum 7). 
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Fig. 3 – Plots X-ray diffraction spectra of coatings ZrN, ob-

tained by РN  0,65 Pa, Uip  – 1200 V and Ub: 1 – – 27 V; 2 –  

– 40 V; 3 – – 70 V; 4 – – 100 V; 5 – – 150 V; 6 – – 220 V;  

7 – – 300 V 
 

Submission of the greatest potential Uip  – 2000 V 

leads to an increase in texture with the [110] at low 

Ub  (– 27 ... – 70) V in a decrease in the area bitextural 

state [311] and [111] to Ub  – 100 V at values exceed-

ing which texture formation occurs primarily with the 

[111]. However, in this case at the maximum  

Ub  – 300 V new texture appears, in this case with the 

axis [100] (see. Fig. 4 spectrum 7). 
 

40 60

0

20000

40000

60000

80000

100000

(222)

(311)

(220)
(200)

7
6

5

4
3

2
1

(111)

 

 

 2deg.

I,
 a

rb
. 
u

n
.

 
 

Fig. 4 – Plots X-ray diffraction spectra of coatings ZrN, ob-

tained by РN  0,65 Pa, Uip  – 2000 V and Ub: 1 – – 27 V; 2 – –

 40 V; 3 – – 70 V; 4 – – 100 V; 5 – – 150 V; 6 – – 220 V;  

7 – – 300 V 
 

Thus, the supply of Uip leads to a significant change 

in the preferential growth of crystallites at low values 

of Ub. In this case, building texture parameter Phkl for 

major planes on Harris method [9] are indicative ac-

cording to Ub for different values of high-voltage pulsed 

bias potential. Figure 5 shows the corresponding curves 

for the 4 basic planes (111), (200), (220) and (311). 

Obviously that at relatively low constant potential 

bias (up – 50) V without pulse action occurs the for-

mation of texture with the axis [100]. Increasing capac-

ity to – 100 V leads to a new type of texture with the 

axis [311]. At higher potentials when determining in-

fluence deformation factor - is the formation of texture 

[111]. The presence of high-voltage pulse potential quali-

tatively changes the character of texture at a low con-

stant potential bias. With increase in the value of the 

pulse potential - becomes defining texture [110]. At con-

stant potential exceeding – 100 V high-voltage pulse 

exposure does not lead to qualitative change in the tex-

ture [111]. Thus, there is boundary nature of DC poten-

tial at which affects additional high-voltage pulse action. 

Considering that calculations showed that the char-

acteristic energy of defect formation by ion implanta-

tion from the plasma to form a "thermal spike" is for 

titanium nitride 500-700 eV [18, 19], when these ener-

gies we can expect the emergence of "thermal spikes" 

and in the case of the isostructural zirconium nitride. 

As it is known in this case, as the collision energy in-

creases, and with it the radius of the "thermal spike" 

increases and the time which required for cooling the 

collision zone to the initial temperature. Then, if the 

"thermal peak" holds a sufficiently long time, it pro-

vides the time needed for significant nuclear relaxation 

and displacements corresponding to the local anneal-

ing. Thus, the high-energy implantation, generating 

"thermal spikes" with a lifetime greater than the time 

which required for the stress relaxation forming coat-

ing is an effective way to relieve stress during the dep-

osition.  

In this case, if the appearance of preferred orienta-

tion of [111] is determined by the achievement of a high 

level of compressive stresses, in particular, by increas-

ing the coating thickness of the nitride coatings [20], 

then the removal of the stress is the formation of tex-

ture [100] as which has the lowest surface energy, or in 

the implantation of the texture with the axis [110] or 

[311], which provides minimum radiation damage. Ed-

ucation texture [110] in the case of formation of ther-

mal spikes at constant negative potential  

– 500 ... – 800 eV system TiZrN confirmed in [21].  

On the substructure level of a constant flow without 

bias potential pulse exposure leads to increase in crys-

tallite size for values less Ub  – 200 V (see Fig. 6). As 

one of the main causes of this process is to increase the 

degree of interaction between the nitrogen atoms and 

the metal, activated by increase in energy. Reducing 

the size of the crystallites when applying greater capac-

ity may be associated with the process of polygonization 

under high compressive stresses, reaching apparently 

critical dislocation movement in the value of ZrN  

  – 6,7 GPa. With this process you can associate the 

observed decrease in microstrain (1 curve in Fig. 6b). 

Feed pulsed high voltage potential reduces mi-

crostrain (2 and 3 according to Fig. 6). This increase in 

the average energy of the particles as a result of pulse 

stimulation leads to process of polygonization associat-

ed with the ordering of dislocation defects, even at fair-

ly low constant potential (about – 100 V).  

Feed at constant potential deposition leads to non-

monotonic effect of hardness modification (see Fig. 7, 

the curve of 1). 
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Fig. 5 – Depending on the parameter of texture Phkl from values Ub for different planes: a – (111), b –  (200), c – (311), d – (220);  

1 –  Uip – 0 V, 2 – Uip – 1200 V, 3 – Uip – 2000 V 
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Fig. 6 – The dependence of the crystallite size (a) and microstrain (b) from the constant potential at PN  0,65 Pa:  

1 – Uip  0 V; 2 – Uip  – 1200 V; 3 – Uip  – 2000 V 
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Fig. 7 – Dependence of the microhardness of coatings from 

values of the constant potential at PN  0,65 Pa: 1 – Uip  0 V, 

2 – Uip  – 2000 V 

This change consists in the growth hardness to the 

bias potential – 100 V that may be associated with in-

crease in compressive stress and greater efficiency for-

mation of nitrides. Fall hardness at higher constant 

potential may be due to increase in structural defects. 

Submission of pulsed high voltage potential is accom-

panied by relatively lower hardness at low Ub. Howev-

er, in the range of – 100 ... – 150 V hardness increases, 

transferring obtained in this way coating superhard 

discharge. As can be seen from a comparison with the 

substructural characteristics – appearance in this in-

terval Ub high hardness with pulse stimulation corre-

lates with decrease in the average crystallite size. Also, 

as is well known, the impulse high voltage stimulation 

increases the efficiency of formation of nitrides. 
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4. SUMMARY 
 

Using negative bias potential (in a direct and high-

voltage pulsed modes) the regularity of its influence on 

the surface morphology of growth, structure, substruc-

ture and mechanical properties. 

It is established that the effect of the negative po-

tential on the surface morphology during the deposition 

effect in reducing the droplet phase. This is determined 

by the acquisition of a drop of the negative charge and 

the repulsion of its negatively charged surface of the 

substrate during the deposition. 

At the structural level supply potential leads to the 

formation of preferred orientation of the crystallites. 

Feed small in magnitude Ub  (– 50 V) leads to pre-

ferred orientation of growth of crystallites with axis 

[100]. At higher constant potential Ub  (– 50 ... –100) V 

texture is formed [311], which at Ub  (–150 ... –300) V 

goes into texture with the axis [111]. Submission of 

high-voltage pulses results in texture [110] and the 

formation at high Ub bitextural status with the axises 

[111] and [110]. 

On the substructure level in the range of  

Ub  (– 100 ... – 250) V supply high-voltage pulses re-

sults in decrease in the average crystallite size and 

microstrain relaxation. 

The highest values of hardness 43 GPa are achieved 

at constant potential – 70 V. Supply high-voltage pulse 

shifts the maximum hardness in the direction of a great-

er value of the constant potential. Submitting Uip  –

 2000 V, maximum hardness falls on Ub  – 150 V. 
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