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1. Introduction 

While forecasting the development of socio-economic systems there often 

arise the problems of forecasting non-stationary stochastic processes having a 

scarce number of observations (5-30), while the repeated realizations of processes 

are impossible. 

To solve such problems there have been suggested a number of methods, in 

which unknown parameters of the model are estimated not at all points of time 

series, but at a certain subset of points, called a learning sequence. At the 

remaining points not included in the learning sequence and called the check 

sequence, the suitability of the model for describing the time series is determined. 

These methods include the method of cross-validation and Group method of data 

handling (GMDH) proposed by Alexey G. Ivahnenko. The disadvantage of these 

methods is that a certain combination of data partitions is set in advance and it does 

not take into account the specifics of the task. 

 

2. Purpose of work 

The purpose of this work is to create and study an effective forecasting 

method of non-stationary stochastic processes in the case when observations in the 

base period are scarce. 

 

3. H-criterion method (I. Kononenko, 1982) 

The data including retrospective information can be presented in a form of 

matrix Г ir , , qr ,1 , ni ,1 , where q – number of significant variables including 
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the predicted variable; n – number of points in the time base of forecast; 

),...,,( ,12,11,1 n  - vector of values of the predicted variable.  

The list of elementary models is formed. It includes different mathematical 

models, which by hypothesis can be included in the final forecasting model. The 

elementary power, exponential, logarithmic, trigonometric, rational and other 

functions are used. From the models in the list the linear combinations of 1,2,...,M 

models are formed comprising the set of test models. For each test model the 

estimation of its suitability for forecasting is made.  

The matrix Г is further divided into two submatrices – learning submatrix Г L 

and check submatrix Г C. The division is made by means of selecting the first n/2 

columns of matrix Г as Г L and the remaining columns as Г C. If n is odd then (n–

1)/2 columns should be selected. The parameters of all formed models are 

estimated using the learning submatrix 

   LG,ρηˆ jA ,                                              (1) 

 

where  jA  – the vector of estimated parameters for j-th model, 

 Tp
j aaaA ,,, 21
)(  ;  jÂ  – the vector of estimates for  jA ;  – the vector of weighting 

coefficients  considering the error variance or importance i1γ  for building the 

model, L,1 Ni  ,  
L

ρ,,ρ,ρρ 21 N ; (…) – function that is set analytically or 

algorithmically. The estimation of parameters is made by methods most 

appropriate for the situation at hand. When choosing a method the following 

criteria must be taken into account:  the kind of test models, the existing 

assumptions about additivity and  multiplicativity of errors, about the error 

distribution law, about the class it might belong to, about the error correlation and 

other information. 

The loss-function F() is selected according to the available information 

about the error distribution law or the class of such laws.  

After the estimation of parameters of all test models according to formula (1) 

for each j-th model at all points of  past history we calculate 
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where i  – weighting coefficient; F() – loss-function, selected according to 

the available information about the distribution law of errors i or the class of such 

laws. Then ГC is used as a learning submatrix, and ГL as a check one, and for all 

models the process of parameters estimation and calculation of 2 values is 

repeated. 

In the matrix Г new learning and check submatrices are chosen. The number 

of rows in ГL is decreased by one. The process of estimation of model parameters 

and calculation of 3 is repeated, the learning submatrix is used as the check one 

and the check submatrix - as the learning one, 4 is calculated and similarly we 

continue using the bipartitioning. The process is stopped after a set number of 

iteration g. Among test models estimated by different methods the one with the 

minimum value of H-criterion is selected. 

 

gH  21 .                                      (3) 

The obtained model is used for forecasting. 

 

4. Bootstrap evaluation method (I. Kononenko, 1990) 

The data including retrospective information can be presented in a form of 

matrix ,,ijG   ,q,1j   ,n,1i   where q – number of significant variables 

including the predicted variable, n – volume of past history,  n,12,11,1 ,...,,   – 

vector of values of the predicted variable.  

Let 1L  , where L – the number of a model in the set of test models. Let the 

model  BN ,f i
L  be tested for the description of the observed process, i.e. we get 

the expression   ii
L

i,1 ,f  BN , where Ni – vector of independent variables, B 

– vector of estimated parameters, i – independent errors having the same and 

symmetrical density of distribution, n,1i  . 
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1. The parameters of the model  BNi ,f L  we estimate using matrix G 

basing on the condition 

  



n

1i
i

L
i,1 ,,fFminargˆ BNB

B
 

where  iF   – loss function,  BN ,f i
L

i,1i  , n,1i  . The loss function is 

selected depending on the available assumptions about the errors additively 

imposed on the true model. Thus,   F  or     .F
2

  For the model 

 BN ˆ,f i
L  we determine the deviation from points of G,  BN ˆ,, i

L
i1i fbias  , 

n,1i  . Numbers biasi form the BIAS vector. 

2. We divide the matrix G into two submatrices – learning submatrix GL and 

check submatrix GC. We include first n-1 columns of matrix G in submatrix GL and 

n-th column in GC. The learning submatrix has the following form LG i,j , 

q,1j  , 1n,1i  , and the check one – cG n,j , q,1j  . 

Using the learning submatrix GL we estimate the parameters B  of the test 

model by the above mentioned method and obtain  0
B̂  as a result. Basing on the 

check submatrix we calculate the deviation of the model from the statistics 

   20
n

L
n1

L
0 fD BN ˆ,,  . 

Let k=1, where k – number of iteration, which performs the bootstrap 

evaluation. 

3. We perform bootstrap evaluation, which consists in the following. We 

randomly (with equal probability) select numbers from the BIAS vector and add 

them to the values of model  BN ˆ,f i
L . As a result we obtain “new” statistics k

i,1 , 

n,1i  , which looks like the following 

  si
Lk

i,1 biasˆ,f  BN , n,1i  ,  n,...,2,1s . 
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Then we divide the matrix Gk (a new one this time) into GL,k and GC,k. We 

estimate the unknown parameters basing on GL,k as earlier and calculate the model 

deviation from GC,k 

   2k
n

Lk
n1

L
k fD BN ˆ,,  . 

4. If k<K-1 then we suppose that k:=k+1 and return to step 3 (where K – 

number of bootstrap iterations), otherwise proceed to step 5. 

5. We evaluate 







1N

0k

L
k

L DD . 

6. If L<z then we suppose that L:=L+1 and move to step 1 (where z – 

number of models in the list), otherwise we stop. 

The model with minimal D
L
 is considered to be the best one.  

 

5. The analysis of forecasting methods 

A computational analysis of the suggested forecasting methods has been 

performed. The following mathematical models have been chosen for the analysis: 

3x2xy 2  , 3x6xy 2  , 3x8x2y 2  , 3x16xy 2  , 

11x6xy 2  , 11x2xy 2  , 27x16x2y 2  , 27x8x2y 2  , 

hereinafter referred to as true models. On each of these models defined at points 

i1,0x i  , 10,1i   we imposed an additive noise ),0(N~ 2 , where 

9)10yy(3.0
10

1i

10

1i
ii 

 

 , 

where iy  – value of the model at point ix , 10,1i  , and then defined the best 

forecasting model by means of the suggested methods. The loss function of the 

form 2)()(F   was chosen as it is the most frequently used in practice. 

During the analysis we considered all combinations of one, two, three functions 

from the list 2
1

x , x , 2
3

x , 2x , 2
5

x , 3x , 1x , 2
1

x


, 2
3

x


 in form of their linear 

combinations. We analyzed the properties of the method when forecasting on d 
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points, 10,5,3,2,1d  . For every forecasting model obtained we calculated the 

following characteristics: 

- Relative percent mean absolute deviation (PMAD) evaluated at the 

estimation period 





10

1i
i

10

1i
ii zŷz ; 

where iii yz  , iŷ  – value of the obtained forecasting model at point i, 10,1i  ; 

- Percent mean absolute deviation (PMAD) evaluated at the estimation 

period 





10

1i
i

10

1i
ii yŷyE ; 

- Percent mean absolute deviation (PMAD) evaluated at the forecasting 

period 









d

11i
i

d10

11i
iid yŷy1E ; 

- Relative mean squared error (MSE) evaluated at the forecasting period 

 





d10

11i

2
ii

m
d ŷz

d

1
D ; 

- Mean squared error (MSE) evaluated at the forecasting period 

 





d10

11i

2
ii

t
d ŷy

d

1
D . 

The analysis is performed on 1000N  realizations of noise. 

For the H-criterion method, the division of data into learning and checking 

submatrices was done in accordance with the rules determined by the matrices 
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Every j-th column of the matrix 4,1, dRd  corresponds to the j-th method of 

data division, 8,1j  for R1, R2  and 10,1j  for R3, R4. Every )(d
ijr -th element of 

matrix Rd 10,1j  determines, into which submatrix – learning (GL) or checking 

(GC) – goes i-th point of history. Here 1)( d
ijr  means that the point is used in 

submatrix GL, )(d
ijr = 2 means that the point is used in submatrix GC. 

Matrix R3 corresponds to the cross-validation procedure that served as the 

source for comparison. 

Matrix R4 is the randomly generated matrix. 

For the bootstrap evaluation method the number of bootstrap iterations was 

selected from 10, 20 to 50. 

We calculated: 

- Average (across noise realizations) relative percent mean absolute 

deviation (PMAD) evaluated at the estimation period  





N

1k
k

N

1
; 

- Average (across noise realizations) percent mean absolute deviation 

(PMAD) evaluated at the estimation period 





N

1k
kE

N

1
E ; 



 8 

- Average (across noise realizations) percent mean absolute deviation 

(PMAD) evaluated at the forecasting period 





N

k

dkd E
N

E
1

1
1

1 ; 

- Average (across noise realizations) relative mean squared error (MSE) 

evaluated at the forecasting period  





N

1k

m
dk

m
d D

N

1
D ; 

- Average (across noise realizations) mean squared error (MSE) evaluated at 

the forecasting period  





N

1k

t
dk

t
d D

N

1
D , 

where k , kE , dk1E , m
dkD  and t

dkD  – error values for k-th realization of noise, 

N,1k  . Confidence intervals of 95 percent have been estimated for  , E , d1E , 

m
dD  and t

dD . 

The comparison of the efficiency of the suggested methods and cross-

validation method has been made. Using the same analysis algorithm and the initial 

data as for analysis of the suggested methods, the investigation of cross-validation 

method has been conducted and the values of characteristics  , E , 1E , mD , tD  

were obtained, also 95% confidence intervals for these characteristics have been 

built.  

We compared the characteristics with the two-sample t-test assuming the 

samples were drawn from the normally distributed populations, which in the 

context of the considered problem has the following form  

   Q2Q,NVvP  , 

where  Q,NV  – value defined by the table that corresponds to the significance 

level of Q , v  – value calculated by the following formula 

N

ss
v

2
2

2
1 

 , 
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where 21  , 1  and 2  – compared characteristics, 1s  and 2s  – estimates of 

root-mean-square differences of 1  and 2  correspondingly, 1000N  . 

The significance level of Q  is said to be equal to 2,5 %. For 5,2Q  and 

1000N     96,1, QNV . 

The values of v  calculated for pairs of compared characteristics (for H-

criterion method matrices R1, R4, R6 were selected) have been analyzed.  

The values of characteristics of the suggested forecasting methods are 

significantly less (with the 95% of confidence probability) at the forecasting period 

than the values of characteristics of cross-validation method for all true models 

considered and intervals of the forecasting period.  

Figure 1 depicts how the PMAD dE1 , evaluated at the forecasting period 

changes for mathematical model 3x2xy 2   depending on the number of 

partitions g. In the given case d=10, i.e. the forecasting is performed at 10 points.  

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

1 2 3 4 5 6 7 8 9 10

g

%

Matrix R1 Matrix R2 Matrix R3 - CV Matrix R4 - Random Bootstrap

 

Figure 1 - Percent mean absolute deviation (PMAD) evaluated at the 

forecasting period 

 

Having analyzed the given example we can draw a number of conclusions: 



 10 

- when the number of partitions increases in case of using matrices R1 and R2 

we observe the downward trend of dE1  with some fluctuations in this trend that 

depend on the ways of data partition; 

- the partition according to the cross-validation procedure, in which the 

check points fall into the observation interval, produces significantly less accurate 

forecasts. The comparison of the efficiency of different partitions with randomly 

generated matrix  R6 has shown that the reasonable choice of partition sequences 

permits to get a more accurate longer-term forecast; 

- the bootstrap evaluation method, which requires no learning or checking 

matrices, produces the more accurate forecast than the cross-validation procedure  

- the comparison of two suggested methods enables to state that the 

bootstrap evaluation method makes it possible to obtain more accurate longer-term 

forecasts as compared with H-criterion method only in case of a small number of 

partitions. Otherwise the usage of selected matrices R1 and R2 permits to get more 

accurate forecasts. Nevertheless, the bootstrap evaluation method turned out to be 

more accurate than the H-criterion method when using matrix R6. 

The similar chars can be observed for the remaining mathematical models 

used in the analysis.  

The number of bootstrap iterations reasonable for using in the corresponding 

methods has been determined. In case of analyzed models the number of bootstrap 

iterations that allowed to reduce PMAD evaluated at the forecasting period was 40. 

By changing the number of bootstrap iterations from 10 to 40 the value of PMAD 

decreased and reached its minimum at 40, and than started to increase as the 

number of iterations reached 50. 

Thus, we conclude that the suggested methods are more accurate in the 

forecasting period than the cross-validation method. Such conclusion permits to 

recommend them for forecasting of non-stationary stochastic processes when the 

number of points in the base period is small.  

The suggested bootstrap evaluation method has helped in solving the tasks 

of forecasting the sales volume of wheel tractors in the USA and the production 
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volume of bread and bakery in Kharkiv region (Ukraine). The latest is shown on 

the figure 2. It should be noticed, that the forecast was made in 2002 and was not 

corrected since then. The mean relative error for the period 2003-2006 is 5,91 %. 
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Figure 2 - Production volume of bread and bakery in Kharkiv region 

 

When solving different forecasting problems it is important to determine the 

appropriateness of using one of the methods. The analysis results have shown that 

when the number of partitions is large the H-criterion method produces the more 

accurate longer-term forecasts than the bootstrap evaluation method. However, in 

the real-life problems the bootstrap evaluation method might turn out to be more 

accurate in the number of cases. That is why it is recommended to use the given 

methods together. In such case every result obtained by means of these methods 

must be assigned some weight on the basis of the a priori estimates of the methods 

accuracy.  The final forecast will be received in the form the weighted average 

value of individual forecasts. 


