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Abstract 

 

Neutrophils have traditionally been thought to play only a peripheral role in the genesis of 

many autoimmune and inflammatory diseases. However, recent studies in a variety of 

animal models suggest that these cells are central to the initiation and propagation of 

autoimmunity. The use of mouse models, which allow either deletion of neutrophils or the 

targeting of specific neutrophil functions, has revealed the many complex ways these cells 

contribute to autoimmune/inflammatory processes. This includes generation of self antigens 

through the process of NETosis, regulation of T-cell and dendritic cell activation, production 

of cytokines such as BAFF that stimulate self-reactive B-cells, as well as indirect effects on 

epithelial cell stability. In comparing the many different autoimmune models in which 

neutrophils have been examined, a number of common underlying themes emerge – such 

as a role for neutrophils in stimulating vascular permeability in arthritis, encephalitis and 

colitis. The use of animal models has also stimulated the development of new therapeutics 

that target neutrophil functions, such as NETosis, that may prove beneficial in human 

disease. This review will summarize neutrophil contributions in a number of murine 

autoimmune/inflammatory disease models.  

 

 

1. Introduction 

 

Neutrophils are the most abundant cell in the immune system. Between 1011 to 1012 

neutrophils are made each day in the human bone marrow, which comprises ~50% of the 

total cellular content of the marrow, including a large pool of fully mature cells that is poised 

for release into the circulation in response to immune challenge [1]. The role of neutrophils in 

host defense against pathogen infection has been extensively studied in many disease 

contexts. However, current research indicates that neutrophils are also involved in regulating 

other aspects of immunity. Thus it is now clear that neutrophils are both effectors and 

modulators of host immune responses [2, 3]. It is also evident that dysfunction of either of 

these neutrophil roles can lead to immune-based diseases, including a variety of 

autoimmune and autoinflammatory conditions. 

That neutrophils contribute at all to autoimmune disease pathogenesis is somewhat 

of a novel concept. Clearly, as effector cells, their contribution to tissue injury in inflammatory 

diseases, for example in immune complex-mediated diseases such as rheumatoid arthritis or 

glomerulonephritis, has long been appreciated. But the concept that neutrophil dysfunction, 

in either effector or regulatory properties, could initiate autoimmune disease is a new idea [4, 

5]. Indeed, the entire autoimmunity field is undergoing a conceptual shift with the realization 
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that dysregulation of any one of a number of innate immune cell types (especially dendritic 

cells) can be a primary driver of autoimmunity [6, 7]. Hence, determination of the 

mechanisms by which neutrophils affect adaptive immune cells is among the most dynamic 

areas of research in autoimmunity [8]. 

As effector cells, neutrophils respond to infectious pathogens through a myriad of 

molecular receptors that recognize pathogen-associated molecules. Activation of neutrophils 

through FcRs (that recognize Ig opsonized pathogens), integrins or C-type lectin receptors 

induces phagocytosis of bacteria or fungi, which in concert with stimulation of Toll-like 

receptors (TLRs), G-protein coupled receptors (such as the formyl peptide receptors) or 

various intracellular pathogen sensing molecules (such as NOD receptors), leads to 

stimulation of superoxide production as well as release of granules containing antimicrobial 

proteases and peptides [9]. Additionally, during host defense reactions neutrophils undergo 

a distinct form of cell death, referred to as NETosis, which leads to extracellular release of 

chromatin (that is often decorated with anti-microbial peptides released from granules) that 

forms a meshwork to trap extracellular pathogens [10]. Defects in any one of these effector 

functions, such as lack of integrin signaling or impairment of superoxide formation, leads to 

various forms of immunodeficiency. Importantly, these same defects in effector function can 

also contribute to autoimmune disease [11]. For example, patients with chronic 

granulomatous disease (CGD), caused by mutations in genes encoding subunits of the 

NADPH oxidase resulting in reduced or absent superoxide production, often develop 

autoimmune disease (colitis), which may be due to changes in the intestinal microbiome, 

which favor outgrowth of proinflammatory organisms. Similarly, the process of NETosis is 

now recognized as a major source of self (or auto) antigens that drive autoimmunity in 

diseases such as systemic lupus erythematous or rheumatoid arthritis [12]. Thus the 

antimicrobial role of neutrophils underlies aspects of their contribution to autoimmune 

disease.     

As regulatory cells, neutrophils have been found to modulate the function of T-cells, 

B-cells and dendritic cells, which in turn directly affects autoimmune disease pathogenesis. 

The regulatory mechanisms utilized by neutrophils includes direct effects, via the production 

of cytokines such as IL-1, IL-6, IL-10 (in murine neutrophils only), TNF and BAFF that affect 

other immune cells, as well as indirect effects, through production of superoxides or 

consumption of nutrients (amino acids or even oxygen) that limit function of neighboring 

immune cells [13, 14]. Both stimulatory and inhibitory roles for neutrophils, based on their 

ability to produce various cytokines or indirectly affect other immune cells, have been 

described in a variety of autoimmune or autoinflammatory processes. Thus, the most 

productive way to summarize the contributions of neutrophils to any given autoimmune 

disease is to review the current evidence for each disease individually. 
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This review will focus on the current evidence linking murine neutrophils to a wide 

variety of murine autoimmune and autoinflammatory disease models. We will focus on 

mechanisms by which neutrophils contribute to disease pathogenesis beyond just induction 

of tissue injury through effector mechanisms (superoxide or protease release) normally 

operative in host defense reactions. The majority of evidence will involve neutrophil depletion 

or use of genetic knockout mice in any given disease model. As the reader will see, there 

are many complex ways neutrophils are involved in autoimmune diseases that were 

previously just thought to arise from defects in T or B-cell tolerance mechanisms. 

 

 

2.  Roles for neutrophils in classical autoimmune disease models 

 

2.1.  Neutrophils in Systemic Lupus Erythematosus 

 

There is a wealth of literature demonstrating a pathogenic role for neutrophils in 

various rheumatologic diseases, in particular systemic lupus erythematosus (SLE). Most of 

this data is based on human observations, which paints a picture of abnormal neutrophils 

contributing to both inflammatory states in SLE (through production of disease inducing 

cytokines such as IL-1β or BAFF) as well as being the source of many auto-antigens in the 

disease (mainly through NETosis). However, the picture is a bit more complicated when 

these mechanisms are tested in animal models.  

Observational and in vitro experiments suggest that neutrophils contribute to human 

SLE development [15, 16]. Many SLE patients develop neutropenia during flares of active 

disease and their remaining cells show a number of functional abnormalities, such as poor 

phagocytosis and reduced superoxide production [17, 18]. A number of studies report that 

SLE patients develop an abnormal type of neutrophil referred to as a low-density granulocyte 

(LDG), which is primed in vivo to undergo NETosis. There are abundant reports linking 

NETosis to auto antigen formation and disease activity in SLE [19]. NETosis is a specialized 

form of neutrophil cell death that results in the extrusion of dense fibrillary networks of intact 

chromatin/DNA complexes that are often coated with granule proteins (such as 

myeloperoxidase (MPO), elastase or cathepsin G) and anti-microbial peptides (such as LL-

37 and others). NETosis occurs following exposure of neutrophils to pathogen-associated 

molecules (lipopolysaccharide as an example) in the setting of other inflammatory stimuli 

(such as cytokines, chemokines or immune complexes) and is believed to have evolved to 

promote host defense against pathogens by physically trapping them in the chromatin 

meshwork [20]. NETosis requires production of superoxides and H2O2 (and is reduced in 

patients with defects in the NADPH oxidase) to mobilize MPO and other granule contents to 
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the nucleus, which contribute to rapid breakdown of the nuclear membrane [21]. 

Decondensation of the nuclear chromatin is assisted by the enzyme peptidyl arginine 

deaminase (PAD) 4, which converts arginine residues on histones to citrulline to reduce 

electrostatic interactions between the histone and DNA [22]. The released chromatin 

complexes also undergo a number of additional modifications including deacetylation of 

lysine residues on histones. It is believed that this abnormal presentation of citrullinated 

and/or deacetylated chromatin in the setting of robust inflammation is the source of the 

neoantigens leading to formation of anti-dsDNA, anti-histone/chromatin and anti-citrullinated 

proteins (anti-CCP) that characterizes SLE and seropositive rheumatoid arthritis. Besides 

providing a source of neoantigens, NET contents can directly stimulate IFNα production by 

plasmacytoid dendritic cells (pDCs) [23]. Increased IFNα acts on a variety of immune cells to 

promote their activation, including feeding back on the neutrophils themselves to further 

prime additional NETosis, in the fashion of a feed forward amplification loop. Indeed, 

neutrophils from SLE patients show the same “interferon signature” of increased expression 

of IFNα-stimulated genes as well as hypomethylation (and hence activation) of IFNα 

responsive genes, which is seen in other immune cells in these patients [24]. NETs can also 

stimulate macrophages and other cells, through the NLRP3 inflammasome or the P2X7 

purinergic receptor, resulting in the release of IL-1 and IL-18, further exacerbating the 

inflammatory state in SLE patients [25]. Finally, neutrophils from SLE patients with active 

disease also produce high amounts of BAFF, which directly acts on autoreactive B-cells to 

support their survival and proliferation and hence contribute to autoimmune antibody 

production [26]. 

Direct validation of these mechanisms in mouse models, however, is not completely 

supportive and tends to give a mixed picture of neutrophils in SLE pathogenesis. The most 

direct experimental evidence of a role for neutrophils in driving systemic autoimmunity 

comes from chronic neutrophil depletion experiments [13, 14]. Coquery et al. found that 

neutrophil depletion, achieved by every other day injection of the anti-Ly6G depleting mAb 

for four weeks, led to a reduction in auto-antibody titers, serum IFN, serum BAFF, T cell 

activation as well as the number of splenic germinal center B cells and plasma cells in the 

autoimmune prone B6.Faslpr/JTnfrsf17-/- strain. In this strain, high production of BAFF by 

neutrophils may help drive the selection and survival of autoimmune B cell clones that 

produce self-reactive antibodies, such as anti-double stranded DNA antibodies. The 

interplay of BAFF, T cells and IFN has also been suggested in the lyn-/- model of 

autoimmunity [27]. While chronic depletion of neutrophils is fraught with potential 

complications and is technically challenging, this is one of the few direct methods to show 

that neutrophils are involved in the development of self-reactive lymphocytes. 
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Less direct approaches have mainly involved modulation of neutrophil NETosis. In 

the New Zealand Black/New Zealand White (NZB/W) mouse model of systemic 

autoimmunity, deposition of NETs in kidneys and skin build up with disease progression, and 

in turn drive IFNα production [28]. Similar accumulation of tissue deposits of NETs and 

formation of autoantibodies that recognize NET components such as anti-microbial peptides 

(CRAMP, the murine analog of human LL-37) have been reported in the related New 

Zealand mixed 2328 (NZM) model of murine lupus [29]. Like humans, neutrophils from NZM 

mice undergo increased NETosis in vitro. Neutrophils from a third animal model of SLE, the 

MRL/lpr model which results from a mutation in the Fas gene leading to reduced immune 

cell apoptosis, also have been reported to undergo increased spontaneous NETosis [30]. In 

both the NZM and the MRL/lpr, blocking NET formation by treatment of mice with PAD4 

inhibitors reduced systemic disease development [29, 30]. Treatment with the PAD inhibitors 

Cl-amidine or BB-Cl-amidine leads to reduced tissue deposition of NETs, reduced 

autoantibody levels, reduced nephritis and reversal of IFNα signature in both models. These 

inhibitors also reduced lipid oxidation in NZM mice, which correlated with improved 

endothelial and cardiovascular function in this SLE model [31].  

These seemingly positive results are contradicted by the observation that blocking 

NETosis in MRL/lpr mice by inhibition of NADPH oxidase function (by crossing MRL/lpr mice 

to Nox2 deficient animals) in fact leads to exaggerated systemic autoimmunity and 

aggravated kidney injury [32]. Indeed, Schauer et al. have suggested that NETs may provide 

an anti-inflammatory function through degradation of cytokines and chemokines within 

inflammatory sites [33]. This study confirms that blockade of NETosis by genetic deficiency 

in one of the subunits of the NADPH oxidase (in this case the p47phox protein) leads to hyper-

inflammatory responses which were reversed by direct transfer of pre-formed NETs into the 

inflammatory site. Part of this apparent paradox may be explained by other important 

functions of the neutrophil NADPH oxidase in systemic autoimmunity, besides just 

stimulating NETosis. Huang et al. recently confirmed that both neutrophil depletion and 

blockade of neutrophil NADPH oxidation function leads to exacerbated systemic 

autoimmunity in the NZB/W model [13]. These authors correlated the reduced levels of 

superoxide production, using in vitro approaches, with increased production of IFNα and 

IFNβ from pDCs, as well as increased IFNγ from NK cells, that together drove inflammation 

and promoted autoantibody production. In contrast, blockade of mitochondrial ROS 

production (which is obviously much less robust than ROS production through the NADPH 

oxidase) has recently been reported to be sufficient to block NETosis in vitro as well as 

reduce disease severity and IFNα responses in MRL/lpr mice [34]. Hence, using NADPH 

ROS blockade to test the role of NETosis in mouse models may be complicated by the fact 

that both T-cells and NK cells will over produce IFNγ and hence drive inflammation and 
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autoimmunity. Instead, perhaps only blockade of mitochondrial production of ROS is 

sufficient to validate the role of NETosis in murine SLE models. 

A third approach to modulate NETosis effects in animal models has involved 

alterations in histone modifications during disease development. Various studies have 

investigated the significance of histone acetylation in SLE neutrophils. Hypoacetylation of 

histones H3 and H4 has been found in splenocytes from MRL/lpr mice [35]. Treatment of 

MRL/lpr mice with HDAC inhibitor trichostatin A reverses the hypoacetylation of histones H3 

and H4, which correlates with an improved disease phenotype. In addition, mice deficient in 

histone acetyl transferase p300, resulting in hypoacetylation of H3 and H3 develop a 

systemic autoimmune disease similar to SLE [36]. These studies suggest that modulation of 

histone acetylation may ameliorate the pathogenic potential of neutrophil NETs. 

The role of neutrophil myeloperoxidase (MPO) in systemic autoimmunity has also 

been somewhat controversial. The proinflammatory effect of MPO, through production of 

oxidants and in promotion of NETosis, would seemingly be a major contributor to disease 

pathogenesis [37]. Yet MPO-knockout mice develop increased autoimmunity and end organ 

damage in the pristane model of lupus [38]. The mechanism for this apparent paradox is 

unclear, but since the pristane treated MPO-deficient mice developed high levels of IFNγ 

producing CD4+ T-cells, it is possible that the loss of MPO releases a brake on T-cell 

expansion during inflammatory states. Similar to the effect of ROS, it has been suggested 

that neutrophil-derived MPO limits T-cell mediated inflammation through an effect on DC 

priming [39]. This is another example of how animal models of SLE can produce somewhat 

unexpected findings that illuminate complex regulatory loops involving neutrophil effector 

functions in autoimmunity. 

 

2.2.  Models of vasculitis 

 

Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a 

group of inflammatory vasculitides characterized by the development of autoantibodies that 

recognize neutrophil granule enzymes MPO and proteinase-3 (PR3). ANCAs bind to 

cytokine-primed neutrophils, leading to neutrophil activation (in part through simultaneous 

binding to both MPO/PR3 and Ig Fc receptors), degranulation, cytokine release and ROS 

production [40, 41]. In particular, ANCA-stimulated neutrophils release large amounts of 

BAFF, which may support further expansion of autoreactive B cells in this disease [42]. 

ANCA-stimulated neutrophils also undergo NETosis, which may exacerbate tissue injury; 

indeed, both free circulating and kidney deposits of MPO-DNA complexes have been 

reported in patients with inflammatory vasculitis [43]. The production of NETs by ANCA-

stimulated neutrophils can also prime DCs to present additional MPO and PR3 peptides to 
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further drive autoimmunity in this disease. In mice, transfer of myeloid DCs treated with NET 

components into naïve animals leads to the development of ANCA antibodies and systemic 

vasculitis [44]. A mouse model of ANCA-associated vasculitis has been established by 

sensitizing MPO-deficient mice with MPO then transferring their splenocytes or purified IgG 

to healthy animals, which results in systemic vasculitis and necrotizing glomerulonephritis 

[45]. Using both chimeric mice and neutrophil-depletion approaches, it has been 

demonstrated that the cellular target for the transferred ANCA is indeed the neutrophils in 

the recipient mouse [46]. The role of neutrophil Fc receptors has been tested in this model 

through transfer of anti-MPO antibodies into FcR deficient mice. As expected, mice lacking 

the inhibitory FcγRIIB receptor develop much more fulminant disease following transfer of 

anti-MPO antibodies [47]. A similar, though less pathogenic model of anti-PR3 ANCA has 

also been described, again by immunizing PR3/neutrophil elastase deficient mice with 

recombinant murine PR3 [48]. A monoclonal anti-PR3 ANCA antibody model has been used 

in isolated rat lungs to show that activation of the neutrophil NADPH oxidase is a major 

mediator of tissue injury [49]. However, in the anti-MPO antibody-mediated disease model, 

Schreiber et al. have recently reported just the opposite – mice genetically deficient in 

NADPH oxidase activity (either Nox2 or p47phox deficient animals) actually developed more 

severe vasculitis and glomerulonephritis following challenge with anti-MPO serum [50]. 

These authors found that the NADPH oxidase-deficient neutrophils over produced IL-1β 

following anti-MPO antibody challenge and that IL-1β-receptor blockade protected recipient 

mice from severe glomerulonephritis following anti-MPO challenge. Doubly deficient Nox2 

and caspase-1 mutant mice were also resistant to anti-MPO mediated disease. Again, these 

somewhat surprising results in mouse models illustrate the complex interactions between 

different neutrophil effector functions in autoimmune diseases.  

 

2.3.  Autoimmune arthritis models  

 

The contribution of neutrophils to autoimmune arthritis has been extensively studied 

in a variety of mouse models. In these models, it has been found that neutrophils contribute 

to both the initiation (or establishment) of disease as well as to the effector (or tissue injury) 

phase of disease. Various mouse models mimic these different stages of autoimmune 

arthritis pathogenesis.  

The most widely used model for studying the complete disease process is the 

collagen-immunization model [51]. This model includes both the priming or initiation phase of 

the disease, which requires T- and B-cell responses leading to production of pathogenic anti-

collagen and other antibodies, as well as the effector phases, which involve recruitment of 

neutrophils to the inflamed joint, leading to cellular activation with cartilage and bone injury. 
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In human rheumatoid arthritis, many of the autoantibody specificities are directed against 

citrullinated antigens (such as citrullinated collagen, fibrinogen, vimentin or anti-histone 

antibodies), which are thought to be induced by release of PAD4 during neutrophil NETosis 

[52]. Indeed, blocking PAD4 activity with Cl-amidine decreases clinical disease in the 

collagen-induced model by ~50% [53]. Disease reduction in the Cl-amidine treated mice is 

also associated with reduced production of anti-citrullinated antibodies, directly suggesting 

that neutrophil NETosis is contributing to the antigenic stimulation in this model. This is 

supported by previous studies showing that depletion of neutrophils or reduction in 

neutrophil production through genetic deficiency of G-CSF (or antibody blockade of G-CSF) 

also blocks disease development in the collagen-induced arthritis model [54]. Besides 

providing a source of antigens in the priming phase of arthritis, neutrophils are also required 

for deposition of the preformed antibodies along the articular surfaces of the joints. In mice, 

deposition of anti-collagen antibodies in the joint, following direct injection into naïve mice, 

requires neutrophils and neutrophil activation by immune complexes [55]. Similar results 

have been reported in the passive arthritis KxB/N model (see below) suggesting that 

neutrophil activation directly influences vascular permeability which allows deposition of 

immune complexes, such as anti-collagen antibodies, in the earliest stages of disease [56].   

The other widely used model of autoimmune arthritis in mice is the passive serum 

transfer model referred to as the K/BxN model. This model reflects only the effector phase of 

the disease as it works by transferring pathogenic IgG-containing serum into naïve mice, 

which results in severe, but transient arthritis due to immune complex deposition in the joint 

[57]. The pathogenic serum is formed in transgenic K/B mice crossed onto the non obese 

diabetic (NOD) background; the resulting mice develop progressive erosive arthritis due to 

formation of IgGs that recognize glucose-6-phosphate isomerase (anti-GPI) along the 

cartilaginous surface of the large joints in the feet. Transfer of the serum from K/BxN mice to 

any other mouse produces joint inflammation. Disease in recipient mice is dependent on 

FcR signaling pathways in neutrophils, suggesting that recognition of joint immune 

complexes occurs by circulating cells [56, 58]. Neutrophils amplify their own recruitment to 

the inflamed joint through the coordinated production of chemoattractants, such as LTB4 as 

well as cytokines such as IL-1β, the latter of which acts on synovial cells to stimulate 

additional neutrophil recruitment [59, 60]. One of the synovial-derived cytokines involved is 

G-CSF, which is also required for neutrophil recruitment in the K/BxN serum transfer arthritis 

model [61]. Neutrophil production of IL-17 has also been implicated as an amplifier of 

arthritis in this model [62]. As mentioned above, neutrophil activation following recognition of 

early immune complexes in the joint may also lead to changes in vascular permeability, 

which further promotes IgG deposition [63]. As expected, PAD4 deficiency does not affect 

the K/BxN serum transfer arthritis model, since the model reflects only the effector phase of 
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the disease [64]. Interestingly, mice lacking the p47phox subunit of the neutrophil NADPH 

oxidase develop much more severe arthritis in the K/BxN serum transfer model (as well as in 

a passive anti-collagen antibody transfer model) [65, 66]. The mechanism of this somewhat 

surprising observation is unclear, but may involve ROS-mediated suppression of other 

signaling pathways or chemoattractant (LTB4) release by neutrophils, or as suggested in 

systemic inflammatory disease, the ability of neutrophil-derived ROS to affect other immune 

cells, such as Tregs [67]. Hence, even in the effector phases of inflammatory arthritis, 

neutrophils are critical for regulating the activity of other immune and synovial cells, which 

act in concert to amplify the inflammatory cascade.  

 

 

3.  Neutrophils in neuroinflammatory disease models 

 

3.1.  Experimental autoimmune encephalomyelitis (EAE)  

 

The mouse EAE model has been used extensively to replicate the autoimmune 

pathogenesis in human multiple sclerosis [68]. EAE is initiated by immunization of mice with 

myelin protein or peptides, which leads to development of self-reactive CD4+ Th17 cells that 

infiltrate the CNS leading to demyelination and neuronal injury. Myeloid cell infiltration into 

the CNS is a major component of the EAE model and is also seen in human multiple 

sclerosis lesions [69]. Indeed, early reports demonstrated that antibody-mediated depletion 

of neutrophils results in a dramatic reduction in EAE pathology in both the brain and spinal 

cord [70], consistent with the view that activation of neutrophil effector function is a major 

source of tissue injury in this model. Using adoptive transfer methods, Carlson and 

colleagues found that CXCR2 expression on neutrophils is required for their recruitment into 

the CNS in the EAE model, suggesting that disease was initiated by other cells (such as 

CNS macrophages or Th17 cells) which produced CXC chemokines (mainly CXCL1 and 

CXCL2 in mice, the analogues of CXCL8 or IL-8 in humans) that allowed neutrophil 

recruitment and subsequent tissue injury [71]. As in other autoimmune models, production of 

GM-CSF by T-cells and stromal cells in the CNS has also been implicated as a major factor 

in neutrophil recruitment in EAE [72]. Similar results have been reported in mice lacking the 

G-CSF receptor, which mount poor neutrophil responses during EAE [73]. Most of these 

results support the traditional notion that neutrophils act in the effector phase of EAE to 

mediate tissue injury. Interestingly, neither MPO or neutrophil elastase seem to be involved 

in the development of neural injury, since EAE proceeds normally in MPO knockout mice 

and inhibitors of neutrophil elastase do not affect disease progression [74]. However, hyper-

activation of neutrophils, through myeloid-specific deletion of the inhibitory factor SOCS3, 
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results in a severe form of EAE in myelin-immunized mice that is characterized by high 

levels of neutrophil recruitment to the CNS and overproduction of chemokines (mainly 

CXCL2) and inducible NO [75]. A potential suppressive effect of neutrophil-derived nitric 

oxide on T-cell proliferation in response to myelin protein has also been described in EAE, 

similar to in vitro findings in systemic autoimmunity [76]. These observations point to a 

complicated interaction between neutrophils and other immune cells during the effector 

phases of EAE. 

There is growing recognition that neutrophils may also contribute to the early phases 

of neuroinflammation in the EAE model [77]. Careful observation of these early events in 

EAE using two photon imaging methods has shown that neutrophils can directly affect the 

blood/brain barrier and promote early vascular permeability [78]. Using lysM-eGFP marked 

cells, Aube and colleagues could visualize the very early recruitment of neutrophils to the 

neurovasculature within one day following disease initiation. This rapid influx of neutrophils 

correlates with increases in vascular permeability (determined by dye leakage) in the CNS 

but precedes the onset of clinical neurologic symptoms in the mice. Neutrophil depletion 

prevented the early disruption of the blood/brain barrier in immunized mice, correlating with 

reduced clinical disease development. This early role for neutrophils in promoting vascular 

permeability during neuroinflammation is reminiscent of a similar role proposed for these 

cells during autoantibody-mediated arthritis [56]. The mechanisms and mediators by which 

neutrophils promote early changes in vascular permeability in inflammatory responses 

remain to be defined. 

Neutrophils have also been found to promote the maturation of microglia and 

monocytes/macrophages into fully mature, MHC class II-expressing antigen presenting cells 

during EAE [74]. Careful examination of the CNS inflammatory cell infiltrate in EAE mice 

following neutrophil depletion suggests that the major cell type affected appears to be 

inflammatory monocytes and CD11c+ dendritic cells, which are reduced in number and 

manifest reduced expression of co-stimulatory molecules needed for efficient antigen 

presentation. Hence, progressive diminution of myelin-reactive T-cells within the CNS could 

also contribute to reduction of disease in neutrophil-depleted mice. Again, this neutrophil-

dendritic cell crosstalk in EAE is similar to that seen in other autoimmune inflammatory 

diseases. 

 

 

4.  Neutrophils in autoimmune uveitis 

 

The uvea is the middle layer of the eye, consisting of the iris, the ciliary body and the 

choroidea. Inflammation of this layer is associated with several autoimmune diseases (e.g. 
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ankylosing spondylitis, Behcet’s disease, etc.) and is the leading cause of blindness in 

Western societies [79]. Experimental autoimmune uveoretinitis (EAU) can be triggered in 

mice by immunization with the interphotoreceptor retinoid-binding protein (IRBP). Wild type 

mice develop leukocytosis with marked neutrophilia in EAU that correlates with increased G-

CSF levels in the serum and the eye [79]. In the absence of G-CSF, inflammation and 

neutrophil accumulation is decreased. In line with this finding, anti-G-CSF antibody treatment 

also suppresses the intraocular inflammation [79]. As in other autoimmune models, the 

potential roles of G-CSF in EAU include mobilization of neutrophils from the bone marrow, 

triggering neutrophil-attracting chemokines from tissue resident cells and upregulating the 

chemokine receptor CXCR2 on the cell surface of neutrophils [79].  

In a second model of autoimmune uveitis, inflammation is triggered by the intraocular 

injection of ovalbumin into DO11.10 transgenic mice whose T cells are engineered to 

recognize ovalbumin [80]. Here, intraocular anti-IL-17 treatment decreases neutrophil influx, 

probably by suppressing the production of neutrophil-attracting chemokines like CXCL2 [80]. 

The involvement of neutrophil-derived ROS and/or nitric oxide in the early phases of 

autoimmune uveitis remains to be investigated. 

 

 

5.  Neutrophils in dermatologic disease models 

 

5.1.  Models of autoimmune bullous diseases 

  

Two major autoimmune bullous skin diseases have been modeled in mice: bullous 

pemphigoid (BP) and epidermolysis bullosa acquisita (EBA). BP results from development of 

pathogenic autoantibodies recognizing hemidesmosomal proteins BP180 or BP320, while 

EBA is caused by development of autoantibodies recognizing collagen VII [81]. Deposition of 

these autoantibodies along the dermal/epidermal border produces a neutrophil-dominant 

inflammatory reaction that leads to separation of the epidermis from the dermis, and blister 

formation. These diseases can be mimicked in mice by passive transfer of anti-BP180 or 

anti-collagen VII antibodies, raised in rabbits. Liu and colleagues have carefully dissected 

the role of neutrophils in the BP model, showing that recognition of skin immune complexes 

by neutrophil FcRs is required for release of proteases (in particular, neutrophil elastase, but 

also matrix metallopeptidase-9) that in turn degrade BP180, generating peptides that attract 

additional neutrophils to amplify the inflammatory process [82]. In contrast to immune-

complex arthritis models, C5a receptor signaling is not needed on neutrophils, but instead is 

required on tissue resident mast cells to initiate the skin disease [83]. Hence, the chemokine 

receptors involved in neutrophil recruitment/activation in this model remain unclear. In the 
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EBA model, activation of the neutrophil NADPH oxidase leading to ROS production has 

been implicated as critical mediator of tissue injury [84]. To model both the initiation phase 

and the effector phase of these diseases, models in adult animals relying on extensive 

immunization with BP180 or collagen VII have been established. In the immunization 

models, neutrophil depletion is partially effective in reducing disease [85]. Interestingly, in the 

immunization-induced EBA model, chronic depletion of neutrophils (or use of GM-CSF 

knockout mice) leads to reduced autoantibody titers, with reduced skin inflammation [86]. 

This suggests that neutrophils may also contribute to the initiation of autoantibody production 

as well as participating in the effector phase of the disease. Clearly, the roles of NETosis 

and various neutrophil-produced chemokines/cytokines need to be determined in these 

blistering skin diseases. 

 

5.2.  Psoriasis 

 

Psoriasis is a persistent inflammatory skin disease that is driven in large part by T-

cell activation leading to chronic IL-17 production. Neutrophilic inflammation is also a major 

aspect of active psoriatic lesions resulting in accumulation of neutrophil chemokines and 

chemoattractants. Accumulation of pDCs, which secrete large amounts of IFNα, has also 

been reported in xenograft models of psoriasis [87]. Psoriasis in animal models has typically 

been modeled by topical application of imiquimod (a TLR7 and adenosine receptor agonist) 

that induces chronic skin inflammation, which histologically mimics human psoriasis, 

including infiltration of T-cells, expression of IL-17 and IFNα along with the development of 

neutrophil microabscesses in the epidermis [88-90]. However the model is complicated by 

the fact that some preparations of imiquimod may stimulate inflammasome activation 

independently of TLR7 signaling [91]. Neutrophil depletion in mice reduces the inflammatory 

response to topical imiquimod application [92]. Neutrophil depletion also reduces skin 

inflammation in the fsn/fsn flaky-skin mouse model of psoriasis, which contain a 

homozygous recessive mutation in the Ttc7 gene that broadly affects immune cells [93, 94]. 

Mice deficient in the neutrophil chemoattractant receptor BLT1, which recognizes LTB4, are 

also strongly protected from imiquimod-induced inflammation [92]. This same study 

implicated neutrophil production of LTB4 and IL-1β as major amplifiers of the skin 

inflammatory response, similar to the role these neutrophil products play in autoimmune 

arthritis models. Indeed, a number of neutrophil-derived products have been implicated in 

amplifying inflammation in the imiquimod psoriasis model. Shao et al have found that 

lipocalin-2, which is an antimicrobial peptide, is strongly expressed is psoriatic lesions and its 

neutralization by mAb treatment alleviates inflammation in the imiquimod model [95]. 

Lipocalin-2 is highly produced by neutrophils in psoriatic skin and can activate neutrophils as 
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well as act as a neutrophil chemoattractant.  Recently, Henry et al. reported that neutrophil-

derived proteases (cathepsin G, elastase and PR3) promote the cleavage of the IL-1 related 

cytokine IL-36 in a xenograft model of psoriasis [96]. This finding is particularly intriguing 

because one of the most virulent forms of human pustular psoriasis is known to be caused 

by mutations in the IL-36 receptor antagonist, suggesting that dysregulated IL-36 signaling is 

particularly proinflammatory in the skin [97]. Similarly, mice deficient in IL-36 receptor 

antagonist are hyper-responsive to imiquimod treatment, while IL-36 receptor knockout mice 

are protected [98]. Additionally, neutrophil-derived cytokines can act on skin keratinocytes to 

promote further production of IL-36, which in turn drives more neutrophil recruitment in a 

self-amplifying loop of inflammation [99]. Such neutrophil-keratinocyte crosstalk is yet 

another example of the regulatory role of neutrophils in autoimmune/inflammatory diseases. 

 

 

6.  Neutrophils in autoimmune endocrine conditions 

 

6.1.  Type 1 diabetes mellitus 

 

Type 1 diabetes mellitus is a T cell-mediated autoimmune disorder that requires 

insulin replacement therapy for the entire life of patients suffering from the disease. The 

major mouse model for this disease is the non obese diabetic (NOD) model; these mice 

develop an inflammatory autoimmunity against their pancreatic islet (insulin producing) β-

cells [100]. Early in the disease process the pancreatic islets of NOD mice develop a 

transient influx of neutrophils [101]. This influx is reduced by pharmacological blockade of 

the chemokine receptor CXCR2 [102]. The main chemokines that mediate neutrophil arrival 

seem to be CXCL1 and CXCL2, produced by pancreatic macrophages and insulin-secreting 

β-cells [102]. Macrophages can trigger CXCR2-ligand production by β-cells through release 

of IL-1β [102]. Additionally, pancreatic neutrophils can cooperate with CD5-positive B-1a 

cells to trigger IFNα production by pDCs, as observed in other autoimmune models [101]. 

The B-1a cells produce anti-DNA autoantibodies that trigger neutrophil activation and NET 

formation through activating Fcγ receptors [101]. This leads to the release of the 

antimicrobial peptide CRAMP, which in turn binds to the Ig-bound DNA to form complexes 

that further potentiate pDC activation through TLR9/Fcγ signaling pathways [101]. 

Importantly, early blockade of neutrophil accumulation attenuates the onset of diabetes 

mellitus in mice by decreasing the number of effector CD8-positive T cells in the pancreas 

[101]. These results suggest that interactions between neutrophils, B-lymphocytes and pDCs 

play an important role in initiating the destructive anti-islet cell autoimmunity that leads to 

diabetes in the NOD mouse model. 
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6.2.  Autoimmune thyroiditis   

 

Autoimmune thyroiditis is one of the most prevalent autoimmune diseases in the 

world. Granulomatous experimental autoimmune thyroiditis (G-EAT) can be triggered by 

repeated intravenous injection of thyroglobulin in DBA/1 mice [103]. Following immunization 

neutrophils migrate in huge numbers to the thyroid glands, in response to upregulation of 

CXCL1 and CXCR2 in the inflamed tissue [104]. As in the NOD mouse model, this early 

arrival of neutrophils may help prime development of both T-cell and B-cell autoimmunity in 

the G-EAT model.  

 

 

7.  Roles for neutrophils in non-classical autoinflammatory-like disease models 

 

Autoinflammation and autoimmunity share many common features such as chronicity 

or self-destruction by immune cells; however, autoinflammatory conditions lack 

autoantibodies, autoreactive lymphocytes and MHC allele-correlations. According to the 

Immunological disease continuum view, there is a smooth transition from classical 

autoinflammatory diseases like the monogenic Familial Mediterranean Fever (FMF) to 

classical autoimmune diseases like systemic lupus erythematosus (SLE) with intermediate 

conditions sharing several aspects with autoinflammatory syndromes [105]. Such polygenic 

diseases include gout and inflammatory bowel diseases (Crohn’s disease and Ulcerative 

colitis), all of which are known to have dysregulated NOD-like receptor (NLR) signaling as a 

central mechanism for their pathogenesis [105, 106]. 

 

7.1.  Neutrophils in gout 

 

Gout is a relatively common autoinflammatory-like arthritis that is characterized by 

recurrent painful attacks often associated with extra-articular manifestations such as kidney 

stones and nephropathy. The initial molecular event is the deposition of monosodium urate 

(MSU) crystals in the joints that triggers neutrophil influx [107]. In the air-pouch model of 

gouty arthritis, subcutaneous pouches are made by the injection of sterile air that leads to a 

synovial-like barrier after seven days [108]. Upon MSU crystal injection, resident cells are 

activated, releasing chemokines such as CXCL1, resulting in rapid recruitment of neutrophils 

to the air pouch. Mice lacking the CXCL1 receptor (CXCR2) manifest a significant block in 

neutrophil recruitment in the MSU air-pouch model [108]. Furthermore, S100A8 (MRP8) and 

S100A9 (MRP14), two important neutrophil-derived factors have also been shown to 
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mediate neutrophil accumulation in the MSU crystal-injected air-pouch, since direct injection 

of these proteins will stimulate neutrophil influx, whilst their neutralization using anti-

S100A8/9 blocking antibodies prevents neutrophil accumulation in the MSU air pouch [109, 

110]. The MSU crystals initiate inflammation by activating the NALP3 inflammasome in 

tissue resident macrophages, leading to robust IL-1β production [111]. Mice deficient in key 

inflammasome components (ASC, an inflammasome adaptor protein, or Caspase-1, that 

cleaves pro-IL-1 to mature IL-1β) show a significantly impaired neutrophil influx in MSU-

induced peritonitis [111]. Similarly, IL-1 receptor (IL-1R)-deficient mice also fail to 

accumulate neutrophils in the peritoneal cavity following MSU injection [111]. Moreover, 

antibody-mediated blocking of IL-1R or use of the IL-1R antagonist Anakinra also markedly 

impairs MSU-mediated neutrophil influx [112]. In line with previous findings, NLRP3, ASC, 

Caspase-1, IL-1β, IL-1R are also important in MSU crystal-induced articular inflammation 

and hyper-nociception [113]. In this model, neutrophil accumulation is also dependent on 

CXCR2 and the release of CXCL1 is dependent on the NALP3/NLRP3 inflammasome. 

It is an intriguing question how the attacks of gouty arthritis resolve spontaneously as 

self-limiting inflammatory reactions. One theory suggests that uptake of apoptotic debris by 

neutrophils stimulates their production of TGFβ1, which has the potential to downregulate 

proinflammatory neutrophil functions like superoxide production in the MSU crystal-induced 

peritonitis model [114]. On the other hand, MSU crystals have been shown to trigger NET 

release and the aggregation of NETs; mice with a loss of function mutation in p47phox, which 

blocks NETosis, develop chronic and aggravated inflammation in the MSU model [33]. 

These authors suggest that robust neutrophil recruitment induced by MSU crystal injection 

leads to the formation of densely packed NETs, which are laden with proteases that degrade 

proinflammatory chemokines and cytokines, thus actually limiting further inflammatory cell 

recruitment [33]. In line with this finding, ‘NETosis-deficient’ p47phox mutant mice show 

elevated cytokine levels in the MSU-containing air pouches, which is decreased by the 

injection of aggregated NETs, isolated from wild type mice, in the pouch. An additional 

limiting mechanism could be that C5a triggers the release of neutrophil microvesicles that in 

turn decrease the priming effect of C5a on inflammasome activation and IL-1β production, 

resulting in a suppressed neutrophil accumulation [115]. 

 

7.2.  Neutrophils in experimental colitis 

 

Inflammatory bowel diseases (IBD) cause tremendous burden to patients. The role of 

neutrophils in experimental colitis models is controversial as some data show their 

contribution to mucosal damage, while others report beneficial effects [116]. In the dextran 

sulfate sodium (DSS) induced colitis model, the lack of the chemokine receptor CXCR2 
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suppresses neutrophil infiltration to the gastrointestinal tract thus reducing mucosal injury 

[117]. In line with this finding, the blockade of CXCR2 also results in an attenuated 

inflammation in DSS experimental colitis [118]. In the trinitrobenzene sulfonic acid (TNBS) 

colitis model (which tends to produce a more chronic inflammatory process than DSS), 

treatment with a blocking anti-CXCL1 antibody or a pharmacologic CXCR2 antagonist also 

significantly reduces inflammation, neutrophil influx, intestinal myeloperoxidase activity, IL-

1β, CXCL1 and CXCL2 levels [119]. It is intriguing that while the early phases of the TNBS-

induced acute colitis depend on the CXCR2 receptor, later phases seem to be CXCR2-

independent, suggesting, as in other inflammatory diseases, that neutrophils affect early 

phases of the inflammatory response potentially by altering vascular permeability [120]. 

Blocking integrin β2 (CD18) also results in a significant decrease of myeloperoxidase activity 

and the concomitant mucosal permeability in the TNBS-induced acute colitis model, pointing 

again at a pathological role for neutrophils in experimental colitis [121, 122]. 

In contrast, treatment with antibodies against L-selectin or neutrophil-depleting 

antibodies, actually aggravates disease severity in TNBS-induced colitis, indicating a 

potential protective role for neutrophils during pathogenesis [123]. Campbell et al. recently 

hypothesized an interesting mechanism by which neutrophils may be protective in intestinal 

inflammation [124]. As in other disease models, these authors noted that Nox2‒/‒ mice 

displayed dramatically enhanced inflammatory responses in the TNBS colitis model. Genetic 

deficiency of the p47phox subunit of the NADPH oxidase also results in increased 

inflammation in the DSS colitis model [125]. In parallel with these observations, humans 

suffering from Chronic granulomatous disease are more susceptible to inflammatory bowel 

diseases [126]. Campbell et al. noted that the intestinal epithelial cells in these models 

upregulate a number of hypoxia-dependent protective genes, which are transcriptional 

targets of the hypoxia-inducible factor (HIF) transcription factor [124]. Stable expression of 

HIF can be visualized in the intestinal epithelia during colitis using a reporter mouse model. 

These authors postulated that during epithelial transmigration, activation of their NADPH 

oxidase causes neutrophils to consume large amounts of oxygen leading to a localized 

hypoxia that affects the transcriptional response of neighboring epithelial cells leading to 

stable expression of HIF. Indeed, this can be directly demonstrated in co-culture 

experiments with neutrophils and epithelial cells – induction of superoxide production in 

neutrophils leads to upregulation of HIF in the epithelial cells. Depletion of neutrophils 

reduces HIF gene expression in epithelial cells during TNBS colitis. Moreover, 

pharmacological stabilization of HIF with AKB-4924 [127] dramatically increases HIF 

expression in the epithelia of Nox2-/- mice and significantly improves inflammatory resolution 

during TNBS colitis. This neutrophil-epithelial cell crosstalk, through localized consumption 
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of oxygen, points to yet another mechanism by which neutrophil functions indirectly affect 

immune responses in disease models.  

 

7.3.  Alzheimer’s disease  

 

Though not strictly an autoimmune process, it has long been recognized that 

neuroinflammation is a major component of neurodegenerative diseases such as 

Alzheimer’s disease. The major causative factor of Alzheimer’s disease is the accumulation 

of beta-amyloid in plaques and aggregates associated with neurodegeneration. These beta-

amyloid protein aggregates have been shown to activate monocytes and microglia to 

promote neuroinflammation [128]. Indeed, migration of neutrophils into beta-amyloid plaques 

has been observed in mouse models of Alzheimer’s disease using two photon microscopy 

techniques. In the 5XFAD mouse (which overexpresses mutated forms of human amyloid 

precursor protein (APP) and presenilin 1 (PS1)), Baik et al. were able to visualize migration 

of adoptively transferred neutrophils into amyloid plaques [129]. These results were 

expanded in a recent study by Zenaro et al., who reported that in both the 5XFAD and the 

3XTg AD mouse (which expresses mutated forms of PS1, APP and tau protein), neutrophil 

adhesion and intraluminal crawling is observed along neurovascular structures adjacent to 

amyloid plaque deposits [130]. The adhesion of neutrophils to the neurovasculature in these 

Alzheimer’s mouse models is dependent on expression of the leukocyte integrin LFA-1 by 

neutrophils, which recognize increased ICAM-1 present on vascular endothelium, similar to 

neutrophil recruitment in virtually all other inflammatory responses [131]. Most importantly, in 

these Alzheimer’s models, neutrophil infiltration of the brain begins before the onset of 

cognitive decline and peaked around the time that memory loss is first observed. Indeed, 

depletion of neutrophils from the blood of 3XTg AD mice restored cognitive function in two 

behavioral tests of learning and memory. Similarly, blocking neutrophil recruitment into the 

brain in these models by using blocking anti-LFA1 antibodies also reduced cognitive deficits 

and neuropathology in the mice. These exciting and unexpected results suggest that 

neutrophils may play additional, unanticipated roles in neurodegenerative disease (perhaps 

regulating vascular permeability as in EAE models). Clearly, this is an area of exciting 

research [132]. 

 

7.4.  Neutrophilic dermatosis  

 

The neutrophilic dermatoses are a spectrum of skin inflammatory disorders, 

characterized by robust neutrophilic inflammation of the skin, in the absence of obvious 

infection. Often these diseases are associated with other autoimmune or inflammatory 
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processes, such as inflammatory bowel disease [133, 134]. A variety of neutrophil functional 

defects, in chemotaxis, phagocytosis and other functions have been linked to various 

neutrophilic dermatoses, but as yet there is little molecular understanding of these 

processes. Some monogenic forms of neutrophil-mediated skin inflammation have been 

described, such as the PAPA syndrome, which results from mutations in the PSTPIP-1 gene 

leading to dysregulated IL-1β and IL-18 production that drive the inflammatory response 

[135, 136]. A number of mouse models of various autoinflammatory disorders, mainly 

resulting from inflammasome dysregulation leading to excessive IL-1 production, have 

features of neutrophilic dermatoses [137], however, none of these are particularly neutrophil 

specific. Recently, Abram et al. reported the serendipitous generation of a mouse model of 

sterile neutrophilic skin inflammation in a mouse model with hyperactive β2 integrin signaling 

restricted to neutrophils [7]. These mice lack the inhibitory tyrosine phosphatase SHP-1 

specifically in neutrophils, which renders these cells hyperadhesive and hyper-responsive to 

ligation of β2 integrins. The only major sequela of this dysregulated neutrophil function is the 

development of chronic skin inflammation, which is prevented by neutrophil-specific genetic 

blockade of integrin signaling. Alterations in the gene encoding the SHP-1 phosphatase 

(PTPN6) have been reported in cases of human neutrophilic dermatoses [138]. Clearly, 

further work in this area is warranted.   

 

 

8.  Novel therapeutic approaches targeting neutrophils 

 

Given the wealth of new information revealing novel functions for neutrophils in 

various autoimmune and inflammatory diseases, the potential for new therapeutics is 

obvious. Perhaps the most interesting therapeutic target is neutrophil NETosis. Indeed, as 

described above, blockade of NETosis using PAD inhibitors has been successful in mouse 

models of lupus and arthritis. The PAD inhibitors may also be useful to modulate neutrophil-

mediated inflammation in other diseases such as atherosclerosis, by reducing NETosis 

[139]. Other pharmacologic approaches to inhibiting NETosis could include use of 

antimalarials; chloroquine has recently been shown to reduce NET formation in vitro [31], 

while blockade of calcium flux, through various channel blockers may also modulate 

NETosis [140]. As mentioned previously, stabilization of histone acetylation may also help 

reduce NETosis in various inflammatory diseases. Reduction of ROS by treatment with anti-

oxidants such as N-acteyl cysteine could also be effective therapeutics [141]. Studies in 

mouse models suggest that inhibition of mitochondrial ROS production may be sufficient to 

block NETosis, while avoiding all the other sequela of NADPH oxidase inhibition that have 

been observed [34]. DNAse treatment to physically degrade NETs is another approach as is 
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blockade of one of the major immune activators that is induced by NETs, namely IFNα. 

Indeed, therapeutic targeting of NETosis for treatment of autoimmunity, while avoiding 

substantial risks of treatment-related infections, is a very active area of clinical research 

[142].  

Other neutrophil-specific approaches can be envisioned such as specific targeting of 

chemokine/chemoattractant receptors on neutrophils, including BLT-1 (the receptor for LTB4) 

or CXCR1/2 (the receptors for IL-8-like chemokines) using mAb approaches. Second or third 

generation of bi-specific antibodies could be used to ensure neutrophil-specific targeting of 

these agents [143, 144]. A similar approach could be used to target cytokines made 

specifically by neutrophils, such as BAFF. Though anti-BAFF blockade using mAbs 

recognizing the soluble cytokine have had only moderate efficacy in human clinical trials, 

targeting the neutrophil site of production, may be much more effective [145, 146]. 

Combining such therapies with other antibodies, such as Rituximab that targets B-cell CD20, 

has been proposed [147]. Similar approaches could be envisioned for other neutrophil-

derived cytokines, such as IL-1β, which has been implicated in multiple autoimmune models, 

or the S100A8/9 proteins.  

Obviously, most therapeutics are based on small molecule inhibitors of specific 

enzymes. To achieve neutrophil-specific targeting with small molecules, one needs to focus 

on target enzymes that are predominately found in neutrophils. Though not restricted to 

neutrophils, there are a number of potential tyrosine kinase enzymes that are relatively 

immune cell-specific, whose therapeutic targeting has been validated in a number of murine 

autoimmune models. This includes Src-family kinases, Syk and Btk [56, 148, 149]. This is 

only a partial list; indeed, many of the inhibitors against signaling molecules which were 

developed to treat various malignancies may be “re-purposed” to treat 

autoimmune/inflammatory diseases through their action on neutrophil functions. Careful 

clinical testing will be required to identify novel disease indications for currently available 

small molecule inhibitors. 

 

 

9.  Conclusions 

A number of the mechanisms by which neutrophils contribute to autoimmune and 

inflammatory disease pathology are summarized in Figure 1. These mechanisms emphasize 

that neutrophils are involved in disease pathogenesis in many ways other than simply 

inducing tissue injury through release of proteases and ROS. Indeed, as summarized in 

Table 1 and Table 2, there are examples where neutrophil-derived mechanisms both 

exacerbate autoimmune disease as well as examples of neutrophils protecting the host from 

inflammatory tissue injury.  Clearly, neutrophils are regulatory players in the overall immune 
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response, both through direct production of cytokines/chemoattractants as well as indirect 

effects on other immune cells through agents such as MPO and ROS. It is also clear that 

neutrophils are the source of self-antigens in many autoimmune diseases. Much of this 

complexity has been revealed in studies using animal models, which will continue to improve 

as neutrophil-specific gene targeting and interventional approaches improve. In the past, 

drug development efforts have always shied away from targeting neutrophils, mainly for fear 

of severe infectious complications. Given what we know now about neutrophil contributions 

to autoimmune pathogenesis, it is possible to envision the development of agents that can 

block aspects of neutrophil function while only modestly impairing host-defense. The use of 

existing animal models, and the development of new ones, will be central to improving our 

ability to control autoimmune diseases by modulating neutrophil function.  
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Figure Legend 

Figure 1  

Cellular mechanisms by which neutrophils can drive autoimmune/inflammatory diseases, as 

validated in various animal models. For abbreviations see the main text. 
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Table 1 

Proinflammatory roles of neutrophils in autoimmune-mediated tissue injury 

Animal model 
Corresponding 
human disease 

Role for neutrophils Potential therapy 

NZW/B, NZM, 
MRL/lpr 

SLE 

ROS-mediated 
NETosis, promoting 
IFNα production of 
DCs, CRAMP and 

PAD4 release  

Targeting ROS 
production and NET 

formation, PAD4 
inhibition 

Transferring MPO-
sensitized MPO-

deficient splenocytes 
to healthy donors 

ANCA-associated 
vasculitides 

NETosis, autoantigen 
release, Fc receptor-

mediated tissue 
damage 

Targeting NET 
formation and Fc 
receptor signaling 

CIA, K/BxN STA Autoimmune arthritis 

Increasing vascular 
permeability, 

NETosis, autoantigen 
and PAD4 release 
LTB4 and cytokine 

production 

Blocking NET-
formation, PAD4, 
BLT1, cytokine 

receptor inhibition, 
targeting Fc receptor 

signaling  

EAE Sclerosis multiplex 

Increasing vascular 
permeability, 

disruption of the 
blood-brain barrier, 

promoting the 
maturation of resident 

microglia and 
macrophages, tissue 

damage 

Blockade of 
neutrophil recruitment

EAU Autoimmune uveitis Tissue damage Targeting G-CSF 

BP Bullous pemphigoid 

Fc receptor-
dependent release of 

proteases, BP180 
degradation 

Targeting Fc receptor 
signaling 

EBA 
Epidermolysis bullosa 

acquisita 

Contribution to the 
immunization phase; 

Fc receptor-
mediated, ROS-
dependent tissue 

injury  

Targeting Fc receptor 
signaling 

Imiquimod skin 
inflammation, fsn/fsn 

mutants 
Psoriasis 

Tissue damage, self 
amplification of 
inflammation, 

proteolytic processing 
of inflammatory 

cytokines 

Blocking BLT1, IL-1, 
IL-36 or use of IL-

36R antagonist 

MSU-related air-
pouch model, MSU-

induced 
peritonitis/arthritis 

Gout 
MSU-triggered 

neutrophil activation 
Inflammasome 

blockade 

DSS- and TNBS-
induced colitis 

Inflammatory bowel 
disease 

Tissue damage 
Targeting 

chemokines or 
chemokine receptors 

 

  



 23

Table 2 

Protective roles of neutrophils in limiting autoimmune-mediated tissue injury 

Animal model 
Corresponding  
human disease 

Role for neutrophils 

Pristane-induced lupus model SLE 

MPO-mediated inhibition of T 
cell expansion through the 
alteration of dendritic cell 

priming 
Transferring MPO-sensitized 
MPO-deficient splenocytes to 

healthy donors 

ANCA-associated 
vasculitides 

NADPH oxidase-dependent 
downregulation of IL-1β 

production 

MSU-induced 
peritonitis/arthritis 

Gout 

NET-dependent trapping and 
protease-mediated 

degradation of chemokines; 
Apoptotic neutrophil debris-

uptake triggered 
downregulation of neutrophil 

function through TGFβ1 
release 

DSS- and TNBS-induced 
colitis 

Inflammatory bowel disease 

NADPH oxidase-mediated 
local mucosal hypoxia and 

the subsequent HIF-
dependent protective gene 

upregulation in epithelial cells 
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