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Summary 

 

Several lines of evidence suggest that certain subtypes of obsessive-compulsive and tic disorders 

might be pediatric manifestations of post-streptococcal autoimmunity caused by cross-reactive 

auto-antibodies. As tumor necrosis factor (TNF) is known to play a seminal role in coordinating 

the humoral immune response, TNF gene polymorphisms have been proposed as genetic risk 

factors both in obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). The aim of 

present study was to investigate two TNF promoter polymorphisms (-238 A/G: rs361525 and -

308 A/G: rs1800629) on the genetic susceptibility to OCD and TS in a child psychiatric sample 

(102 OCD and 117 TS patients). In the case-control setup the genotype and allele frequencies 

were compared to a control group from the general population (n=405). As a control child 

psychiatric sample, 194 children with attention deficit hyperactivity disorder were also 

genotyped. Our results revealed that the TNF -308 G-allele was more frequent in children with 

TS compared to controls (90.2% vs 84.8%, p=0.037). For confirmation of this genetic association 

a family based analysis, the Transmission Disequilibrium Test was used, which showed 

preferential transmission of the G-allele to TS patients (nominal p-value 0.011). Moreover, this 

allele was also transmitted more frequently to children with tic symptoms (nominal p-value 

0.039). No association was found between OCD or obsessive, compulsive symptoms and the 

studied TNF polymorphisms. Based on these findings, the TNF -308 G-allele can be associated 

with Tourette syndrome, highlighting the potential pathophysiological role of TNF dysregulation. 
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Introduction 

Obsessive-compulsive disorder (OCD) affects approximately 2% of the child and adolescent 

population (Boileau, 2011). It is characterized by intrusive thoughts (obsessions) that are 

expected to be relieved by repetitive acts (compulsions). The obsessions and compulsions are 

time consuming, and significantly interfere with the person’s normal routine, occupational 

functioning, or social activities (American Psychiatric Association, 2013). In half of the cases the 

symptom onset is below age 19 (Kessler et al., 2005). Twin studies indicate the importance of 

separating childhood-onset OCD, because the observed genetic influence on OCD symptoms is 

much higher in children (ranging from 45% to 65%) compared to adults (where the heritability 

estimates are between 27-47%) (van Grootheest et al., 2005). Tourette syndrome (TS) is less 

frequent with a prevalence rate of 1% in school-age children. It is part of the tic-spectrum 

disorders, which affect 6-12% of children (Singer, 2005). TS is characterized by multiple motor 

tics and at least one phonic tic, and is rarely present without comorbid conditions, such as OCD 

and/or attention deficit hyperactivity disorder (ADHD) (Singer, 2005). As the involuntary 

movements and vocalizations in TS, the obsessions and compulsions in OCD, or the impulsivity 

in ADHD might reflect inhibitory control problems in the basal ganglia-thalamo-cortical circuits 

(as proposed by Casey et al., 2001), we aimed to study genetic risk factors in these three basal 

ganglia related neuropsychiatric disorders. 

The term PANDAS (pediatric autoimmune neuropsychiatric disorders associated with 

streptococcal infections) was coined by Swedo and co-workers (1998) to describe a subset of 

neuropsychiatric disorders that are suspected to be corollaries of streptococcal infections. This 

novel though debated neuropathological category encompasses some OCD and TS cases as well 

as other entities from the tic spectrum disorders, assigning a causative role to auto-reactive post-

streptococcal antibodies in the pathogenesis (Martino et al., 2009). Infections by group A beta-

hemolytic Streptococcus might cause immune dysregulation, resulting in the production of 

primarily anti-streptococcal anti-M antibodies that elicit various inflammatory diseases such as 

polyarthritis (acute rheumatic fever) aggravated by endocarditis. These antibodies can also cross-

react with certain epitopes in the central nervous system including glycolytic enzymes such as 

pyruvate kinase, aldolase C, and neuron-specific enolase (Dale et al., 2006). Structural and 

functional impairment of the basal ganglia and corpus striatum by these auto-antibodies might 

manifest either in Sydenham chorea (chorea minor) or PANDAS. On the other hand, little is 
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known on the pathomechanism of neuronal dysfunctions, albeit there are data indicating that self-

reactive antibodies detected in chorea minor (the cerebral manifestation of acute rheumatic fever) 

might induce the activation of calcium/calmodulin dependent protein kinase II (Kirvan et al., 

2003). Importantly, the tics - as involuntary movement symptoms - are present in the majority of 

PANDAS cases, indicating the impairment of basal ganglia in the pathogenesis.  

Production of self-reactive antibodies is probably due to an imbalance of pro-inflammatory 

cytokines including interleukin 1 and tumor necrosis factor (TNF) that govern the function of B 

lymphocytes in the humoral response (Alleva et al., 2000). TNF is released from activated 

monocytes, macrophages (microglia in the central nervous system), as well as T and B 

lymphocytes (Sarit et al., 2012) with profound biological activities including apoptosis induction, 

inflammation and insulin resistance. Furthermore, several studies found elevated plasma TNF 

and/or TNF receptor levels in OCD (Fontenelle et al., 2012; Konuk et al., 2007), although there 

is a report on decreased or unchanged cytokine levels as well (Denys et al., 2004). No significant 

alterations in TNF plasma levels have been revealed in TS yet (Gabbay et al., 2009). 

The TNF gene (previously known as TNF-alpha, OMIM ID: 191160) is localized to the 6p21.33 

locus in the neighborhood of several other TNF cluster genes. The gene spans about 3 kb and 

encompasses 4 exons. Several inducible transcription factors such as nuclear factor-κB and 

nuclear factor of activated T cells (NFAT) have been shown to be recruited to the TNF promoter 

conferring cell type-specific expression on the gene (Falvo et al., 2010). Genetic polymorphisms 

in the regulatory regions of the TNF gene have been reported to associate with a wide range of 

inflammatory, immunological, and malignant diseases. Dozens of single nucleotide 

polymorphisms (SNPs) have been identified to date that might influence plasma TNF levels via 

modulating its transcription and thereby enhance the susceptibility to the above mentioned 

illnesses (Qidwai & Khan, 2011). Among them, 2 SNPs have been implicated most frequently in 

disease pathology: the -238 A/G (rs361525) and the -308 A/G (rs1800629) polymorphisms. The 

assumption that TNF polymorphisms might associate with pediatric neuropsychiatric disorders 

mentioned above (OCD, TS, and ADHD) has already been addressed by a number of studies 

(Hounie et al., 2008; Liu et al., 2011; Drtilkova et al., 2008, respectively).  As TNF seems to be a 

likely candidate gene in post-streptococcal pediatric disorders, we aimed to analyze the genotype 

distribution of these two important TNF promoter SNPs in children affected by OCD or TS. To 

assess the specificity of TNF polymorphisms on the genetic susceptibility of OCD and TS, we 
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also included patients with ADHD, one of the most common basal ganglia related disorders in 

childhood.  

 

Materials and Methods 

The study was designed in compliance with the Helsinki Declaration and was approved by the 

Hungarian Scientific and Research Ethics Committee of the Medical Research Council (ETT-

TUKEB). The patients and their parents, as well as the healthy control subjects provided written 

informed consent to their participation. Both the clinical and the control samples were ethnically 

homogenous, of Caucasian origin. A total of 413 children were recruited at the Vadaskert Child 

and Adolescent Psychiatric Clinic with the major diagnoses of OCD, TS, or ADHD, according to 

DSM-IV criteria (for the description of the three patient groups see Table 1). The control group 

consisted of 405 healthy young adults (mean age: 21.26 ± 2.63 years, 51.1% male). Family data 

was accessible from 105 children (out of the 117 cases) diagnosed with TS. For the family based 

analyses of tic disorders 264 parents (from 114 trios and 41 duos) were available. The Yale 

Global Tic Severity Scale (YGTSS) was used to assess the peak tic severity (most severe 

condition of motor and vocal tic symptoms), and the degree of overall impairment. The three 

scales produce a total severity score that ranges from 0 to 100 (Leckman et al., 1989). 

Genomic DNA was isolated from buccal cells by the DNA purification kit obtained from Gentra 

(Minneapolis, USA). Genotyping of the -238 A/G (rs361525) and -308 A/G (rs1800629) SNPs 

was carried out using the C__2215707_10 and C__7514879_10 ABI TaqMan Genotyping 

Assays, respectively, on a 7300 Real-Time PCR System (Applied Biosystems, Foster City, 

USA), according to the manufacturer’s instructions.  

SPSS 17.0 for Windows (IBM Corporation, Armonk, NY, USA) 

was used for the case-control and tic severity analyses. Deviation from the Hardy-Weinberg 

equilibrium was calculated by comparing expected and observed genotypes (chi-square analyses 

with df = 1). In the family based analysis the Transmission Disequilibrium Test (TDT) was used 

to calculate allele transmission from heterozygote parents using the formula TDT χ2
 = (b-

c)2/(b+c) where b is the number of times when heterozygous parents transmit the risk allele to an 

affected offspring and c is the number of times that they transmit the other allele (Spielman et al., 

1993). The adjusted significance level for multiple comparisons was calculated by the false 
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discovery rate (Benjamini et al., 2001). The in silico transcription factor binding analysis was 

performed using the Alibaba 2.1 transcription factor binding prediction software 

(http://www.gene-regulation.com/) and the TRANSFAC database. 

 

Results 

The genotype and allele frequencies of the two TNF promoter polymorphisms in the patient and 

control groups are presented in Table 2. No significant deviation from the Hardy-Weinberg 

equilibrium was detected in either the patient or control groups. The ADHD group served as a 

control child psychiatric sample (with possible basal ganglia involvement). Neither of the TNF 

polymorphisms were associated with ADHD or OCD, only the TS group showed higher G-allele 

frequency at the -308 A/G SNP (χ2
 = 4.33, df = 1, p = 0.037). 

Since there was no AA homozygote at the -238 A/G (rs361525) SNP in the patient groups, the 

AA and AG genotypes were grouped together in the chi-square analyses. For the same reason, we 

could test only the recessive model at the risk calculation using the G-allele as the risk allele, and 

the AA + AG vs GG grouping system. Similarly, the odds ratio (OR) calculation at the -308 A/G 

(rs1800629) SNP was meaningful only in the AA + AG vs GG setting (see Table 2 for ORs). 

These genotype-wise analyses did not yield any significant result; we could observe only a 

tendency at the -308 A/G SNP in the TS group. 

To confirm the possible genetic association between the -308 G-allele and TS, parents of TS 

patients were genotyped for the -308 A/G SNP and the Transmission Disequilibrium Test (TDT) 

was carried out. In the available 105 TS families the allele transmission could be unambiguously 

determined at 40 heterozygote parents: the A-allele was transmitted 12 times, whereas the G-

allele was transmitted 28 times (TDT χ
2
 = 6.4, p = 0.011). The comorbid conditions, sex, and age 

of this reduced TS sample (n = 105, 87.6% male, mean age 12.17 ± 2.99, comorbid ADHD 

37.1%, OCD 24.8%, anxiety 23.8%, CD 7.6%, LD 16.2%) did not differ significantly (p > 0.1) 

from the total TS sample (n = 117). 

Next, we wanted to check if the same association would exist in a broader sense for tic disorders. 

Therefore, from our sample of 413 child psychiatric patients 186 children with tic symptoms - 

independently of the main diagnosis - were analyzed for the -308 A/G SNP (for description of 

this patient group see Table 1). With genotype frequencies of AA 1.1%, AG 19.9%, GG 79%, 



 7 

and allele frequencies of A 11%, G 89% among the children with tic symptoms, the case-control 

analyses (allele-wise: χ2
 = 3.7, df = 1, p = 0.054, and genotype-wise (AA + AG vs GG): χ

2
 = 2.6, 

df = 1, p = 0.107) showed similar tendencies. The family analysis showed preferential 

transmission of the -308 G-allele in the available 155 families of children with tic symptoms (34 

times transmission vs 19 times non-transmission, TDT χ2
 = 4.25, p = 0.039). Using the Yale 

Global Tic Severity Scale (YGTSS) scores, however, the GG genotype group did not have 

significantly more severe tic symptoms compared to the AG genotype group using either the 

specific or the overall tic severity scores in the analysis of variance (motor tic: AG 12.63 ± 4.74 

vs GG 13.90 ± 4.98, p = 0.235; vocal tic: AG 9.96 ± 5.89 vs GG 10.07 ± 5.96, p = 0.935; 

impairment: AG 21.78 ± 8.90 vs GG 23.43 ± 11.13, p = 0.478; total score: AG 45.11 ± 17.39 vs 

GG 47.38 ± 20.46, p = 0.599). 

Since the TS and tic symptom present groups were overlapping, we set the number of analyses to 

four in this sample (corresponding to the association analyses of -238 A/G SNP & TS, -308 A/G 

SNP & TS, -308 A/G SNP & tic symptom present group, and -308 A/G SNP & tic symptom 

severity scores) at the multiple testing correction with the false discovery rate. With the adjusted 

significance level at α = 0.05, only the TS family based association result stayed significant (p ˂ 

0.0125). Taken together, these findings indicate a potential association of the TNF -308 G-allele 

with TS, but not necessarily with tic symptoms.  

Finally, we performed an in silico transcription factor binding analysis using the Alibaba 2.1 

transcription factor binding prediction software and the TRANSFAC database. This analysis 

revealed that the -308 polymorphic site and its 5’ and 3’ flanking regions contain numerous and 

partly overlapping Sp1 (specificity protein 1) binding sites, and the -308 G-allele - but not the -

308 A-allele - allows binding of upstream stimulatory factors (USF) 1 and 2 to the promoter. 

USFs are known to elicit transcriptional activation via binding to E-box sequences in promoters; 

therefore, the presence of the G-allele can contribute to higher transcriptional activity.  

Discussion  

Research on the possible roles of certain inflammatory cytokines in the background of 

neuropsychiatric disorders has been a growing field of neuroscience. Several studies established 

associations between plasma cytokine levels and OCD (Fontenelle et al., 2012), autism spectrum 

disorder (Ricci et al., 2013), or depressive disorder (Raedler, 2011). Although little is known on 
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the penetration of plasma cytokines through the blood-brain-barrier, the presence of cytokine 

producing macrophages (i.e. microglial cells) in the central nervous system confers 

pathophysiological relevance on this issue (Sarit et al., 2012). Schizophrenia has been found to 

associate with many cytokines to such extent, that even anti-inflammatory medications have been 

proposed to combat or prevent this devastating mental illness (Mansur et al., 2012). Similarly, the 

mutual relationship between depression and plasma levels of inflammatory modulators has 

extensively been investigated (Fagundes et al., 2013; Cilan et al., 2012). 

To address the possible involvement of autoimmune processes in TS and OCD, we analyzed TNF 

polymorphisms. The ADHD group served as a basal ganglia related but not PANDAS connected 

patient group. As expected, there was no association between TNF polymorphisms and ADHD. 

On the other hand, the positive association between TNF -308 A/G SNP and TS suggests a 

functional significance of TNF in this disorder, which – to our best knowledge – has not been 

reported yet. Although a similar study has been conducted in a Chinese Han population, no 

association was reported between the TNF -238 A/G polymorphism and TS (Liu et al., 2011), 

and – unfortunately – the -308 A/G SNP was not investigated. 

Concerning the genetic analyses in OCD, our negative findings support the results of Zai et al., 

(2006), but contradict the findings of Lüleyap et al., (2012) and Hounie et al., (2008). The latter 

workgroup reported associations between OCD and both TNF -308 (rs1800629) A/G and -238 

(rs361525) A/G SNP in a Brazilian population (Hounie et al., 2008). Association of the -238 A-

allele with OCD has also been confirmed by Cappi et al., (2012) using an extended patient 

population (the number of OCD cases increased from 111 to 183), whereas the association 

between the -308 A-allele and OCD has not been verified. The -308 A-allele and AA genotype, 

however, was much more frequent among 45 OCD patients compared to 58 controls in a Turkish 

study (Lüleyap et al., 2012). One of the possible reasons behind the contradictory findings could 

be the different allele frequencies in the studied populations: the frequency of the minor -308 A-

allele was much lower in the Turkish and Brazilian control groups (4.3% and 9%, respectively) 

compared to Caucasian populations (see the CEU panel with 17.3% 

(http://www.ncbi.nlm.nih.gov/snp/), the Hungarian control sample with 15.2% (Table 2), or the 

mainly Caucasian Canadian sample with 13.2% (Zai et al., 2006)). 

The -308 A/G SNP (rs1800629) is considered a functional polymorphism as Wilson et al. (1997) 

revealed a DNase I hypersensitivity site at the -308 locus, however, the putative transcription 



 9 

factor binding here has not been identified yet. We performed an in silico transcription factor 

binding analysis which showed that the -308 G-allele enables binding of upstream stimulatory 

factors 1 and 2 to the promoter. It is tempting to speculate that the -308 G-allele is able to recruit 

USF, resulting in higher TNF transcription activity and higher cytokine levels; therefore, it can be 

a risk factor for basal ganglia impairment. 

Given that the -308 A/G SNP is highly associated with inflammatory diseases such as atopic 

dermatitis (Behniafard et al., 2012), Graves’ disease (Kammoun-Krichen et al., 2008) and 

bronchial asthma (Witte et al., 2002), several attempts have been made in the past two decades to 

assign functional significance to this polymorphism. Results from numerous reporter vector 

based transient transfection assays revealed that the -308 A-allele confers higher transcriptional 

activity on the TNF promoter. Kroeger et al. (1997) found that the -308 A-allele (previously 

termed TNF2 allele) exhibited twofold transcriptional activation in phorbol ester activated Jurkat 

cells. Essentially identical results have been published by Wilson et al. (1997), and their findings 

have been corroborated by Sallakci and co-workers (2005), who performed an ELISPOT analysis 

to demonstrate that the A-allele produced higher TNF expression levels. Baseggio et al. (2004) 

found a protein complex associating only with the -308 A-allele in electrophoretic mobility shift 

assays but failed to identify it. However, there are equal amount of negative reports observing no 

differences in the transcriptional activity of these TNF alleles (Brinkman et al., 1995-1996; 

Uglialoro et al., 1998; Stuber et al., 1995-1996), therefore the functionality of the -308 A/G SNP 

remains an open question. 

In conclusion, our results show no association between TNF promoter polymorphisms and OCD 

in a Caucasian population. However, we report an association of the TNF -308 A/G SNP 

(rs1800629) with Tourette syndrome. This finding might assign a specific neuromodulatory role 

to this seminal inflammatory cytokine in TS among basal ganglia based neuropsychiatric 

disorders. However, a major drawback of our study is that we did not measure anti-streptococcal 

antibody titers in patients that prevented us from discriminating between PANDAS and non-

PANDAS samples in our TS population. Therefore, this study should be replicated accordingly. 
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Table 1. Clinical description of the patient groups 
 
      ADHD 

    (n = 194) 
      OCD 
   (n = 102)  

       TS 
   (n = 117) 

       patients  
with tic (n = 186) 

age 9.41 ± 2.69 15.12 ± 4.19 12.60 ± 3.83 12.46 ± 4.16 
sex 88.1% male 69.6% male 88.9% male 86% male 
secondary diagnoses comorbidity 
ADHD  14 (13.7%) 44 (37.6%) 89 (47.8%) 
OCD 0  32 (27.4%) 60 (32.3%) 
tic disorder 42 (21.6%) 28 (27.5%)   
anxiety 29 (14.9%) 47 (46.1%) 30 (25.6%) 53 (28.5%) 
conduct disorder 63 (32.5%) 8 (7.8%) 12 (10.3%) 26 (14.0%) 
learning disorder 54 (27.8%) 8 (7.8%) 18 (15.4%) 33 (17.7%) 
 
 

Table 2. Genotype and allele frequencies of TNF polymorphisms in patient and control 
groups 
 
polymorphism control ADHD OCD TS 
-238 A/G (rs361525) 
AA 2 (0.5%) 0 0 0 
AG 42 (10.4%) 19 (9.8%) 10 (9.8%) 13 (11.1%) 
GG 361 (89.1%) 175 (90.2%) 92 (90.2%) 104 (88.9%) 
genotype-wise chi-square p a 0.689 0.756 0.940 
OR (95% CI) in the recessive 
model (AA + AG vs GG) 

0.89 
(0.51-1.57) 

0.89 
(0.43-1.84) 

1.03 
(0.53-1.98) 

A 5.7% 4.9% 4.9% 5.6% 
G 94.3% 95.1% 95.1% 94.4% 
allele-wise chi-square p 0.576 0.664 0.943 
-308 A/G (rs1800629) 
AA 13 (3.2%) 9 (4.6%) 3 (2.9%) 0 
AG 97 (24.0%) 48 (24.7%) 28 (27.5%) 23 (19.7%) 
GG 295 (72.8%) 137 (70.6%) 71 (69.6%) 94 (80.3%) 
genotype-wise chi-square p 0.653 0.763 b 0.075 b 
OR (95% CI) in the recessive 
model (AA + AG vs GG) 

1.12 
(0.76-1.63) 

1.17 
(0.73-1.88) 

0.66 
(0.40-1.09) 

A 15.2% 17.0% 16.7% 9.8% 
G 84.8% 83.0% 83.3% 90.2% 
allele-wise chi-square p 0.417 0.601 0.037 
 
a At the -238 A/G (rs361525) SNP the AA genotypes were grouped together with AG genotypes 
in order to have the expected count more than 5 in every cell in the chi-square test.  
b One cell (17%) has the expected count less than 5 in the chi-square test. 
 


