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Abstract  

 

Neutrophilic granulocytes are no longer regarded as cells involved only in the last 

phase of the immune response with one single – although vitally important – task: engulfing 

and killing of microorganisms marked by immunoglobulin or complement fragments. In 

recent years it was shown that neutrophils are actively involved in initiation and organization 

of the adaptive immune response by releasing various cytokines, interacting with all major 

types of immune cells, regulating their own lifespan, participating in the anaphylactic reaction 

and in several classically non-immune functions such as hemostasis, atherogenesis and even 

insulin resistance. The antibacterial effect is no longer restricted to killing and destruction of 

microorganisms sequestered in the phagosomal space. Bacteriostasis also occurs at certain 

locations of the extracellular space, by formation of neutrophil extracellular traps (NETs) that 

were shown in the last two years to have a significant role in prevention of dissemination of 

microorganisms. Extracellular vesicles represent a recently discovered form of intercellular 

communication carried out both by lipids, proteins and nucleic acids. In this review we also 

summarize the role of neutrophil-derived extracellular vesicles in modifying the function of 

other cell types as well as their direct antibacterial effect that differs significantly from 

mechanisms applied either by neutrophils or by the NETs.    
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Introduction 

 

 Neutrophilic granulocytes (also named polymorphonuclear granulocytes [PMN]) play 

a vital role in innate immune reactions, mainly in defense against pathogenic bacteria and 

fungi [20]. After their release from the bone marrow they circulate in blood and subsequently 

they emigrate to peripheral tissues where they find and combat the invaders. PMN are able to 

engulf particles of almost their own size [62]. Various pattern recognition receptors (PRR) 

allow only very slow rate of phagocytosis but opsonization of the particles by 

immunoglobulins or complement fragments augments the rate of phagocytosis by orders of 

magnitude (Fig. 1.). Isolated PMN are able to engulf up to 50 opsonized bacteria within 30 

min (Fig 2.). Phagocytosed microorganisms are sequestered into phagosomes, that are sealed, 

membrane-surrounded compartments. Assembly and activation of the NADPH oxidase and 

opening of ion channels in the phagosomal membrane lead to abundant production of 

superoxide (O2.-), the first component of a cascade of reactive oxygen species (ROS). 

Simultaneously, the membranes of different granule fractions fuse with the phagosomal 

membrane and the granule contents are released to the phagosome. Killing and degradation of 

the microorganism proceed in the small phagosomal space in a concentrated action of the 

involved ingredients, although the contribution of the individual factors may vary depending 

on the type of microorganism [89,91]. The molecular details of these processes have been 

worked out and summarized in recent excellent reviews [11,58,66,75,77,78,80,102,115]. 

Human pathology indicates the vital necessity of all the above steps as any disturbance of the 

migration, superoxide production, opsonization or granule production results in serious 

diseases with repeated, often life-threatening infections [30,46,52,100,112]. 

 The established view of the neutrophils as effector cells coming into play only in the 

late phase of the immune response and having a single – although vital – task has been largely 

changed in the last one and a half decades and PMN are shown to play a role in divergent, 

unexpected functions. Also striking new properties of neutrophils have been discovered. This 

review highlights some of the new aspects and refers the reader to more specialized papers on 

these topics. Then we focus on the latest data revealing the contribution of PMN-derived 

extracellular vesicles both to intercellular communication and to antibacterial defense. 

 

Recently discovered properties and functions of neutrophils 

 

Protein synthesis 
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Neutrophils were regarded as terminally differentiated cells with very low level, if 

any, of protein synthesis. This view has been challenged in the 1990s, when it was discovered 

that stimulated PMN were able to synthetize and release various cytokines [19]. In early 

studies isolated neutrophils have been activated by lipopolysaccharide (LPS) and release of 

tumor necrosis factor (TNFα), interleukin 1β (IL-1β), IL-8, transforming growth factor β1 

(TGF-β1) or IL-1 receptor antagonist (IL-1ra) was detected [19]. Later PMN were reported to 

produce a true arsenal of regulatory molecules, such as different chemokines, various pro- and 

anti-inflammatory cytokines, colony stimulating factors (CSF), and others [66]. The triggers 

consist of bacterial products as well as CSF, TNFα or interferons (IFN). Human and murine 

neutrophils differ, however, in the production of several cytokines [66].  

Cytokine production expressed as amount per cell was significantly lower in PMN 

than in monocytes or lymphocytes, but in blood neutrophils largely outnumber any other type 

of leukocyte. In addition, neutrophils are the first cells that accumulate at an inflammatory 

site. Thus, cytokine production by neutrophils seemed to have physiological relevance. 

Indeed, already the first in vivo experiments carried out in various animal models of 

inflammation demonstrated clearly the de novo synthesis of several cytokines both at the 

mRNA and at the protein level [99]. Determination of the gene expression profile of 

neutrophils from the bone marrow, circulating blood or a skin lesion of mice indicated that 

transmigration through the vessel wall initiates a new transcription program leading to the 

synthesis of regulatory and cell-fate determining proteins [11,105,106]. Phagocytosis of 

opsonized particles via Fc and/or complement receptors also altered the expression of 

numerous genes, many of them affecting proteins involved in apoptotic pathways [56,57].   

 

Interaction with other immune cells   

Neutrophils were regarded as effector cells of the humoral immune response, which 

eliminate certain pathogens marked by immunoglobulin or complement fragments, without 

any significant interaction with other immune cells. Discovery of the cytokine release from 

the neutrophils has profoundly changed this view [66,75]. 

Neutrophils produce IL-8, a peptide with strong chemotactic effect on neutrophils. A 

positive feedback via IL-8 may thus contribute to the fast migration of large numbers of 

neutrophils to inflammatory sites. Other chemokines secreted by PMN are chemoattractants to 

monocytes [102] or lymphocytes [66] triggering the second wave of cell migration, mostly of 

mononuclear cells. Furthermore, activated neutrophils produce lipid mediators such as 
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resolvins and protectins that inhibit neutrophil recruitment [25,58,66] and „find me” and „eat 

me” signals that initiate the elimination of aged PMN by macrophages [14]. 

In addition to chemotactic direction of migration, more substantial cross-talk has been 

demonstrated with all cell types of the immune reactions [66,75]. Some of these interactions 

are direct, like the effect of B-cell activating factor (BAFF) on survival, maturation and 

differentiation of B-cells [98], or activation of monocyte-derived dendritic cells (DC) via the 

integrin Mac1 and DC-SIGN (DC-specific ICAM3-grabbing non-integrin) [113]. In case of 

NK cells both a direct and an indirect activation by neutrophils has been described, the latter 

involving a PMN-DC-NK triangle including both contact and humoral effects [24]. 

Neutrophils are also able to interact with different subsets of T cells, and these interactions 

seem to be mostly reciprocal [66]. Cross-talk between neutrophils and other immune cells was 

not only observed in vitro, but has been supported in several animal models [66] and in cases 

of human pathology [75]. 

Neutrophils have even been proposed as antigen presenting cells. Earlier studies 

indicated that neutrophils were able to present exogenous antigen to CD8+ T-cells [7] and 

recent data have shown also antigen-presentation to Th1 and Th17 cells [2]. In confocal 

microscopic studies neutrophils migrating with fluorescently labeled pathogen were observed 

in draining lymph vessels [1] and lymph nodes [21]. Moreover, the chemokine receptor CCR7 

has been identified as a key player in directing neutrophil migration from the interstitium to 

the draining lymph nodes [6].  

Taken together, experimental evidence supports that neutrophils interact in a complex 

way with all the players of and exert a regulatory influence on the adaptive immune response.   

 

Lifespan 

Neutrophils are regarded as cells with a very short lifespan, spending 8 to 12 hours in 

the circulation [103]. If they are not involved in inflammatory processes, they undergo 

spontaneous apoptosis. However, various stimuli, such as cytokines (G-CSF, GM-CSF) and 

bacterial products were shown to prolong their survival [23]. Most recent in vivo 

measurements estimate an extended half-life up to 5 days for circulating neutrophils [83], 

although there had been concerns about these data [64].  

Interestingly, proteins known to regulate the cell cycle in dividing cells, such as 

survivin, cyclin-dependent kinases or proliferating cell nuclear antigen (PCNA) were 

discovered to regulate the survival of neutrophils [119,120]. In contrast to proliferating cells, 
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in PMN these proteins are localized to the cytosol and act as inhibitors of the apoptotic 

pathway [120].  

   

Additional functions of granule proteins 

Neutrophils possess 4 different types of granules that develop in different stages of 

maturation in the bone marrow [11]. The contents of these granules are regarded as specific 

neutrophil proteins involved in killing and degradation of phagocytosed pathogens. However, 

some of the neutrophil granule proteins have been recently described in other functions or at 

other locations. As summarized in Table 1, neutrophil granule proteins also affect cell 

adhesion and migration, apoptosis, or clearance of apoptotic cells. Some of the hydrolases 

were shown to degrade extracellular (tissue factor pathway inhibitor, TFPI) or intracellular 

(insulin receptor substrate-1, IRS-1) proteins and influence thereby coagulation and insulin 

resistance, resp. Selected neutrophil granule proteins are also expressed upon stimulation of 

endothelial or epithelial cells [11]. 

 

Participation of PMN in vital function other than defense against bacteria and fungi 

Neutrophils were regarded as cells specialized in elimination of pathogens, mainly 

bacteria and fungi. In recent years their antimicrobial spectrum has been broadened by 

demonstration of their involvement in defense against HIV-1 [97], mycobacteria [68] and 

parasites such as malaria [85] and Leishmania [75,82].  

However, the most surprising data support involvement of neutrophils in a vast array 

of different physiological and pathological processes. PMN were shown to participate in 

anaphylactic reactions initiated by IgG via murine FcγRIV or human FcγRIIA and mediated 

by release of platelet activating factor (PAF) from neutrophils [50].   

Neutrophils are suggested to participate in atherogenesis as their presence has been 

detected in atherosclerotic plaques and PMN-depletion resulted in a reduction of the size of 

lesion [32,75]. Moreover, the neutrophil granule protein cathelicidin LL37 was reported to 

promote adhesion of monocytes to the vessel wall [31].  

Insulin resistance is related to obesity, partly due to alteration of insulin signaling 

pathway by inflammatory mediators produced in the adipose tissue. Recently, significant 

accumulation of neutrophils has been demonstrated in adipose tissue and degradation of the 

signaling molecule IRS-1 was attributed to neutrophil-derived elastase [104]. 
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Neutrophils were also shown to be involved in thrombus formation. They appear at the 

site of vessel injury instantaneously [27,116] and activated neutrophils express tissue factor 

[70]. PMN-depletion resulted in serious reduction of thrombus formation [27,116].  

Last but not least, neutrophils have been implicated in modulation of tumor growth via 

several potential mechanisms [66]. 

Many of the above results have been obtained or supported by detecting the changes 

following depletion of neutrophils in various animal models. Some remarkable examples are 

summarized in Table 2.    

 

Extracellular killing by neutrophils 

 

Discovery of the neutrophil extracellular traps (NETs) changed our view on bacterial 

killing and revealed that neutrophils were also capable to eliminate microorganisms in the 

extracellular space [15]. NETs represent filamentous structures composed of DNA, histones, 

granule proteins (mainly elastase and myeloperoxidase) and a few cytosolic proteins. They are 

formed by a unique mechanism of cell death, called NETosis, when intracellular membranes 

become disintegrated and granule proteins get access to the nucleus. Eventually, the plasma 

membrane ruptures and the protein-nucleic acid complex is released [16]. Formation of NETs 

requires superoxide and other ROS formed thereof. Neutrophils from patients with defective 

NADPH oxidase (chronic granulomatous disease, CGD) are unable to form NETs, but the 

process can be rescued by addition of H2O2 [37].  

NETs were shown to kill various bacteria and Candida albicans [15,110] but most 

recently they were reported to be also involved in defense against human immunodeficiency 

virus [97]. The mechanism of microbe elimination is not fully understood but probably relies 

on multiple parallel pathways. Trapping of microorganisms prevents their dissemination and 

this phase may be based on surface charge interactions. Antibacterial proteins concentrated in 

NETs, such as histones, defensins and pentraxins, may have a direct toxic effect whereas 

granule enzymes, such as lysozyme or elastase, may destroy the microbial cell wall or 

virulence factors. The antimicrobial effect of NETs is critically dependent on the intact DNA 

structure, as it is inhibited by DNase treatment [15].     

In vitro microbe killing effect of NETs was elegantly supported and extended by 

visualization of live neutrophils by confocal intravital microscopy. Upon bacterial challenge 

of the skin, extravascular NET formation was observed. In contrast to the in vitro data, in live 

tissues NET formation occurred within minutes and did not involve the death of neutrophils. 
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Instead, viable but anuclear granulocytes continued to crawl in a chemical gradient and to 

phagocytose [124]. In a septic model, rapid platelet-dependent NET formation was observed 

in liver sinusoids that increased trapping of bacteria by four-fold [71]. NETs were also shown 

to be formed and to be effective in certain viral infections [49]. In all these experiments, 

destruction of the DNA scaffold of NETs by iv. administered DNase resulted in an increase of 

bacteremia or number of virus-infected cells [49,71,124]. Thus, NET formation clearly 

prevents dissemination of microorganisms.  

In line with the previous observations, surface expression of nucleases is a critical 

component of pathogenicity for some bacteria [17] and dissemination of different strains 

correlated with the type of expressed DNase [117]. Furthermore, in a case of severe 

Aspergillosis in a CGD patient, negative correlation was found between the ability of 

neutrophils to form NETs and the severity of infection [10]. 

In addition to their role in killing of different microorganisms, in recent years NETs 

were reported to be involved in several other physiological and pathological processes. They 

were shown to activate dendritic cells via TLR9 receptors [38,61], linking thereby innate and 

adaptive immune processes. Activation of platelets via TLR2 and TLR4 receptors [101] and 

degradation of coagulation inhibitory proteins by proteases on the surface of NETs both 

promote blood clotting which also impairs bacterial dissemination [51,69]. On the other hand, 

formation of NETs was suggested to contribute to the viscosity of bronchial fluid in cystic 

fibrosis patients [67], to formation of autoantibodies in systemic lupus erythematosus [44] and 

to the pathogenesis of autoimmune vasculitis [54]. Most recently, the presence of NETs was 

demonstrated in atherosclerotic plaques in murine carotid arteries and in human tissues 

removed by endarterectomy [72] substantiating the involvement of neutrophils in 

atherogenesis. Disruption of NETs in liver sinusoids by iv. DNase diminished liver damage in 

septic conditions [71].      

  

Extracellular vesicles: new form of intercellular communication 

 

The first mentioning about extracellular vesicles (EV) was in 1967 when „platelet 

dust” was described [121]. In the following years there were only sporadic publications, but 

the field has seen a real boom in the last decade. Extracellular vesicles are seen today as a 

common way of intercellular communication. Every investigated cell type is able to produce 

some form of extracellular vesicles, both spontaneously and upon stimulation. EVs are 
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present in all the body fluids, blood, urine, cerebrospinal fluid and milk having been the most 

intensively studies [18,107]. 

The size of EVs varies from approx. 30 nm to more than 1 µm. The smaller vesicles, 

having a diameter below 100 nm, are mostly referred to as exosomes, they arise from 

multivesicular bodies. The larger vesicles are named – depending on the authors - 

microvesicles, ectosomes or microparticles, and they are formed mostly by budding or 

shedding from the plasma membrane [22,43,107]. However, it seems that the size of EVs 

presents more a continuous spectrum than discrete populations.  

Detection of EVs is based mostly on flow cytometric, light scattering or electric 

resistance measurements. All approaches present potential problems [43]. In flow cytometry 

the distinction of the smaller vesicles from the noise can be a hard task. Furthermore, immune 

complexes were shown to overlap with smaller vesicles [42], thus the vesicular structure 

should always be verified. Most convenient – and reliable – is the detection of vesicles above 

300 nm stained with specific fluorescent ligand. Recently, the availability of convenient 

apparatus based on detection of light scattering or changes of the electric field resulted in the 

wide-spread usage of vesicle number as the unique parameter for characterization of a given 

preparation. However, the danger of vesicle fusion, presence of immune complexes or 

aggregated proteins or contamination with viruses requires careful analysis of the preparation. 

In our view, the safe approach is still the parallel usage of multiple techniques including 

electron microscopy for characterization and visualization of the EV preparations. 

The composition of EVs is varied. They contain differently enriched collection of both 

membrane and cytosolic constituents. The discovery of their nucleic acid – mostly mRNA and 

miRNA – content raised wide perspectives for their application in diagnostics and therapy 

[111]. In our own experience, the same cells are able to produce EVs of different composition 

and different functional properties depending on the type of stimulus applied [109]. 

Differences between spontaneously formed and induced EVs has also been indicated in 

another study [47]     

The physiological or pathological functions related to EVs present a long and 

colourful list. One of the earliest generally recognized functions was increase of blood 

coagulation initiated by tissue factor on EVs derived of endothelial cells and platelets. 

Various tumor cells also produce large numbers of EVs with tissue factor and this could be 

part of the increase of coagulation generally observed in patients with tumor of different 

origin [22]. Secretion of leaderless proteins (e.g. IL-1β) occurs in EVs, too [4,88]. 
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Transfer of plasma membrane receptors and proteins has also been demonstrated to 

occur via EVs. One of the earliest well-documented observations was that exosomes derived 

from dendritic cells were able to successfully present antigen to T-lymphocytes [90]. In other 

studies, macrophage-derived exosomes were reported to transfer pathogen-associated 

molecular patterns of opportunistic intracellular pathogens to uninfected cells [9]. Perhaps the 

most striking result was the demonstration that oncogenic EGFR of glioblastoma cells was 

transferred to healthy cells, where it became functional and induced proliferation [3]. Transfer 

of chemokine receptors [65], FasL [55] and tissue factor [29] via EVs was also reported. 

Transfer of miRNA has been demonstrated in many cell types [114].   

Detailed knowledge is still missing on cell biological processes leading to formation 

and release of EVs as well as on their fate. However, their existence and role in 

communication between different cell types can not be neglected. 

 

Role of PMN-derived vesicles in communication 

The first report on PMN-derived EVs (named in that paper microparticles) indicated 

their ability to increase secretion of the cytokine IL-6 from endothelial cells [73]. In a later 

work it has been demonstrated, that leukocyte-derived EVs were present in blood samples of 

healthy volunteers and the endogenous EVs were also able to upregulate IL-6 production and 

tissue factor expression in cultured endothelial cells [74]. In both studies an increase of EV 

number and effect was achieved by the chemotactic agent fMLP. Anti-neutrophil cytoplasmic 

antibodies (ANCA) also stimulate the release of microparticles from neutrophils, and these 

EVs activate endothelial cells to express intercellular adhesion molecule-1 and to secrete IL-6 

and IL-8 [47]. 

Most of the data on PMN-derived EVs (called in these studies ectosomes) come from 

the laboratory of Dr. Schifferli [26,34-36,39,40,45,93-96]. They characterized the size and 

surface properties of EVs released upon fMLP-stimulation and came to the conclusion that 

both the in vitro and the in vivo generated EVs are right-side out [39,45]. Further, they 

demonstrated that PMN-derived EVs increased the secretion of the anti-inflammatory 

cytokine TGF-β1 from monocytes, whereas the stimulated release of IL-8, IL-10 and TNFα 

was decreased [40]. Secretion of TGF-β1 was induced also in monocyte-derived dendritic 

cells, where incubation with PMN-EVs interfered with the LPS-induced differentiation 

process indicated by a decrease of release of inflammatory cytokines, decrease of 

phagocytosis and T-cell stimulation [34]. The inhibitory effects were initiated by membrane 

components of PMN-EVs which led to the activation of the Mer tyrosine kinase pathway in 
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monocytes, resulting eventually in inhibition of transcription factor NF-κB and down-

regulation of several pro-inflammatory genes [35]. The rapid release of stored TGF-β1 was 

independent of the MerTK pathway whereas phosphatidylserine (PS) exposed on the surface 

of PMN-EVs was necessary but not sufficient for induction of TGF-β1 release [36].  

Thus, EVs released from PMN upon chemotactic stimuli communicate a signal to 

monocytes and monocytic dendritic cells, reducing the inflammatory and favouring the anti-

inflammatory response of these cells. However, the specificity of PMN-derived EVs in this 

process remains to be determined, as EVs produced by stored erythrocytes [94] and platelets 

[93] have also been reported to down-regulate macrophages and dendritic cells.    

In line with the inhibitory effect of PMN-derived EVs upon macrophages, ectosomes 

released from Mycobacterium tuberculosis infected neutrophils decreased the activation of 

macrophages and prolonged the survival of M. tuberculosis [33]. In a recent study, PMN-

derived microparticles were shown to stimulate efferocytosis and production of pro-resolving 

lipid mediators in macrophages [25].  

Neutrophil-derived EVs were also shown to have prothrombotic effects. An increased 

number of platelet- and PMN-derived microparticles were found in the blood plasma of 

patients suffering from meningococcal sepsis. These microparticles expressed tissue factor 

and supported thrombin generation [79]. In another study, stimulation of neutrophils with 

bacterial endotoxin resulted in shedding of PAF containing microparticles which activated 

platelets [118]. More recently, the active form of the β2 integrin Mac-1was detected on the 

surface of EVs released from activated neutrophils, and the active integrin played a central 

role in binding to and activation of resting platelets [84].   

   

PMN-derived EV with antibacterial effect 

We observed that in isolated PMN different stimulating agents induced the formation 

of different number of EVs with different composition and different functional properties 

[109]. Particles (bacteria or zymosan) opsonized with pooled serum initiated the release of 

microvesicles in the highest quantity whereas chemotactic agents (fMLP, CXCL12), 

cytokines (TNFα) or lipopolysaccharide (LPS) did not significantly increase the generation as 

compared to the spontaneous production. Other reports also demonstrated the release of EVs 

from neutrophils phagocytosing different pathogens [33,41]. 

Importantly, PMN-derived EVs initiated by opsonized particles were able to impair 

the growth of bacteria whereas EVs produced spontaneously or upon other stimuli did not 

interfere with bacterial growth (Fig.3). In induction of the formation of EVs with antibacterial 
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effect, opsonization of the particles with full serum was critical: heat-inactivation of 

complement factors resulted in generation of a large number of EV without antibacterial 

effect (Fig. 3). 

The size of PMN-derived EVs ranged from 200 to 800 nm and did not depend on the 

type of initiating agent. In contrast, the composition of PMN-derived EVs with antibacterial 

effect differed significantly from that of ineffective EVs. Antibacterial EVs (aEV) were 

enriched in PMN granule proteins and β2 integrins. All types of PMN-derived EVs contained 

metabolic enzymes, many cytoskeletal proteins, some plasma membrane receptors and the 

membrane components of NADPH oxidase, however the cytosolic oxidase components were 

mostly missing. Apparently, formation of aEV is associated to specific sorting of cell 

constitutents into the released EV.   

The effect of phagocytosis-induced PMN-derived aEVs proved to be bacteriostatic 

rather than bacteriocidal and the mechanism of action differed in many respects from the 

effect of intact PMN (Table 3). PMN-derived aEVs did not engulf bacteria, although their size 

was comparable or even larger than that of bacteria. PMN-derived aEVs did not produce 

superoxide and their effect was not influenced by the inhibitor of NADPH oxidase, diphenyl-

iodonium (DPI) (Fig. 4A). This observation is substantiated by the lack of the cytosolic 

components of the NADPH oxidase in aEVs. The most striking difference between the effect 

of PMN and antibacterial EVs was the total independence of opsonization in the latter case 

(Fig. 4B). Whether bacteria were opsonized in full serum or in complement-deficient serum or 

not opsonized at all, their growth was impaired to the same extent by antibacterial PMN-

derived vesicles. As PMN have a very low killing activity for non-opsonized bacteria (Fig. 

1.), under such conditions, PMN-derived antibacterial EVs proved to be significantly more 

effective than PMN themselves.  

Finally, the spectrum of attacked bacteria is probably also different. Antibacterial EVs 

were effective against Staphylococcus aureus and Escherichia coli, but not against Proteus. 

mirabilis, thus they showed some selectivity, which was however not paralleled with Gram 

staining.  

The mechanism of action of PMN-derived antibacterial EVs is strongly associated 

with their ability to form large aggregates with bacteria (Fig. 5B.). In this process both the 

number and size of aggregates seem to be important. Summarizing all the experimental 

conditions investigated, a fairly good negative correlation was obtained between the 

proportion of large (larger than 1.5 µm) aggregates and bacterial growth. Formation of large 

aggregates with bacteria seems to depend both on surface charge and density of β2 integrin on 
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PMN-derived EVs and requires continuous rearrangement of the actin cytoskeleton (Fig. 5C 

and D).   

The impairment of bacterial growth by PMN-derived aEVs occurred in the 

extracellular space and in this respect it is similar to the effect of NETs. However, there are 

numerous differences between NETs and antibacterial EVs (Table 3). Formation and hence 

effect of NETs depends on superoxide and ROS formed thereof whereas both production and 

effect of antibacterial EVs is independent of ROS. Generation of NETs requires firm 

attachment of PMNs to a surface whereas antibacterial EVs were released equally well from 

suspended or adherent neutrophils. NETs also critically depend on intact DNA structure and 

can be disrupted by DNase treatment, whereas neither generation nor the antibacterial effect 

of PMN-derived EVs was influenced by DNase treatment. The kinetics of in vitro formation 

and the initiating agents are also widely different. Finally, the antibacterial effect of EVs 

depends on the intact vesicular structure, intact cytoskeletal organization (Fig. 5) and glucose 

supply whereas all these are not required for the antibacterial effect of NETs. However, 

involvement of granule proteins may be a common property: effect of NETs was shown to 

depend on granule proteases, and EVs are also enriched in these proteins, suggesting their 

functional role.  

 

In vivo relevance of PMN-derived EVs 

Blood serum contains EVs derived of many – if not all – cell types. The serum of 

healthy individuals contains also a detectable amount of PMN-derived EVs. Investigated 

under ex vivo conditions, these vesicles did not form aggregates with bacteria and did not 

interfere with their growth.  

In bacteremic states, an increase in the number of PMN-derived vesicles has been 

reported. A six fold enrichment of PMN-derived EVs was reported in the blood serum of 

patients infected with S. aureus [109] and over 100-fold increase was detected in patients with 

meningococcal sepsis [79]. In 3 patients with acute peritonitis, the peritoneal fluid contained 

over tenfold higher number of PMN-derived microparticles than the control fluid from 

uninfected patients [87]. An increase of PMN-derived EVs was also reported in different 

inflammatory diseases (Table 4). Thus, bacterial stimulation results in an enhancement of EV-

production also in circulating PMN, similarly to our observation made on isolated PMN.    

Importantly, in our experiments, the PMN-derived EVs isolated from the serum of 

bacteremic patients infected with S. aureus, formed ex vivo large aggregates with added 

bacteria, similar to the observation made on antibacterial EVs initiated from isolated PMN. 
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Whether similar aggregates are formed between PMN-derived EV and bacteria in vivo, is 

presently not known.  

  The biological significance of the antibacterial effect of PMN-derived EVs detected 

under in vitro condition can not be assessed at present. The observation that antibacterial EVs 

are fully effective against non-opsonized bacteria, may represent an important factor in the 

early phase of innate immune reactions. However, on the basis of theoretical calculations, the 

effect of EVs against opsonized bacteria may also not be negligible. When presented as cell-

equivalent, the antibacterial capacity of EVs against opsonized bacteria was smaller than that 

of PMN and was saturated by lower bacterial load. However, the protein content of EVs is 

rather low and if we relate the impairment of bacterial growth to protein content of PMN or 

EV, then we obtain a tenfold higher relative antibacterial capacity for EVs than for PMN. It is 

thus possible, that PMNs activated by opsonized bacteria, package their antibacterial arsenal 

into released vesicles that could capture the pathogen and impair its dissemination. Both 

NETs and blood clotting were shown earlier to prevent pathogen dissemination very 

effectively [69,71].  

PMN-derived EVs with antibacterial capacity may thus represent another PMN-related 

extracellular mechanism to combat infectious agents.       

  

Conclusion 

 

After several decades, when the attention of immunologists was focused first on 

various subpopulations of lymphocytes as central players in adaptive immune processes, then 

later on exciting receptors of innate immunity, in the last period neutrophils have been 

rediscovered. Several striking properties have been described and participation in a broad 

spectrum of unexpected functions has been revealed. Discovery of NETs that provide an 

extracellular mechanism in the fight against microorganisms was accepted first with certain 

skepticism. It took almost a decade till the in vivo significance of NET formation starts to be 

clarified. It will take certainly years before the true biological role of extracellular vesicles can 

be assessed. However, it is evident already now that the neutrophils are multifaceted cells that 

are involved in many more functions than phagocytosis and elimination of engulfed 

microorganisms.     
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Table 1. Non-classical functions of neutrophil granule proteins 
 
Protein Location in the 

PMN 
Other location/ 
effected cell 

Function Reference 

Azurocidin Azurophilic 
granules 

Endothel cells Monocyte 
adhesion 

[63] 

Cathelicidin 
LL37 

Specific 
granules 

Epithel cells, skin, 
lung 

Apoptosis [5] 

Cathelicidin 
LL37 

Specific 
granules 

Neutrophils Activation [76] 

Cathelicidin 
LL37 

Specific 
granules 

Monocyte Chemoattractant [122] 

Cathepsin G 
Azurocidin 
Defensin 

Azurophil 
granules 

Monocyte Chemoattractant [123] 

Elastase Azurophil 
granules 

Lung cells IRS-1 
hydrolysis 

[48] 

Elastase Azurophil 
granules 

Hepatocytes IRS-1 
hydrolysis, 
insulin 
resistance 

[104] 

Elastase 
Cathepsin G 

Azurophil 
granules 

Thrombus 
formation 

Hydrolysis of 
tissue factor 
pathway 
inhibitor 

[69] 

Pentraxin 3 Specific 
granules 

Endothel cells Binding to P-
selectin 
inhibition of 
neutrophil 
transmigration 

[28] 

Lactoferrin Specific 
granules 

Endothel cells Inhibition of 
migration of 
neutrophils and 
eosinophils 

[12,13] 

Proteinase 3 
(PR3) 

Azurophil 
granules 

Macrophages Inhibition of 
uptake of aged 
neutrophils into 
macrophages 

[53] 

Arginase 1 Gelatinase 
granules 

T-cell Inhibition of T-
cell activation 

[58,92,108] 
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Table 2. Involvement of PMN in non-classical functions as revealed by PMN-depletion in 
animal models 
 
Effect Reference 
Protection against experimental cerebral 
malaria 

[85] 

Inhibition of anaphylaxis [50] 
Reduced plaque size in 
hypercholesterinaemia-induced 
atherosclerosis 

[32] 

Protection against deep venous thrombosis [116] 
Decrease of the growth rate of selected 
tumours 

[81] 

Inhibition of delayed type hypersensistivity [59,60] 
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Table 3. Comparison of the in vitro antibacterial properties of intact PMN, neutrophil 
extracellular traps (NETs) and PMN-derived antibacterial EVs (aEVs)  
 
Property PMN NET aEV 
ROS requirement Yes Yes No 
DNase sensitivity No Yes No 
Opsonization 
required  

Yes No No  

Vesicular structure 
required 

Yes No Yes 

Surface attachment 
required 

No Yes No 

Engulfment required Yes No No 
Intact cytoskeleton 
required 

Yes No Yes 

Glucose supply 
required 

No No Yes 

Time of formation instantaneous several hours 20 min 
Granule proteins 
required 

Yes Yes Yes 

Effect Bacteriocidal Bacteriostatic/ 
Bacteriocidal 

Bacteriostatic 
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Table 4. Increased production of PMN-derived EVs in pathological conditions 
 
State/disease Investigated fluid Extent of elevation Ref 
Cystic fibrosis  Sputum Approx. 2-fold [86] 
Chronic vasculitis Blood serum Approx. 2.fold [26] 
Acute vasculitis Blood serum Approx. 5-fold [26] 
ANCA-associated 
vasculitis 

Blood serum 50-100 fold [47] 

Rheumatoid arthritis Synovial fluid ? [8] 
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Figure Legends 

 

Fig. 1. Difference in the phagocytosis of opsonized and non-opsonized bacteria by PMN. 

Uptake of green fluorescent S. aureus was followed in time in a flow cytometer.  

 

Fig. 2. Phagocytosis of opsonized bacteria by PMN. Phagocytosis of green fluorescent S. 

aureus by PMN labeled with red-fluorescent antibody against the surface marker CD11b. 

Phagocytosis was followed in a laser scanning confocal microscope. Pictures were taken of 

the same visual field at the indicated time-points.  

 

Fig. 3. Differences in number and functional properties of PMN-derived EV induced by 

different agents. EV formation was induced by S. aureus opsonized in full serum or 

complement-depleted serum, or tumor necrosis factor (TNFα) or occurred spontaneously 

(marked “none”). The number of produced EV was determined by flow cytometry (empty 

columns); bacterial growth was followed by a semi-automated technique (shaded columns).   

 

Fig. 4. Comparison of the effect of (A) inhibition of NADPH oxidase and (B) opsonization on 

the antibacterial effect of PMN or PMN-derived antibacterial EV. NADPH oxidase was 

inhibited by 5 µM diphenylene-iodonium (DPI). S. aureus was opsonized with full serum.  

 

Fig. 5. Antibacterial EVs form large aggregates with bacteria. The relation of green 

fluorescent S. aureus with different PMN-derived EVs (stained red) was followed for 30 min 

in a confocal laser scanning microscope. A: spontaneously formed EVs; B. EVs induced by 

opsonized particles; C. EVs induced by opsonized particles treated with 10 µM cytochalasin 

B (CB); D. EVs induced by opsonized particles treated with 10 µM latrunculin A. Note that 

inhibition of continuous rearrangement of the actin cytoskeleton by CB or latrunculin 

prevents the formation of large aggregates between bacteria and antibacterial EVs. 
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