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Summary. Real-time ultrasound guidance for any intervention relies on visualization of needle
advancement towards a target. Unfortunately, correct identification of the needle tip is not
straightforward, as artifacts always distort the image. The ultrasonic appearance of the
needle is often degraded by reverberation, comet tail, side-lobe, beam-width, or bayonet
artifacts, which can easily confuse an unprepared operator. Furthermore, the typical needle
image, that is, a dot or a straight line (out-of-plane and in-plane approaches, respectively),
is also a result of artifacts that hide the real dimensions of the needle. Knowledge and
correct interpretation of these artifacts is important for safe practice and is paramount to
success when precise needle manipulation is mandatory, for example, when the target is
small. In this review, authors discuss the most important needle-related artifacts and
provide a physical explanation focusing on implications for everyday practice. Recent
advances that allow increased needle visualization and reduction of artifacts are also
discussed.

Editor’s key points

e Visualizing advancement
of the needle is important
in ultrasound-guided
procedures.

e This paper is a review of
needle-related artifacts
and how can they be
interpreted.

o Importantly, it provides
knowledge regarding
correct placement of the

needle tip and safe practice. Keywords: artifacts; needles; ultrasonography, interventional; patient safety; vascular access

devices

Ultrasound is now commonly used in anaesthetic practice as
a guidance tool for invasive procedures. In most cases, the
procedure involves a needle advancing towards a target;
the procedure could be either a regional block needle inser-
tion or a catheter insertion. Several studies showed that
real-time visual control of needle manipulation increases
the safety of the intervention, and consequently, recent guide-
lines highly recommend ultrasound guidance for a variety of
applications.’~® The needle tip may cause complications, so
its visualization throughout the procedure is crucial to avoid

Physical background of needle imaging and
common ultrasound artifacts

The needle shaft is a fine-bore metal tube; its transverse
section is a circle and the longitudinal section consists of two
walls (i.e. anterior and posterior needle walls) with a lumen in
between. On the ultrasound image, however, the needle typic-
ally appears as a dot (out-of-plane technique) or one long line
(in-plane technique), and is best identifiable when aligned par-
allel to the probe; visualization becomes poor at large insertion

STOZ ‘€2 JOqUIBAON U0 SUPIPSIA J0 AISIBAIUN SBMBLULLES e /BI0'SfeunolpJojxoeldy/:dny wouj pepeojumoq

complications.

Exact identification of the needle tip is not straightforward
partly because artifacts (i.e. any perceived distortion caused
by the instrument of observation) always obscure the picture.’
When the target is large, this is usually not a problem, but the
correct interpretation of the image becomes increasingly
more important when the target is smaller, in the case of
regional anaesthetic blocks.

Some of the artifacts are virtually always present as they are
based on the physical limits of ultrasound imaging, that is,
common artifacts. Some other uncommon artifacts only
occasionally distort the image, but when they do, it can be
very confusing to an unprepared operator.

angles. The difference between the visual and the ultrasound
appearance of the needle can be explained by three physical
concepts: resolution, reflection, and acoustic shadowing.

Resolution

Inanimage, spatial resolution is defined as the ability to distin-
guish two objects very close together in space® (not to be con-
fused with temporal resolution, which is related to the frame
rate and is not applicable to still images). Spatial resolution
can be further sub-categorized into axial resolution (along
the axis of the ultrasound beam) and lateral resolution (per-
pendicular to the beam). There is a misconception that
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ultrasound resolution is insufficient to make a distinction
between the two walls of the needle shaft, and it is not
always true.

The axial resolution of the ultrasound theoretically equals
half of the pulse length.? As the width of the ultrasound
pulse, which is emitted by the transducer, is typically 1-3

Radius bone

Fig1l A20Garterialcannulainthe radial artery (long-axis view). In
contrast to needles, both the anterior and the posterior walls of the
plastic cannula are clearly recognizable (arrowheads) and there is
no image distortion below the catheter.

wavelengths, the resolution is ~1 wavelength. This can be cal-
culated by dividing ultrasound velocity (1540 m s~ ! in soft
tissues) by its frequency; it means that at 10 MHz the resolution
limit in soft tissues is ~0.15 mm. As needle diameter is in the
order of 1 mm (e.g. 0.9 and 1.6 mm for a 20 and a 16 G
needle, respectively), the resolution of modern ultrasound
machines is sufficient to see the structure of the needle, that
is, to show both the anterior and posterior needle walls with
a lumen in between. In fact, in contrast to metal needles,
both walls of plastic catheters are usually identifiable (Fig. 1).

Reflection

The ultrasound beam is reflected back at tissue interfaces; this
iscrucial to ultrasound imaging, as to be able to show an object,
the transducer must receive an echo from its surface and con-
tents. Rough surfaces scatter the ultrasound to all directions
and the exact orientation does not have a large impact
on picture quality. In contrast, very smooth surfaces, for
example, metal needles and cannulas, behave like a mirror
and the reflected ultrasound travels in a straight line. This is
called specular reflection and similarly to light, the angle of
incidence equals the angle of reflection.” *° Furthermore,
smooth surfaces are best seen when the angle of incidence is
zero (i.e. the ultrasound beam is perpendicular to the
surface), but visualization of traditional needles becomes
poor at steep insertion angles (Fig. 2a and s)."*
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)

Fig 2 Specular reflection from the needle. The angle of incidence equals the angle of reflection. Visualization is best when the angle of incidence is
zero (a) but becomes poor at steep insertions because the echoes are reflected away from the transducer (8). Beam steering (c) and echogenic
needles (p) overcome this problem—see explanation later in text under ‘Advanced two-dimensional imaging’ (c) and ‘Echogenic needles’ (p).
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Table 1 Acoustic impedance of various tissues and materials™ **

Acoustic impedance (rayl)

Air 0.0004
Fat 1.34
Blood 1.65
Muscle 1.71
Teflon (PTFE) 2.97
Bone 7.8
Stainless steel 45.7

Clinical importance

Care must be taken to decrease the angle of incidence (i.e.
align the needle parallel to the probe) as much as possible by
choosing an appropriate needle entry site and occasionally
by tilting the opposite end of the ultrasound probe down
(‘heel in” manoeuvre).'?

Acoustic shadowing

The ratio of reflected and transmitted ultrasound is deter-
mined by the difference in acoustic impedances of tissues on
either side of the interface: the larger the difference, the
more ultrasound is reflected back. Acoustic impedances of
soft tissues are very similar to each other (Table 1); the reflected
ultrasound at soft tissue interfaces is <1%, just enough to
produce detectable echoes.'® Bone has much larger acoustic
impedance; consequently, soft tissue and bone interfaces
give a very strong echo. Unfortunately, this makes the examin-
ation of underlying objects impossible, as only a small percent-
age of the original ultrasound energy remains available for
deeper planes. This phenomenon is called acoustic shadowing
and is one of the most common ultrasound artifacts. Air pre-
vents ultrasound scan for the same reason.

Acoustic impedance of most plastics is relatively close to
soft tissues; this is why plastic catheters do not cause acoustic
shadowing and do not obscure the image (Table 1). Metal
needles, however, have very high acoustic impedance and
behave similarly to bone; they give a very strong echo and
appearas a bright (hyper-echoic) line on theimage. In contrast
to bone, the acoustic shadow of the needle is not very obvious
because of the small dimensions and it is usually neither wide
nor deep enough to distort the wholeimage (but it can happen,
see Fig. 3). However, the posterior wall of the needle shaft,
which is very close to the highly reflective anterior wall, is
obscured. This is why we typically see only one line as the rep-
resentation of the needle on the image, that is, the anterior
wall. Unfortunately, the real dimensions of the needle are con-
sequently hidden.

Needle bevel and position of needle tip

To obtain a sharp point, the distal end of the needle is cut ob-
liquely, typically at angles 15-20° (i.v. cannulas) or 30° (block
needles), and the needle tip is at the most distal point of this
bevel. The bevel length is determined by two factors: the
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Fig 3 Peripheral i.v. access with an 18-G cannula, in-plane ap-
proach. Observe that the middle portion of the vein is invisible
and underlying tissues appear darker owing to acoustic shadow
of the introducer needle (long bright line coming from the top-right
corner of the image and entering the vein). Visible parts of the vein
are indicated with arrowheads.

diameter of the needle and the cut angle; for example, it is
~1 mm for a 22 G short-bevel block needle, and is as long as
4-6 mm for a 16 G hypodermic needle, potentially detectable
by ultrasound.

The orientation of the needle bevel has an impact on the
ultrasound image of the needle tip, especially when using
in-plane technique and standard (long-bevel) i.v. cannulas.
When the bevel faces downwards (needle tip up) there is typic-
ally only one long line on the image, as discussed above; the
needle tip is at the distal end of this line. However, when the
bevel faces upwards, another short line can be observed in
front and below the main needle line (Fig. 4). We showed this
is not an artifact but part of the needle: the distal end of the
posterior needle wall—uncovered by the anterior wall—gets
out of the acoustic shadow at the bevel and is recognizable.*”
The tip of the needle is at the distal end of this short ‘bevel line’.

Clinical importance

In-plane technique is technically demanding, as the operator
has to manipulate with the needle in a very thin plane. If the
needle tip leaves this plane, the distal end of the needle line
ontheimage does not correspond to the tip, but to a more prox-
imal part of the shaft, risking accidental puncture of vital
organs if unrecognized. The bevel line can be used as a direct
visual confirmation of the needle tip; furthermore, as it is
best seen when the tip is exactly in the plane of the ultrasound,
it can be a useful guide to keep the needle central throughout
the procedure.

The bevel length needs to be taken into consideration when
cannulating small vessels such as peripheral veins and arteries;
for example, the average diameter of the radial artery is 2.5
mm.'® In these cases, the exact identification of the needle
tip (i.e. the distal end of the bevel line) is important in order
to facilitate intravascular placement of the cannula.
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Fig 4 Cannulation of the radial artery (in-plane technique, 20 G ar-
terial cannula, 10 MHz linear transducer). A small distal section of
the posterior wall of the introducer needle is clearly recognizable
at the needle bevel (‘bevel line’), while the long, main needle line
corresponds to the anterior wall. The exact position of the needle
tip is the distal end of the bevel line; observe how close it is to the
posterior wall of the artery. The bevel line is also recognizable in
Figures 3, 5¢, 88, and 9. RA, radial artery.

Variations of needle-related ultrasound
artifacts

Reverberation artifact

Although usually most of the ultrasound energy is reflected
back from the anterior needle wall, occasionally some ultra-
sound penetrates the anterior wall and the beam gets into
the shaft. As the shaft consists of two parallel, very reflective
walls, the ultrasound gets ‘trapped’ within the shaft by boun-
cingback and forth between the two walls, giving reverberation
artifacts on each reflection (Fig. 5a)."” *® They appear as mul-
tiple parallel lines; the distance between consecutive lines is
fixed and equals the diameter of the needle. Logically, in the
absence of two parallel surfaces, there is no reverberation at
the needle bevel (Fig. 58 and c).

Clinical importance

Reverberation artifacts can considerably confuse the whole
image. It is important to know that the first two lines corres-
pond to the anterior and posterior walls of the needle shaft,
and only the subsequent lines are artifacts. Consequently,
the needle tip is at the distal end of the first or second line, de-
pending on bevel orientation.

Comet tail sign

The comet tail sign was described as a form of reverberation
artifact caused by very small objects that are bordered by re-
flective surfaces; the theory behind is the same as above, but
because of the small size of the object, the artifact appears
only as a vertical line or ‘tail’ under the source.*® ?° A similar
artifact can also be observed under needles (and also

guidewires) in the short-axis view. The reverberation is within
the lumen of the needle, as described above.

Clinical importance

Although the ‘tail’ can penetrate deep down, the needle itselfis
located at the upper end of the tail; the rest of the vertical line is
only artifact and as such cannot cause any harm even when
apparently cutting into sensitive areas (Fig. 6).

Beam-width and side-lobe artifacts

The ultrasound transducer consists of several piezo crystals
arrangedin arow andideally, each crystal providesinformation
about only one vertical line below the element. The ultrasound
image is a reconstruction of these elemental lines into a two-
dimensional picture (‘B mode). Unfortunately, in reality the
ultrasound beam emitted by a crystal is not a one-dimensional
line, but has a three-dimensional shape: the beam is narrowest
atthe focal zone but gets wider at deeper planes. The machine
cannot differentiate between reflections from the central and
peripheral parts of the beam, which has two disadvantageous
consequences: (i) the lateral resolution is limited by the beam
width (and is consequently greatest at the focal zone, but is
poor at deep planes). (ii) At deep planes, the beams of neigh-
bouring crystals can overlap each other and the reception
field of a crystal can extend to neighbouring areas. Strong
reflectors, such as needles, can ‘activate’ crystals that are not
immediately above but more lateral from the object, and this
leads to incorrect visualization.”*

Side-lobe artifacts are very similar to beam-width artifacts.
Apart from the main vertical ultrasound beam or ‘lobe’ that
carries the relevant information, some other side lobes,
running obliquely, are also generated in the transducer. The
energy level of these side lobes is much lower, but, with a
similar mechanism to beam-width artifacts, it may be
enough to produce faulty images if highly reflective surfaces
are nearby (Fig. 7).* #*

Clinical importance

Because of side-lobe and beam-width artifacts, the appar-
ent position of a strongly reflective object, for example, the
needle tip, on an ultrasound image can be more lateral
than the real location. It can happen that the virtual pos-
ition of the needle tip is in a sensitive area (e.g. nerve or
vessel), while in fact this is only the artifact and the injec-
tion could be safe.?? On the other hand, during vascular
access, the needle tip may already appear intravascular,
but aspiration is impossible, as the real needle tip is still
out of the vessel.

To avoid beam-width artifacts (and also optimize lateral
resolution), it is important to set the focus point at or slightly
below the target. Unfortunately, side-lobe artifacts cannot be
diminished with simple ultrasound setting.

Bayonet artifact

This is a virtual bending of the straight needle caused by faulty
image processing. To show an object at a correct place on the
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Fig5 (a) Mechanism of reverberation artifacts. They are generated as to-and-fro reverberations of the ultrasound beam between the anterior and
the posterior needle walls. The first and second lines correspond to the needle walls, and only the subsequent lines (Lines 3-5 in theillustration) are
artifacts. (8 and c) Reverberations caused by a 18 G hypodermic needle in a water bath. There is no reverberation at the needle bevel, but only in the
shaft. The exact position of the needle tip depends on bevel orientation [(8) bevel down, (c) bevel up].

image, the ultrasound machine calculates its depth below the
transducer. This is done by multiplying echo return time (mea-
sured) with ultrasound speed (assumed). The software of the
machine assumes a constant ultrasound speed (1540 m )
in soft tissues; however, this is an average value and the
actual speed can be slightly different. When the needle goes
through or under tissues with different characteristics, the
reflected ultrasound beam from different parts but the same
depth of the needle arrives back to the probe at slightly differ-
ent times. This confuses image processing, causing degraded
images (Fig. 8).% **

Strategies to reduce/bypass artifacts and
increase needle visualization

Three-dimensional techniques

The needle tip is advanced towards its target in a three-
dimensional space, and with traditional two-dimensional
ultrasound, it is not easy to keep track of its position
during advancement. Real-time three-dimensional ultrasound,
also called four-dimensional ultrasound, can theoretically
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overcome this problem by giving a continuous three-
dimensional image during the intervention. Unfortunately, at
present, technical limitations hinder the spread of this tech-
nique. Compared with the traditional two-dimensional ultra-
sound, much more data are needed for the construction of a
three-dimensionalimage; at present, this can only be achieved
with a bulky transducer, reduced image quality, or both
(reduced resolution and slower frame rate).?” 2°

Another strategy is to use a needle-positioning system with a
dual-modality imaging device. A standard two-dimensional
ultrasound is combined with three-dimensional position sen-
sors such as electromagnetic sensors that are mounted on
both the transducer and the needle tip. These sensors enable
the device to determine actual needle tip position in relation
to the transducer, and superimpose this information on the
ultrasound image, showing exactly where the needle is going,
even when it is out of the plane of the ultrasound beam.?’

These instruments have been designed to facilitate needle
manipulation in the three-dimensional space, but not to
reduce artifacts; however, needle-positioning systems bypass
ultrasound artifacts by using a second modality for needle tip
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Fig 6 Short-axisview of a Seldinger wire a few millimetres above its
entry to the jugular vein. In this plane, the wire is still in the tissues
even though reverberation artifacts run into the vein and the artery
on the image (‘comet tail’ sign). The same artifact can be observed
under needles (see also Fig. 7). 1JV, internal jugular vein; CA, carotid
artery.

Side lobe artifacts

2R

N\

Needle

Side lobe artifacts

s VAR
Comet tail sign 3 :\

Needle

Fig 7 (a) Mechanism of side-lobe artifacts. The object is in the main
lobe of the middle transducer crystal, but is also sensed by neigh-
bouring crystals via side lobes, which leads to image duplication.
(8 and c) Side-lobe artifacts caused by a single 18 G hypodermic
needle in a water bath (short-axis view). The horizontal lines on
the either side of the needle are side-lobe artifacts, whereas the
vertical line below it is a comet tail sign; the needle itself is at the
junction (g). Side-lobe artifacts become more extensive as depth
increases because the diverging side lobes overlap each other
more (c). In real life, this artifact is not so significant, thanks to at-
tenuation of side-lobe energy in tissues; however, the apparent
needle tip position on the image can be inaccurate.

WECT
bubble

f‘t'-&

Radius bone

Fig 8 (a) Virtual bending of the needle below the edges of a water
bubble in a phantom (arrows) called ‘bayonet’ artifact. (8) Cannula-
tion of the radial artery using in-plane technique (20 G
over-the-needle arterial cannula, 10 MHz linear transducer).
Bayonet artifact is indicated by an arrow. RA, radial artery.

detection. Time will reveal whether these innovative new tech-
nologies will gain popularity in the future.

Advanced two-dimensional imaging

Visualization of needles inserted at steep angles becomes poor
owing to specular reflection, as discussed above. A solution to
this problem is beam steering, that is, altering the angle of
the transmitted ultrasound beam mechanically or electronic-
ally (so that the beam direction is more perpendicular to
the needle). In these ‘needle frames’, more ultrasound is
reflected back towards the probe, which allows better needle
visualization (Fig. 2c). Modern transducers are capable of pro-
ducing and accepting ultrasound beams at many different
angles and the ultrasound machine combines the echoes
from different directions into a single composite frame
(compound spatial imaging or multi-beam imaging). Spatial
compoundimages are of better quality compared with conven-
tional ultrasound: there is improved contrast resolution and
less noise on the image.?® Although technically difficult, it
is theoretically possible to combine frames or ‘imaging signa-
tures’ that are individually optimized to see either tissues
(e.g. with vertical beam direction) or needles (with beam
steering); sophisticated image-processing algorithms have
recently been developed and are now available on ultrasound
machines, which allow enhanced visualization of the needle
while maintaining good overall image quality (Fig. 9).?% *°
Frequency compound imaging (detection of the signal at
different frequency bands within the transmitted spectrum
to produce a combined image) is another option for noise
reduction, but does not seem to have a significant effect on
needle visualization.? Tissue harmonicimaging is based on de-
tection of harmonic frequencies (multiples of the transmitted
ultrasound frequency) that are generated in the body as the
ultrasound wave insonates tissues.** Harmonic beams are nar-
rower than the fundamental beam, which results in improved
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Fig9 Software-enhanced visualization of a hypodermic needle in a phantom (Sonosite Edge ultrasound machine, SonoSite Inc., Bothell, WA, USA).
() When enhanced needle visualization (ENV) is off, the needle is hardly recognizable even though it is perfectly in the plane of ultrasound, as
echoes can be detected both at the proximal shaft and at the tip (arrows). (8) When ENV is on, a needle frame, optimized for needle visualization,
is superimposed on the originalimage. Thanks to beam steering (indicated by arrows) and software enhancement, the needle is clearly seen even
at a steep angle. Note that, because of the oblique beam direction, the needle frame covers only part of the primary image; the edge of the active

area is indicated by a dotted line on the screen.

lateral resolution and a reduction of side-lobe artifacts, but
needle visibility seems to be compromised.®? 33

Echogenic needles

Echogenic needles are also designed to enhance needle visual-
ization, especially at steepinsertion angles. Theyeither have an
echogenic coating or contain several specially designed tiny

800

reflectors crafted in the needle material that reflect ultrasound
towards the transducer (Fig. 2o, Fig. 10).3“ 3> A variety of echo-
genic regional block needles and also echogenic central
venous catheter sets are commercially available.>6~3%

A different strategy is an ‘active’ needle tip design. In one
set-up, a tiny piezoelectric sensor, placed at the needle tip
and activated by ultrasound waves, sends electric impulses
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Fig 10 (a) Echogenic needle containing several tiny reflectors crafted in the needle wall, arranged in two strips at the distal part of the needle
(Pajunk sonoline regional block needle, Pajunk Medical Produkte GmbH, Geisingen, Germany). (8) Supraclavicular block. The two strips of the
approaching needle, containing the reflectors, are easily recognizable (arrowheads) despite the steep angle. SA, subclavian artery.

towards the ultrasound machine, which subsequently displays
needle tip position.>® Another device creates low-frequency
vibrations in a piezoelectric actuator placed at the tip of the
needle; in this case, colour Doppler mode of a two-dimensional
ultrasound is used to detect vibrations, that is, needle tip pos-
ition.”® These systems are not in common use.

Conclusions

Identification of the needle, and especially the needle tip, is
crucial during ultrasound-guided interventions. Unfortunately,
image artifacts obscure the dimensions of the needle and oc-
casionally considerably distort the whole image. Knowledge
and correct interpretation of these artifacts is important for
safe practice and is paramount to success when precise
needle manipulation is necessary, for example, when the
target is small.
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