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Summary 

In CFTR, the chloride ion channel mutated in cystic fibrosis (CF) patients, pore opening is 

coupled to ATP binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs), 

and closure to dimer disruption following ATP hydrolysis. CFTR opening rate, unusually slow because 

of its high-energy transition state, is further slowed by CF mutation ∆F508. Here we exploit 

equilibrium gating of hydrolysis-deficient CFTR mutant D1370N, and apply Rate-Equilibrium Free 

Energy Relationship analysis to estimate relative timing of opening movements in distinct protein 

regions. We find clear directionality of motion along the longitudinal protein axis, and identify an 

opening transition-state structure with the NBD dimer formed but the pore still closed. Thus, strain at 

the NBD/pore-domain interface, the ∆F508 mutation locus, underlies the energetic barrier for opening. 

Our findings suggest a therapeutic opportunity to stabilize this transition-state structure 

pharmacologically in ∆F508-CFTR to correct its opening defect, an essential step towards restoring 

CFTR function. 
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Introduction 

The Cystic Fibrosis (CF) Transmembrane Conductance Regulator (CFTR) is the chloride ion 

channel mutated in patients suffering from CF, a devastating multiorgan disease (O'Sullivan and 

Freedman, 2009). The majority (~90%) of CF patients carry at least one allele with a deletion of 

phenylalanine 508 (∆F508). The ∆F508 mutation severely impairs both surface expression (Cheng et 

al., 1990) and chloride channel function (Miki et al., 2010) of CFTR. Even if efforts to promote 

trafficking to the surface prove successful, understanding the molecular mechanism of the functional 

defect in ∆F508 CFTR will still be essential for its correction in CF patients. 

CFTR belongs to the family of ATP Binding Cassette (ABC) transporters (Riordan et al., 1989), 

which are built from two homologous halves, each comprising a transmembrane domain (TMD; Fig. 

1A-B, gray) followed by a cytosolic nucleotide binding domain (NBD; Fig. 1A-B, green and blue). In 

CFTR these two halves (TMD1-NBD1 and TMD2-NBD2) are linked by the unique cytosolic 

regulatory (R) domain (Fig. 1A, top, magenta), a target for phosphorylation by cAMP-dependent 

protein kinase (PKA) (Riordan et al., 1989); R-domain phosphorylation is a prerequisite for CFTR 

chloride channel activity (Tabcharani et al., 1991). 

Opening and closing (gating) of the CFTR chloride ion pore, formed by its TMDs, is coupled to 

a conserved ATP binding/hydrolysis cycle at the NBDs (Fig. 1B). In ABC proteins ATP binding 

triggers association of the two NBDs into a stable head-to-tail dimer which occludes two molecules of 

ATP (Fig. 1B, yellow circles) at the interface (e.g., (Smith et al., 2002)). By forming strong interactions 

with conserved residues of both the Walker motifs in the head of one NBD and the signature sequence  

in the tail of the opposing NBD these ATP molecules act as molecular glue which ties the NBDs 

together: prompt dimer disruption therefore requires ATP hydrolysis (Moody et al., 2002). In CFTR 

only the composite binding site formed by Walker A and B motifs of NBD2 and the signature sequence 

of NBD1 (site 2; Fig. 1B, upper site) is catalytically active; the other interfacial binding site (site 1; 

Fig. 1B, lower site) is degenerate and keeps ATP bound and unhydrolyzed throughout several NBD 

dimerization cycles (Aleksandrov et al., 2002; Basso et al., 2003). In ABC exporters NBD dimer 

formation flips the TMDs to an outward-facing orientation, while dimer disruption following ATP 

hydrolysis and substrate release resets them to inward-facing; NBD-to-TMD signal transmission is 
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mediated by an interface which includes four short "coupling helices" (CH1-4) (Locher, 2009) in TMD 

intracellular loops (Fig. 1A, violet loops). In CFTR NBD dimer formation initiates a burst of pore 

openings interrupted by brief closures, while dimer dissociation terminates the burst and returns the 

TMDs into a long-lasting nonconducting (interburst) state (Vergani et al., 2005). Functional studies 

confirm that in the bursting ("open") state CFTR's TMDs resemble the outward-, whereas in the 

interburst ("closed") state they resemble the inward-facing conformation of ABC exporter TMDs (Bai 

et al., 2011; Cui et al., 2014; Wang et al., 2014a). For wild-type (WT) CFTR gating is a unidirectional 

cycle: most openings are terminated by ATP hydrolysis (Fig. 1B; step O1→O2) rather than by far 

slower non-hydrolytic closure (Fig. 1B; step O1→C1; rate kOC) (Csanády et al., 2010). 

The major functional defect of ∆F508 CFTR is a >40-fold reduction in opening rate (Miki et al., 

2010; Kopeikin et al., 2014), which reflects destabilization – relative to the closed state – of the 

transition state for channel opening (step C1→O1; Fig. 1B; rate kCO). Insight into the dynamics of this 

opening conformational change and the structure of its transition state would be a key step forward in 

understanding the molecular mechanism of the ∆F508 gating defect. 

Transition states, which determine the rates of functionally relevant conformational movements, 

are the highest-energy, shortest-lived conformations of proteins. For instance, for ion channels 

closed↔open conformational transitions are so fast that they appear as single steps even in the highest 

time-resolution recordings, implying that the time the channel protein spends in the transition state 

itself is on the sub-microsecond scale – in contrast to the long (milliseconds-seconds) intervals spent in 

comparatively stable open and closed ground states observable in single-channel recordings (Figs. 2A-

5A). Intractable by standard structural biological approaches, transition-state structures can be studied 

using Rate-Equilibrium Free Energy Relationship (REFER) analysis, which reports on the relative 

timing of movements in selected protein regions during a conformational transition, such as a channel 

opening step (Zhou et al., 2005; Auerbach, 2007). Structural perturbations (typically point mutations) 

in a given channel region often change channel open probability (Po) by affecting the open-closed free 

energy difference, but the extent to which the free energy of the barrier that must be traversed in 

opening or closing the channel is affected depends on how early or late that region moves. A region 

that moves early during opening will have already approached its open-state conformation in the 
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overall transition state: a perturbation here thus affects the stability of the transition state to an extent 

similar to that of the open state, and so impacts only opening, but not closing, rate. In contrast, a region 

that moves late during opening is still near its closed-state conformation in the transition state: a 

perturbation here that affects open-state stability thus does not affect transition-state stability and so 

impacts only closing, but not opening, rate. This relative timing of motion of a given region of the 

channel protein is reported by its Φ value, the slope of a log-log plot of opening rate (kCO) versus 

equilibrium constant (Keq=Po/(1-Po)) for a series of structural perturbations (Brønsted plot): a large Φ 

value (close to 1) indicates early, and a small  Φ value (close to 0) late, movement. 

REFER analysis has been extremely fruitful in mapping gating dynamics of the nicotinic 

acetylcholine receptor channel (e.g., (Mitra et al., 2005; Purohit et al., 2007; Purohit et al., 2013; 

Purohit et al., 2015)), but is applicable only to equilibrium mechanisms (Csanády, 2009), unlike that of 

CFTR. This drawback has so far hampered insight into the CFTR opening transition state. Here we 

exploit a catalytic site mutation which abolishes ATP hydrolysis and so truncates the CFTR gating 

cycle to an equilibrium process. In this non-hydrolytic background we employ the REFER technique to 

address the relative timing of movements within the sub-microsecond process of pore opening in three 

spatially distant positions distributed along the longitudinal axis (cytoplasmic to extracellular) of the 

CFTR protein. Our results identify a conformation-change wave with clear directionality, and provide 

direct measurements that outline the global structure of the CFTR opening transition state. 
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Results 

Choice of a background construct suitable for REFER studies 

ATP hydrolysis in ABC proteins is destroyed by mutations of the Walker B aspartate (Urbatsch 

et al., 1998; Hrycyna et al., 1999; Rai et al., 2006) which coordinates Mg2+ at each active site (Hung et 

al., 1998; Hopfner et al., 2000). To make CFTR gate at equilibrium, we introduced the NBD2 Walker-

B mutation D1370N (Fig. 1A, bottom, red star) because, among several hydrolysis-disrupting 

mutations tested, D1370N only slightly reduces the apparent affinity for ATP, and does not prolong 

open bursts to an extent incompatible with single-channel gating analysis (Csanády et al., 2010).  

PKA- and ATP-dependent regulation of CFTR gating are intertwined, and the mechanism of R-

domain action is poorly understood: evidence exists for its direct interaction with both NBDs and 

TMDs (Wang et al., 2002; Bozoky et al., 2013). Thus, changes in gating kinetics caused by 

perturbations of a target position might potentially reflect altered R-domain/target position interactions, 

rather than energetic effects on ATP-dependent conformational transitions. Such confounding effects 

are absent in channels lacking the R domain: cut-∆R channels, obtained by coexpression of TMD1-

NBD1 (residues 1-633) and TMD2-NBD2 (residues 837-1480), do not require phosphorylation to be 

active, while ATP-dependent gating remains similar to WT (Csanády et al., 2000). 

Thus, we chose cut-∆R(D1370N) as the background construct for our REFER study (Fig. 1A, 

bottom). Gating of cut-∆R(D1370N) indeed proved PKA-independent, but remained strictly ATP-

dependent with an apparent affinity for ATP of 288±27 µM (Fig. S1A-B). Just as for WT (Winter et 

al., 1994; Zeltwanger et al., 1999; Csanády et al., 2000; Vergani et al., 2003), cut-∆R (Csanády et al., 

2000; Bompadre et al., 2005), and D1370N (Vergani et al., 2003) CFTR channels, mean open burst 

duration (τb) of cut-∆R(D1370N) proved largely ATP-independent: the time constant of macroscopic 

current relaxation following ATP removal (1342±72 ms; Fig. S2A, H), a measure of τb in zero ATP, 

was similar to steady-state τb of single channels in saturating (10 mM) ATP (1526±301 ms; Fig. 2A, 

B). Thus, ATP-dependence of Po reflects ATP-dependence of its mean interburst duration (τib). 

Importantly, in saturating (10 mM) ATP τib is minimal, and bursting of this background construct is 
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reduced to a simple equilibrium (C1↔O1; Fig. 1B, red box; see histograms of burst and interburst 

durations in Fig. S3) suitable for study by the REFER approach. 

 

Timing of movements in composite site 2 of the NBD1-NBD2 interface 

NBD2 Walker-A threonine 1246 makes important contributions to forming composite site 2 of 

the CFTR NBD1-NBD2 dimer, by contacting the γ-phosphate of ATP (PDBID: 3GD7). Moreover, this 

interfacial residue undergoes relative movement upon NBD dimerization, as reported by interaction of 

its sidechain across the dimer interface with that of opposing NBD1 residue R555 in open, but not 

closed, channels (Vergani et al., 2005). To test timing of relative movement at this NBD interface 

position, we created a series of mutants by replacing the native threonine with valine, proline, cysteine, 

asparagine, and alanine, respectively, and characterized their gating kinetics in inside-out single-

channel patches superfused with 10 mM ATP (Fig. 2A). All of these perturbations dramatically 

reduced Po (Fig. 2A and D) by prolonging mean interburst duration (τib; Fig. 2A and C), i.e., by 

slowing channel opening rate (kCO=1/τib). In comparison, mean open burst durations (τb), and hence 

closing rates (1/τb), were less affected (Fig. 2A and B). Correspondingly, the Brønsted plot for position 

1246 yielded a steep slope of Φ=0.97±0.19 (Fig. 2D), indicating that this position moves very early 

during the pore opening conformational transition. Importantly, although mutations at position 1246 

slightly reduce the affinity for ATP binding (Vergani et al., 2005), 10 mM ATP remained saturating for 

each of the mutants (Fig. S1C, red bars), confirming that their reduced opening rates indeed reflect 

slowing of step C1→O1 (kCO, Fig. 1B). 

 

Timing of movements at the NBD2-TMD interface 

The four coupling helices at the NBD-TMD transmission interface undergo large movements 

between inward- and outward-facing conformations (Dawson and Locher, 2006; Hohl et al., 2012). 

Due to the domain swapping observed in ABC exporters, CH2 of TMD1 (residues 270-274) is in 

contact with NBD2 (He et al., 2008), and tyrosine 275 at the C-terminal end of CH2 is part of a 

conserved aromatic cluster important for NBD2-TMD interactions (Mornon et al., 2008). To test timing 

of motions at the NBD2-TMD transmission interface, we substituted phenylalanine, glutamate, lysine, 
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leucine, and serine, respectively, for tyrosine 275, and studied gating of single mutant channels in 10 

mM ATP (Fig. 3A). Perturbations at position 275 caused modest changes in Po, but in both directions 

(Fig. 3A, D). Kinetic analysis revealed a clear tendency for opposing effects on channel closing and 

opening rates, both contributing about equally to changes in Po: lengthened τb was mostly associated 

with shortened τib, and (in Y275L) shortened τb with lengthened τib (Fig. 3B-C). Changes in opening 

rate (1/τib) again reflected changes in rate kCO (Fig. 1B), since 10 mM ATP remained saturating for 

each mutant (Fig. S1C, violet bars). These coupled changes in opening and closing rates resulted in a 

Brønsted plot with an intermediate slope of Φ=0.50±0.13 (Fig. 3D), indicating that position 275 has not 

yet reached its final open-like position in the opening transition state. 

 

Timing of movements in the pore region 

Mutations of several pore residues were reported to affect gating (Zhang et al., 2000; Beck et 

al., 2008; Bai et al., 2010; Gao et al., 2013), indicating gating-related movements at these pore 

positions. To study the timing of such movements, we chose position 348 in transmembrane helix 6, 

because mutations here profoundly affected Po without major effects on conductance (Bai et al., 2010), 

making it an attractive target for single-channel gating studies. To perturb position 348, we 

systematically replaced the native methionine with isoleucine, lysine, cysteine, asparagine, or alanine, 

and recorded single-channel currents of the mutants in 10 mM ATP (Fig. 4A), a saturating 

concentration for all constructs (Fig. S1C, blue bars). Except for the lysine substitution, perturbations 

at position 348 all dramatically reduced Po (Fig. 4A, D), and this effect was in every case due to 

speeding of closing rate (reduction in τb, Fig. 1B), with little change in opening rate (1/τib, cf., Fig. 4C). 

Interestingly, the M348K mutation only marginally affected gating (Fig. 4A-D), but increased the 

affinity for pore block by ATP, as reported by pronounced flickery block of single-channel currents in 

10 mM ATP (Fig. 4A), a bell-shaped ATP dose-dependence of macroscopic currents (cf., Fig. S1C, 

second blue bar), and a current overshoot upon ATP removal from macroscopic patches reflecting 

rapid unblock (Fig. S2F). Of note, even for M348K, the macroscopic current relaxation time constant 

following ATP removal (i.e., τb in zero ATP; Fig. S2G) remained comparable to steady-state τb: thus, 

even pronounced flickery block of M348K by 10 mM ATP does not delay pore closure, consistent with 
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earlier demonstration that the gate, located on the extracellular side, can readily close while large 

organic anion blockers remain bound in the intracellular vestibule (Csanády and Torocsik, 2014). We 

also replaced the methionine with glutamate, but this M348E mutant could not be studied at a single-

channel level due to the presence of subconductance states; however, the rate of macroscopic current 

relaxation upon ATP removal attested to an acceleration of M348E closing rate comparable to that of 

the I, C, N, and A mutants (Fig. S2G, H). This speeding of non-hydrolytic closure (step O1→C1 in Fig. 

1B, rate kOC) by perturbations at position 348, with little effect on opening rate, led to a Brønsted plot 

with a small slope of Φ=0.20±0.12 (Fig. 4D), indicating that this pore region still resembles its closed-

state conformation in the opening transition state. 

 

Timing of movements in the narrow region of the pore studied by anion substitution 

Previous accessibility studies outlined a short narrow region of the pore, confined to 

approximately one helical turn of pore-forming transmembrane helices 1 (residues 102-106), 6 

(residues 337-341), 11 (residues 1115-1118), and 12 (residues 1130-36) (Beck et al., 2008; Fatehi and 

Linsdell, 2009; El Hiani and Linsdell, 2010; Bai et al., 2010; Qian et al., 2011; Wang et al., 2011; Gao 

et al., 2013; Wang et al., 2014b). This narrow region was shown to act as a lyotropic "selectivity filter" 

which provides sites of interaction (T338, S341, S1118, T1134) for permeating anions (McDonough et 

al., 1994; Linsdell et al., 2000; Linsdell, 2001; Zhang et al., 2000; McCarty and Zhang, 2001). 

Intriguingly, replacement of chloride with nitrate affects CFTR gating (Yeh et al., 2015), suggesting 

that interactions of permeating anions with residues lining the "filter" region of the open pore 

energetically contribute to open-state stability. Thus, replacement of chloride with other permeant 

anions might be viewed as a structural perturbation of the "selectivity filter". We therefore studied 

changes in the pattern of single-channel gating of our background construct cut-∆R(D1370N) in 

response to sudden replacement of cytosolic chloride with nitrate, bromide, or formate. Of note, in 

these experiments gating in chloride and in the replacement anion could be compared within the same 

patch (Fig. 5A): this arrangement eliminates any uncertainties about perturbation-induced fractional 

changes in opening rate, precise estimation of which is normally dependent on correct judgement of the 

number of active channels in each patch.  
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In addition to documented reductions in unitary conductance (Linsdell, 2001), perturbations of 

the filter by replacement of permeating chloride with nitrate, bromide, or formate all affected gating: 

nitrate and bromide which bind more tightly in the pore (Linsdell, 2001) increased Po, while formate 

which binds less tightly (Linsdell, 2001) decreased it (Fig. 5A, D). Importantly, both gating effects 

primarily reflected changes in τb (Fig. 5B), i.e., in rate kOC of step O1→C1 (Fig. 1B), with smaller 

changes in τib (Fig. 5C); the observations on nitrate replicated those of (Yeh et al., 2015). The slope of 

the Brønsted plot constructed from these data yielded Φ=0.28±0.03 (Fig. 5D), similar to that of 

position 348. These ionic replacement studies therefore provide independent support for a small Φ 

value in the pore, confirming late movement of this region during opening. 
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Discussion 

The general structural orientations of protein domains in the stable closed and open states of the 

CFTR channel have been delineated by a large body of previous work. Thus, the preponderance of 

evidence has established that the channel's closed state corresponds to a dissociated NBD dimer 

interface (Vergani et al., 2005; Mense et al., 2006; Chaves and Gadsby, 2015) and inward-facing 

TMDs (Bai et al., 2011; Cui et al., 2014; Wang et al., 2014a), with the closed gate located on the 

extracellular side of the membrane (Bai et al., 2011; Cui et al., 2014; Csanády and Torocsik, 2014; Gao 

and Hwang, 2015). Similarly, evidence suggests that in the open state the NBDs are dimerized 

(Vergani et al., 2005; Mense et al., 2006; Chaves and Gadsby, 2015), while a conducting pore is 

formed by outward-facing TMDs (Bai et al., 2011; Cui et al., 2014; Wang et al., 2014a). Consequently, 

several homology models of closed- and open-state CFTR have been constructed based on crystal 

structures of homologous ABC exporters in their inward- and outward-facing conformations (e.g.; 

(Mornon et al., 2009; Corradi et al., 2015); Fig. 6B, left and right). In contrast, far less is known about 

the nature and relative timing of the sub-microsecond molecular motions that drive the channel from its 

closed- to its open-state conformation.  

Here we have adapted the REFER technique to obtain new insight into the dynamics of ATP-

dependent gating conformational changes of the CFTR protein: careful choice of the background 

construct (see below) allowed selective examination of the channel opening process (step C1→O1, Fig. 

1B). The strikingly different Φ values obtained for our three target positions define a clear spatial 

gradient along the protein's longitudinal axis from cytoplasm to cell exterior: the very high Φ value of 

~0.97 for site-2 NBD interface position 1246 (Fig. 2E, Fig. 6A, red) stands in stark contrast to the low 

Φ value of ~0.20 for intra-pore position 348. For the pore region a similarly small Φ value emerges 

also from our anion substitution studies: replacement of permeating chloride with anions such as nitrate 

and bromide, which bind more tightly to the pore (as indicated by permeability ratio measurement; 

Linsdell, 2001), clearly stabilize the open state, whereas formate, which binds less tightly than chloride 

(Linsdell, 2001), destabilizes it (Fig. 5B). Although the precise location at which permeating anions act 

to affect CFTR gating is unknown, this strong positive correlation between anion binding affinity in the 
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filter and open-state stability does support the notion that the gating effects are caused by interactions 

of the anions with residues located somewhere in the pore. It is notable that the effects of ionic 

replacement on open-closed equilibrium were in each case associated with changes in closing, rather 

than opening rates (Fig. 5A-C), implying that the stability of the transition state, relative to the closed 

state, is less sensitive to the permeating anion species. Insofar as pore-anion interactions are expected 

to change between the closed and open state, the implication is that in the transition state these 

interactions resemble those in the closed state: i.e., the pore is closed. The Brønsted plots for ionic 

replacement and for the 348 position closely agree with each other, and the combined data are well 

fitted by a single line with a slope of 0.23±0.05 (Fig. 6A, blue). Compared to the Φ values for the 

NBD1-NBD2 interface and the pore, which are close to the smallest and highest possible values for this 

parameter, respectively, the slope of ~0.50 of the Brønsted plot for NBD-TMD interface position 275 

(Fig. 6A, violet) appears intermediate, distinctly different from the two extremes. This spatially 

organized Φ value gradient provides support for the interpretation that for conformational changes of 

folded proteins the relative magnitude of Φ reflects relative timing of ordered sequential movements 

(Zhou et al., 2005; Auerbach, 2007), albeit on the sub-microsecond time scale, as opposed to 

probabilities of taking alternative kinetic pathways known to exist for more random processes such as 

protein folding (cf., (Purohit et al., 2013)). For the CFTR pore opening transition this spatial Φ-gradient 

implies a conformational wave (Fig. 6B, large vertical arrow) initiated by tightening of the NBD dimer 

around site 2, and propagated with some delay through the NBD-TMD interface to eventually result in 

pore opening. 

Furthermore, this set of Φ values provides strong global constraints for the structure of  the 

actual transition state, the highest free-energy intermediate of the channel opening process (Fig. 6B, 

center). For the NBD interface the Φ value of ~1 indicates that it has already reached its open-state 

conformation, i.e., the tight dimer is already formed (cf., (Vergani et al., 2005)). In contrast, the low Φ 

value of ~0.2 for the pore region implies it is still in its closed-like, inward-facing conformation. 

Finally, the intermediate Φ value of ~0.5 for position 275 suggests that in the transition state coupling 

helix 2 is just on the move: it has already left its closed-like, but has not yet reached its open-like 

conformation (Fig. 6B, center, bent rods). This transition state architecture, which emerges from direct 
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measurements of relative timing of movements, confirms a previous speculation based on interpretation 

of enthalpy and entropy changes determined for the opening transition state (Csanády et al., 2006), but 

refutes the alternative proposition that during opening all structural reorganizations in the cytoplasmic 

loops are completed in the channel closed state (Aleksandrov et al., 2009). The large molecular strain 

which must arise at the NBD-TMD interface is the most likely cause of the very high enthalpy of the 

opening transition state (∆H‡ =117 kJ/mol), and is only partially compensated by an entropy increase 

(T∆S‡ ≥ 41 kJ/mol) suggested to reflect dehydration of the closing NBD dimer interface (i.e., dispersal 

of the layer of ordered water molecules into the disordered bulk solution) (Csanády et al., 2006). 

Evidently, transition-state free energy (∆G‡ = ∆H‡ – T∆S‡) of wild-type CFTR is still very high, as 

witnessed by its very slow opening rate of ~1 s-1, >4 orders of magnitude slower than for the ligand-

gated nicotinic acetylcholine receptor (e.g., (Jackson et al., 1983)). Moreover, it is this transient 

conformation of CFTR which is further destabilized (relative to the closed state) by NBD-TMD 

interface mutation ∆F508, causing the severe gating defect of this most common CF-associated mutant. 

Indeed, stabilization of the opening transition state seems an attractive strategy for designing 

potentiator compounds that stimulate gating of ∆F508 CFTR: thus, 5-Nitro-2-(3-

phenylpropylamino)benzoate, one of its most efficacious potentiators (albeit with a pore blocking side 

effect; Wang et al., 2005), increases ∆F508 CFTR opening rate by precisely that mechanism (Csanády 

and Torocsik, 2014). 

Successful adaptation of the classical REFER approach to studying CFTR gating dynamics 

rested on three important innovations. 

First, rather than focusing on the kinetics of pore opening and closure (cf., (Scott-Ward et al., 

2007)), the durations of bursts of openings and of long interburst closures were analyzed here, as the 

latter reflect conformational states of the pore associated with specific conformations of the NBDs: 

bursts are linked to tightly dimerized NBDs, while interburst closures reflect dissociation of the NBD 

interface around site 2 (Vergani et al., 2005; Chaves and Gadsby, 2015). The duration of the "active" 

pore conformation induced by a single ATP occlusion event at site 2 is also reflected by the time 

constant of macroscopic current relaxation upon sudden removal of ATP. Indeed, for all of our 

constructs which afforded macroscopic recordings, such macroscopic current relaxation time constants 
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(Fig. S2) were in good agreement with the mean burst durations obtained by conventional burst 

analysis of steady-state single-channel recordings (Figs. 2B-5B), confirming that τb indeed reflects the 

duration of an activated state of the pore induced by a single ATP occlusion event. 

Second, CFTR bursting follows a non-equilibrium cycle ((Gunderson and Kopito, 1995; 

Csanády et al., 2010); cf., Fig. 1B) to which REFER analysis is not applicable (Csanády, 2009). To 

study the pore opening step, we therefore employed the D1370N background mutation which truncates 

the gating cycle to an equilibrium scheme (Fig. 1B, red frame). Indeed, this is the key feature which 

distinguishes our approach from previous studies, and is responsible for its very different outcome. 

This is because in the normal hydrolytic background, mutation-induced changes in the rate of slow 

non-hydrolytic closure (rate kOC, Fig. 1B) remain unnoticed as long as the much faster hydrolytic 

pathway (rate O1→O2, Fig. 1B) dominates pore closure. It is therefore not surprising that structural 

perturbations introduced into the nucleotide binding sites and several TMD/NBD interface positions of 

WT CFTR affected only channel opening rates, yielding apparent Φ values of ~1 for all positions tested 

(Aleksandrov et al., 2009). Similarly, previous studies identified several pore mutations that affected 

gating (e.g., (Beck et al., 2008; Bai et al., 2010)), but in the framework of a hydrolytic gating cycle 

even the large, almost an order of magnitude, acceleration of non-hydrolytic closing rates reported here 

for mutations at position 348 so far evaded detection. Of note, the ∆F508 mutation also greatly 

accelerates non-hydrolytic closure (Jih et al., 2011) – suggesting an intermediate Φ value for position 

508 –, yet under normal hydrolytic conditions ∆F508 closing rate is unaffected (Miki et al., 2010; 

Kopeikin et al., 2014). 

Third, removal of the R domain eliminated potential confounding effects of altered R-domain 

mediated gating regulation in our target-site mutants: not only does the non-phosphorylated R domain 

inhibit channel gating, but the phosphorylated R domain also mediates substantial stimulation of 

channel Po (Winter and Welsh, 1997; Csanády et al., 2000), through mechanisms which are poorly 

understood. In that regard our cut-∆R background construct, pared down to the canonical ABC 

domains, reduces complexity: in addition to obviating the need for prior phosphorylation by PKA, 

gating of cut-∆R CFTR is regulated only by ATP, similarly to the transport cycle of ABC exporters. 

Thus, our Φ-value map likely bears relevance to the transition state for the inward- to outward-facing 
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transition in this broader family of CFTR relatives. Because gating of cut-∆R(D1370N), like that of 

WT CFTR, is strictly ATP dependent (Figs. S1-S2), our conclusions do not necessarily apply to the 

mechanism of the extremely infrequent spontaneous openings observable in the absence of ATP that 

are promoted by certain mutations (Wang et al., 2010) and drugs (Jih and Hwang, 2013). 

In conclusion, we have provided an initial characterization of the CFTR opening transition-state 

structure which could serve as a drug target for treating CF, and developed a technique to directly 

measure timing of movements in distinct regions of the CFTR protein during the sub-microsecond 

process of channel opening. By further refining the Φ value map, this approach might be used in the 

future to define regions which move as a rigid body (cf., (Purohit et al., 2013; Purohit et al., 2015)), or 

to shed light on potentially asynchronous movements at the level of the ATP binding sites, the coupling 

helices, or the TM helices that form the pore. 
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Experimental Procedures 

pGEMHE-CFTR(837-1480(D1370N)) was constructed from pGEMHE-CFTR(837-1480), 

mutations at positions 275 and 348 were introduced into pGEMHE-CFTR(1-633) (Csanády et al., 

2000), and mutations at position 1246 into pGEMHE-CFTR(837-1480(D1370N)) using Stratagene 

QuickChange. cDNA was transcribed in vitro using T7 polymerase, and 0.1-10 ng cRNA for both 

CFTR segments were co-injected into Xenopus laevis oocytes. Currents were recorded at 25oC in 

inside-out patches excised from oocytes 1-5 days after RNA injection. Pipette solution contained (in 

mM) 136 NMDG-Cl, 2 MgCl2, 5 HEPES, pH=7.4 with NMDG. The continuously flowing bath 

solution could be exchanged with a time constant <100 ms. Standard (chloride-based) bath solution 

contained 134 NMDG-Cl, 2 MgCl2, 5 HEPES, 0.5 EGTA, pH=7.1 with NMDG. For anion substitution 

experiments NMDG-Cl and MgCl2 were replaced by NMDG and Mg(OH)2, and the solution titrated to 

pH=7.1 with nitric, hydrobromic, or formic acid, respectively. MgATP (Sigma) was added from a 400-

mM aqueous stock solution (pH=7.1 with NMDG). Unitary CFTR currents in 10 mM MgATP were 

recorded at -80 mV (-100 mV for formate currents) (EPC7, Heka Elektronik) at a bandwidth of 2 kHz, 

and digitized at 10 kHz. Single-channel patches were identified as very long (typically 15 min - 1 h) 

recordings without superimposed channel openings. For T1246 mutants strong stimulation by 2'-deoxy-

ATP at the end of each experiment was used to facilitate correct estimation of the number of active 

channels in the patch (Fig. S4). To reconstruct bursts and interbursts, currents from patches containing 

no superimposed channel openings were refiltered at 20 Hz (10 Hz for anion substitution experiments), 

idealized by half-amplitude threshold crossing, and brief closures suppressed (Fig. S3) using the 

method of (Magleby and Pallotta, 1983). Opening (kCO) and closing (kOC) rates were defined as 1/τib 

and 1/τb, respectively, and Keq as kCO/kOC. All data are given as mean±SEM of measurements from ≥4 

(typically 5-8) long segments of single-channel recordings, from 4-13 patches for each mutant; in the 

face of alternating periods of lower and higher activity typical to CFTR (Bompadre et al., 2005), 

several hours of total recording for each construct were obtained to ensure unbiased sampling of 

average gating behaviour. Macroscopic current ratios between 3 and 10 mM ATP were used to verify 

saturation by 10 mM ATP (Fig. S1). Time constants of macroscopic current relaxations upon ATP 

removal were obtained from single-exponential fits (Fig. S2).  
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Figure Legends 

Figure 1. Choice of a suitable background construct for REFER analysis. A, Domain organizations 

of WT (top) and cut-∆R(D1370N) (bottom) CFTR: TMDs (gray), intracellular loops containing 

coupling helices (light violet), NBD1 (green), NBD2 (blue), R domain (magenta), membrane (yellow). 

Colored circles identify target positions. The D1370N mutation in NBD2 is depicted by a red star. B, 

Cartoon representation of the CFTR gating cycle. ATP-bound closed channels (C1) open to a 

prehydrolytic open state (O1). During most openings ATP is hydrolyzed at composite site 2 (state O2), 

prompting NBD dimer dissociation and pore closure (to state C2) followed by ADP-ATP exchange (to 

state C1). Color coding as in A, ATP (yellow circles), ADP (orange crescents). The D1370N mutation 

abrogates ATP hydrolysis (red cross), and confines gating in saturating ATP to a simple C1↔O1 

equilibrium (red box). Target positions color coded as in A. 

Figure 2. Timing of motion at position 1246 of the NBD1-NBD2 interface. A, Inward single-channel 

currents of the cut-∆R(D1370N) CFTR background construct (top trace), and of channels bearing 

mutations T1246V, T1246P, T1246C, T1246N, and T1246A, respectively, in the same background. 

Currents were recorded at -80 mV, in symmetrical 140 mM Cl-; dashes on the left mark zero-current 

level. B-D, Mean burst (B, τb) and interburst (C, τib) durations and open probabilities (D, Po) of the six 

constructs in A. Red horizontal lines highlight the respective control values of the background 

construct. All data are shown as mean ± SEM (n = 4-28). E, Brønsted plot for position 1246. Gray 

symbol identifies the background construct (also in Figs. 3-5E). Solid line is a linear regression fit with 

slope Φ indicated. 

Figure 3. Timing of motion at position 275 of the NBD2-TMD interface. A, Inward single-channel 

currents of the cut-∆R(D1370N) CFTR background construct (top trace), and of channels bearing 

mutations Y275F, Y275E, Y275K, Y275L, and Y275S, respectively, in the same background. Currents 

were recorded at -80 mV, in symmetrical 140 mM Cl-; dashes on the left mark zero-current level. B-D, 

Mean burst (B, τb) and interburst (C, τib) durations and open probabilities (D, Po) of the six constructs 

in A. Red horizontal lines highlight the respective control values of the background construct. All data 
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are shown as mean ± SEM (n = 9-28). E, Brønsted plot for position 275. Solid line is a linear regression 

fit with slope Φ indicated. 

Figure 4. Timing of motion at position 348 in the pore region. A, Inward single-channel currents of 

the cut-∆R(D1370N) CFTR background construct (top trace), and of channels bearing mutations 

M348I, M348K, M348C, M348N, and M348A, respectively, in the same background. Currents were 

recorded at -80 mV, in symmetrical 140 mM Cl-; dashes on the left mark zero-current level. B-D, Mean 

burst (B, τb) and interburst (C, τib) durations and open probabilities (D, Po) of the six constructs in A. 

Red horizontal lines highlight the respective control values of the background construct. All data are 

shown as mean ± SEM (n = 4-28). E, Brønsted plot for position 348. Solid line is a linear regression fit 

with slope Φ indicated. 

Figure 5. Timing of motion in the narrow region of the pore studied by anion replacement. A, 

Pairs of segments of inward single-channel current from three patches containing single cut-

∆R(D1370N) CFTR channels. Each patch was alternately exposed to bath solutions containing 140 

mM of either chloride (upper segments) or a test anion (lower segments), as indicated to the right: 

chloride (Cl-), bromide (Br-), nitrate (Nt-), formate (Fm-). Currents in Cl-, Br-, and Nt- were recorded at 

-80 mV, those in Fm- at -100 mV; dashes on the left mark zero-current level. B-D, Mean burst (B, τb) 

and interburst (C, τib) durations and open probabilities (D, Po) in the presence of various test anions, 

each normalized to the value observed in chloride in the same patch. Red horizontal lines highlight the 

respective control values in chloride. All data are shown as mean ± SEM (n = 5-9). E, Brønsted plot for 

the narrow region of the pore, constructed from normalized opening rates and equilibrium constants in 

the presence of the four permeating anions tested. Solid line is a linear regression fit with slope Φ 

indicated. 

Figure 6. Opening conformational wave and transition-state structure reported by Φ-value 

analysis. A, Merged normalized Brønsted plot for the pore region (blue). Fitting the ensemble of the 

normalized data for position 348 (standing triangles) and for the anion substitution experiments 

(inverted triangles) by linear regression (solid blue line) yielded the indicated slope value (Φ). 
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Brønsted plots for positions 1246 (red) and 275 (violet) are normalized versions of the plots in Figs. 2E 

and 3E, respectively. The point representing the cut-∆R(D1370N) background construct in chloride is 

highlighted by a black circle. B, Ribbon representation of CFTR homology models (Corradi et al., 

2015) in the closed (left) and open (right) states based on (left) the inward-facing structure of TM287-

288 (Hohl et al., 2012) and (right) the outward-facing structure of Sav1866 (Dawson and Locher, 

2006), and cartoon depicting rough domain organization in the opening transition state (center). The 

three target positions are highlighted in spacefill on the models, and as colored circles in the cartoon. 

CFTR domain color coding follows that of Fig. 1; threonine 1246 (red), tyrosine 275 (violet), 

methionine 348 (blue). Blue ribbons in the homology models highlight segments 102-106 (TM1), 337-

341 (TM6), 1115-1118 (TM11), and 1130-1134 (TM12), that form the narrow region of the pore (blue 

ovals in cartoon). Vertical colored arrow illustrates the direction and timing of the conformational wave 

during pore opening (early – red, late – blue). 
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Supplementary Figure Legends 

Figure S1. All tested constructs are saturated by 10 mM ATP, Related to Figures 1-4. A, 

Macroscopic inward cut-∆R(D1370N) CFTR channel current in an inside-out patch recorded at -80 mV 

in response to exposures (green bars) to various concentrations (green numbers, in mM) of MgATP. B, 

Dose response curve of fractional macroscopic currents in various test [ATP], normalized to the mean 

of the currents in the presence of bracketing applications of 10 mM ATP. All data are shown as mean ± 

SEM (n = 5-10). Solid line is a Michaelis-Menten fit through the data with K1/2 indicated. C, Fractional 

macroscopic currents in 3 mM ATP, normalized to the mean of the currents in the presence of 

bracketing applications of 10 mM ATP, for cut-∆R(D1370N) channels harbouring the indicated amino-

acid substitutions (letters) at position 1246 (red bars), 275 (violet bars), or 348 (blue bars). The larger 

than unity (gray line) value for M348K reflects pronounced block of this mutant by 10 mM ATP (see 

text). All data are shown as mean ± SEM (n = 3-8). 

Figure S2. Time constants of macroscopic current relaxation following ATP removal corroborate 

steady-state single-channel estimates of τb, Related to Figures 1-5. A, D-G, Inward macroscopic 

currents of cut-∆R(D1370N) CFTR (A), and of the same background construct harbouring mutation 

T1246A (D), Y275F (E), M348K (F), or M348E (G), elicited by exposure to 10 mM MgATP (green 

bars). B-C, Inward macroscopic currents of cut-∆R(D1370N) CFTR evoked by repetitive exposures to 

10 mM ATP in the alternating presence of various bath anions (gray/light-blue bars; chloride (Cl-), 

bromide (Br-), nitrate (Nt-), formate (Fm-)). All recordings were obtained at -80 mV; all current 

relaxation time courses following ATP removal in A-G were fitted by single exponentials (colored 

solid lines) with time constants (τ) indicated. H, Macroscopic current relaxation time constants upon 

ATP removal for the constructs/ionic conditions shown in A-G. All data are shown as mean ± SEM (n 

= 2-9), gray line highlights the control value for cut-∆R(D1370N) CFTR in chloride. 

Figure S3. Burst analysis of cut-∆R(D1370N) single-channel recording, Related to Experimental 

Procedures. A, Inward current of a single cut-∆R(D1370N) channel repetitively exposed to 10 mM 

MgATP (green bars). Upon readmission of ATP following prolonged exposure to an ATP-free solution 

channels sometimes reopen with a marked delay (first asterisk); infrequently channels also inactivate in 

the continued presence of ATP (second asterisk). Such inactive periods were identified by eye, and 
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excluded from our analysis. B-C, Closed (B) and open (C) dwell-time histograms (Sigworth and Sine, 

1987) constructed from the events list of the record in A; lower binning limit is 12 ms. Solid red lines 

are maximum likelihood fits of the dwell-times by a double- and a single-exponential distribution, 

respectively, with time constants (τ(1, 2)) and fractional amplitudes (a1, a2) printed in the panels. Dotted 

black lines In panel B depict the two components of the fit; vertical blue line the burst delimiter (tcrit) 

calculated using the method of (Magleby and Pallotta, 1983): this method ensures unbiased estimation 

of mean burst and interburst durations by equalizing the probabilities of misassigning interburst events 

as flickery closures and vice versa. D-E, Dwell-time histograms of reconstructed interburst (D) and 

burst (E) events following suppression of closed events shorter than tcrit. Solid red line in D replots the 

longer component of the double-exponential fit in A: note, some flickery closures remain uncancelled 

(events above red fit line, right of blue line), but an equal number of interburst closures is cancelled 

(lack of events below red fit line, left of blue line). Solid red line in E is a maximum likelihood fit of 

the burst durations by a single-exponential distribution (τ, time constant). 

Figure S4. Stimulation of open probability by 2'-deoxy-ATP facilitates counting channels for low-

Po T1246-position mutants, Related to Experimental Procedures. Inward current of a single cut-

∆R(D1370N) channel harbouring the T1246N mutation. After several minutes of low-Po activity in 10 

mM MgATP (green bar), exposure to 10 mM Mg-2'-deoxy-ATP robustly stimulated Po. Lower panels 

progressively expand the time scale of indicated segments (gray arrows) of the panel above. 
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