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Abstract

Cooperation played a significant role in the self-organization and evolution of living organisms. Both network topology and
the initial position of cooperators heavily affect the cooperation of social dilemma games. We developed a novel simulation
program package, called ‘NetworGame’, which is able to simulate any type of social dilemma games on any model, or real
world networks with any assignment of initial cooperation or defection strategies to network nodes. The ability of initially
defecting single nodes to break overall cooperation was called as ‘game centrality’. The efficiency of this measure was
verified on well-known social networks, and was extended to ‘protein games’, i.e. the simulation of cooperation between
proteins, or their amino acids. Hubs and in particular, party hubs of yeast protein-protein interaction networks had a large
influence to convert the cooperation of other nodes to defection. Simulations on methionyl-tRNA synthetase protein
structure network indicated an increased influence of nodes belonging to intra-protein signaling pathways on breaking
cooperation. The efficiency of single, initially defecting nodes to convert the cooperation of other nodes to defection in
social dilemma games may be an important measure to predict the importance of nodes in the integration and regulation
of complex systems. Game centrality may help to design more efficient interventions to cellular networks (in forms of
drugs), to ecosystems and social networks.
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Introduction

Cooperation is necessary for the emergence of complex,

hierarchical biological organisms. Prisoner’s dilemma and hawk-

dove games are social dilemma games played by agent-pairs

having two strategies: cooperation or defection. These games are

excellent models to elucidate the appearance of cooperation in

situations, when agents generally prefer defection. Such situations

are prevalent in evolutionary biology, where personal interests

often confront with collective interests [1,2]. Recent reports

defined ‘signaling games’ [3–6] or ‘protein games’ [7–9]. In

protein games the applicability of social games was extended to

protein-protein interaction networks, where cooperation level of

the whole system helped to assess the overall integration of

network functions. Here we extend these ideas further, and show

the applicability of the spatial game concept to protein structure

networks (also called residue interaction networks) having amino

acids as their nodes.

In spatial games only those agents are playing with each other,

who are neighbors in the underlying contact network. The level of

cooperation is very sensitive to the topology of the agent network

in a wide variety of social dilemma type games. Cooperation levels

in square lattice, small world and scale-free network topologies

have been widely assessed [10–17]. However, only a few studies

were performed on real world networks [18,19] and even less

studies examined the effects of pre-set starting cooperative and

defective strategies on the development of cooperation at the

network level [20,21]. Although, there are a number of spatial

game-related programs [22–25], but none of them is able to

simulate social dilemma games on real world networks with pre-set

initial strategies.

Following our conference report on an initial version of the

program [26], here we introduce the improved version of a freely

available simulation tool, called NetworGame able to simulate

two-player, pairwise interacting social dilemma games on real

world networks with any assignment of initial cooperation or

defection strategies to network nodes. A novel dynamic centrality,

called game centrality, is also defined, which measures the ability

of individually defecting nodes to convert others to their strategy.

We show the applicability of game centrality on social, protein-

protein interaction and protein structure networks, and highlight

the importance of hubs in the maintenance of cooperation in

complex biological systems.

Results

NetworGame Program for Simulation of Spatial Games
on Any Real-world Networks

Our novel NetworGame 2.0 program package is a cross-

platform, generic tool to simulate repeated spatial games. This

simulation program includes i.) options for pay-off matrices of any

symmetric normal form games (with 2 strategies); ii.) well-known,

replicator-type strategy update rules (best takes over, Fermi-rule

and proportional update [13]), as well as the option for additional,

user-defined strategy update rules in a ‘plugin’-type format; iii.)
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synchronous, and semi-synchronous updating [27]; iv.) and the

option for the inclusion of any real world networks in a Pajek [28]

format (for the description of the simulation steps see Text S1).

The program allows setting the starting strategy of any nodes

according to the wish of the experimenter, and introduces the

novel use of edge weights by considering edge weights as

probabilities of the game played between the corresponding

nodes. A brief description of the NetworGame 2.0 software is

given in the Methods section, a more detailed description

containing the pseudocode of the algorithm used is found in the

Electronic (Text S1). The program with a User Guide is freely

available from our website: www.linkgroup.hu/NetworGame.php.

Definition of Game Centrality as a Relative Importance of
Nodes to Maintain Cooperation

Keeping in mind the relative scarcity of dynamic centrality

measures [29–33] we defined a novel dynamic centrality, called

game centrality, as follows. Initially let all nodes but node i

cooperate, while set the initial strategy of node i to defect. Under

these initial conditions the game centrality of a node i (GCi) is

equal to the proportion of defectors averaged over the last 50

simulation steps.

In the determination of the simulation step range of the

averaging process we considered two opposing effects. 1.)

Averaging over a large number of steps resulted in more accurate

results. 2.) However, averaging more game rounds also hindered

convergence of the mean game centrality value, which determined

the number of total rounds of the repeated game as described in

the next paragraph. As we will discuss in the following paragraphs,

game centrality (GC) is a relative measure useful for the

comparison of the nodes in the same network. Therefore, GC

may also be calculated and compared using more or less steps of

average than 50. However, the selection of the last 50 game

rounds as the ‘average-window’ avoided both potential pitfalls.

Game centrality values depend on the number of time steps

(game rounds) and the number of parallel simulations. We may

minimize GC-variability by measuring the proportion of defectors,

where already no large fluctuations can be seen. This condition

can be reached most of the times by using prisoner’s dilemma

game on real world networks (but can not be reached using e.g. the

evolutionary prisoner’s dilemma game on a square lattice [11]).

Ensuring this condition, in the simulations of this paper the

repeated rounds of serial games were concluded, when the mean

value of GC changed less than 0.01 (called as GC-drift threshold)

in the last 50 rounds. Small fluctuations caused by the stochasticity

of some strategy update rules (e.g. replicator dynamics) and by the

occasional stochasticity of edge weights (i.e. using the edge weights

as update probabilities) may be minimized by averaging several

simulations. The number of simulations was chosen to ensure that

the mean error for the proportion of defectors was below 0.01 in

the final step (called as GC-fluctuation threshold). As noted earlier,

GC is used for the comparison of nodes. Therefore, both the GC-

drift and GC-fluctuation thresholds may be set different than 0.01.

However, selection of the threshold value 0.01 resulted in enough

rounds of game simulations to surpass the initial transitional phase,

often observed in repeated games, and resulted in relatively stable

game centrality values. We note that the NetworGame simulation

program can also be set to run simulations having a user-defined,

pre-set number of game rounds.

It is important to note that numerical values of GC also depend

on the payoff conditions and payoff parameters of the actual game

model, on the applied strategy update rule, on the synchronicity of

the update, as well as on the network structure. These features,

together with those mentioned earlier, make GC a relative

measure for the comparison of nodes in the same network using

the same game conditions. Additionally, we found that the ranking

of node GC-s largely correlated for different strategy update rules

and temptation values for the relatively large yeast protein-protein

interaction network studied (having 2,444 nodes and 6,271 edges;

see data later). In this sense GC may also be used for a rough

comparison of node importance to break cooperation using

different game conditions.

In the current simulations we chose the canonical prisoner’s

dilemma game with the payoff parameters R = 3, T = 6, S = 0,

P = 1 (except for Michael’s strike network, where the temptation

value was less: T = 3.1), since selection of the maximal temptation

(T) value ensured the largest sensitivity of the initially almost fully

cooperating network to the defection of a single node. Simulations

used the widely applied best takes over strategy update rule with

synchronous update.

Game Centrality Identifies Influential Members of
Zachary’s Karate Club Network

Wayne Zachary [34] recorded the strength of contacts between

members of a university karate club between 1970 and 1972.

Meanwhile, the club had a dispute between the club president and

the chief karate instructor, leading to a fission resulting in two

separate clubs, which made this social network a gold standard for

network modularization studies. To determine the most influential

members of the karate club using the game centrality measure

(GC) defined above, we simulated a prisoner’s dilemma game on

the Zachary karate club network with the initial cooperation of

every node except the examined, defective club member. Nodes

#3 and #33, as well as #1, #2 and #34 had the top GC values

having equal GC values within the first and second group of nodes

and decreasing GC in the second group as compared to that of the

first group. Node #1 corresponded to the instructor, while node

#34 represented the club president. The large efficiency of these

two and the other 3 nodes to break cooperation is related to the

fact that the 5 nodes listed above had the five highest degrees in

the network, and they were also found among the seven nodes

having the largest betweenness centrality values (node ID-s in the

order of decreasing centralities: #1, #34, #33, #3, #32, #9,

#2).

Game Centrality Measures Identify Influential Member-
pairs of Michael’s Strike Network

As a next step, we were interested, whether the game centrality

of edges (i.e. the average proportion of defectors in the last 50

rounds, where not only a single node, but two neighboring nodes

are both initial defectors) is also giving meaningful results.

Michael’s strike network [35] was an excellent example to test

this measure. Judd H. Michael described a strike in a forest

product manufacturing factory. The factory had a new manage-

ment, who wanted to change the compensation package of the

workers. The two union negotiators (Sam and Wendle) were

responsible for explaining the changes, but they failed to do so,

and a strike broke out. The company hired Judd H. Michael to

make a sociogram, which showed that there were three worker

groups: younger, English-speaking, older, English-speaking, and

younger, Spanish-speaking workers. Sam and Wendle formed a

linked pair of nodes. Judd H. Michael advised to contact another

linked pair of nodes, Bob and Norm – who were at the overlap of

the three communities of the factory sociogram (see Figure S1 of
Text S1) –, and to convince them about the changes. By following

this strategy, the management solved the problem soon, and the

strike ended.

NetworGame: Node Influence to Break Cooperation
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In the social dilemma game simulations of the situation we

considered strikers as cooperators and strike-breakers as defectors

in canonical prisoner’s dilemma games having the payoff

parameters of R = 3, T = 3.1, S = 0, P = 1. Initially everybody

was cooperating, but the two linked workers chosen to explain the

changes to the others. In repeated simulations the influence of

different negotiator-pairs was compared. Simulation of the choice

of Bob and Norm showed that they could convince everybody to

stop the strike in 100% of the simulations. Simulation of the choice

of Sam and Wendle led to the poor result of convincing the others

to stop the strike in 8% of the simulations with the same settings,

which corresponds well with outcome of the real-world events [35]

(we got the same results for the weak prisoner’s dilemma game;

data not shown). Our results show, that not only node game

centrality, but also edge game centrality is giving a similar

outcome than those happened in real-world situations.

Game Centrality Correlates with Former Centrality
Measures and Reveals Novel Centers of Influence in
Protein-protein Interaction Networks

As two proteins approach each other, they signal their status to

the other via the hydrogen-bonded network of water molecules.

Binding is achieved by a complex set of consecutive conforma-

tional adjustments. These concerted, conditional steps were called

as a ‘protein dance’, and can be perceived as rounds of a repeated

game [6–9]. Here we used the canonical prisoner’s dilemma game

with a maximal temptation value (T = 6), since these parameters

represent the most stringent conditions of cooperation among the

most commonly used social dilemma games.

First we examined the effect of defection of party and date hubs

on the cooperation of the high-fidelity yeast (Saccharomyces cerevisiae)

protein-protein interaction network (interactome) of Ekman et al.

[36] using the canonical prisoner’s dilemma game. Party hubs are

hubs, which do not change their neighborhood structure, and are

often situated in the middle of network modules. On the contrary,

date hubs change their neighbors frequently, and often connect

various modules of the interactome. The best distinction between

party hubs and date hubs has been a subject of recent discussions

[37–43]. Prisoner’s dilemma game simulations confirmed the

differences between the two types of hubs. In the simulations

initially we let all the 2,444 nodes cooperate except for 30 nodes,

which defected. We compared the average game centrality values

over 2000 simulations by random sampling 30 defecting nodes

from the 63 consensus party hubs (compiled as in [43], see Table
S1 of Text S1), or from the 145 consensus date hubs (compiled as

in [43], see Table S2 of Text S1), or from all the 2,444 nodes,

respectively. Party hubs had the largest game centrality, while date

hubs and randomly selected node sets had smaller and smaller

game centrality values, i.e. they distorted less and less the initial

cooperation (Table 1). Using the chi-square test we found that the

distribution of game centralities were significantly different

(x2.400) for the different test cases.

Next, we determined the correlation between degrees, between-

ness centralities and GC-s in prisoner’s dilemma games of the

2,444 yeast proteins of the high fidelity yeast interactome [36].

Since both degree and betweenness centrality had a large number

of tied values, we used the Goodman-Kruskal gamma test to test

the association and significance of the results. Using canonical

prisoner’s dilemma game we found that GC has a good correlation

with both degrees and betweenness centralities (Table 2). We

were also curious, which of the 3 measures of degree, betweenness

centrality or game centrality predicts better the phenotypic

potential of yeast protein describing their ‘buffering capacity’

against evolutionary changes, i.e. the contribution of an individual

yeast protein to the overall robustness of yeast cells [44]. GCs were

found to be significantly (p,0.062) better predictors of genetic

buffering of evolutionary changes than either degrees or betwen-

ness centralities (Table 2).

The functional analysis of the 171 proteins of the high-fidelity

yeast interactome [36] causing the final cooperation level to fall

from the starting value of close to 1.0 to less than 0.9 showed the

overrepresentation (p,0.001) of nucleus-related functions (35%).

The second and third most overrepresented classes were signaling-

and transport-related functions (33% and 32%, respectively;

Figure 1). These results were in compliance with the central

position of the nucleus in the structure, organization and dynamics

of the cell. Similarly, transport and signaling are central in both

internal and external cellular communication.

In conclusion, game centrality observed in prisoner’s dilemma

games of nodes in a yeast protein-protein interaction network (i.e.

in a ‘protein game’) offered a novel characterization of the

importance of proteins in complex cellular functions highlighting

the importance of intra-modular party hubs to maintain cooper-

ation.

As we said before, game centrality is a comparative measure

within a network having set a game type, strategy update rule,

temptation value and synchronicity. To assess the consistency of

game centrality ranking, we ran multiple experiments with

different temptation values (T = 3.1, 4, 5 and 6) and/or the

strategy update rules (best-takes-over and Fermi-rule) for the yeast

interactome network. We evaluated the pair-wise correlation

(Goodman-Kruskal gamma) between the game centralities for the

case of small (3.1 and 4.0) and large temptation values (5.0 and

6.0), while applying the best-takes-over and the Fermi-rule strategy

update rules. The smallest pair-wise correlation was 0.72 for the

small temptation values and 0.70 for the large temptation values.

These results indicate that while the game settings do have effects

on the individual game-centrality values, GC may also be used for

a rough comparison of node importance to break cooperation

using different game conditions.

Game Centrality Identifies Functionally Important
Segments of Protein Structures

Next, we extended the use of the game centrality to another

important biological network, the protein structure network,

where the nodes are amino acids, and the edges between them

represent chemical bonds [6,45,46]. We analyzed the protein

structure network of the Escherichia coli methionyl-tRNA synthetase

protein, for which an elegant study [46] showed the existence of

several alternative intra-protein signal transduction pathways.

These signaling paths span a large distance between the active

centre and the anticodon binding region of this enzyme

transmitting the allosteric conformational changes induced by

substrate binding. The methionyl-tRNA synthetase protein has

two major domains, the catalytic domain (responsible for the

activation of methionine) and the tRNA anticodon-binding

domain. These two domains are connected by the connecting

peptide (CP) domain. The catalytic domain can be subdivided to

three sub-domains, having two Rossmann-folds and a stem contact

fold [46].

First, we compared the game centrality (GC) of the amino acids

in the two major domains and their connecting peptide. The

average GC values of both major domains were higher (both

before and after substrate binding) than that of the connecting

peptide domain (Table 3, Figure 2). In agreement with their

central role in protein function, the average GC of intra-protein

signaling amino acids as defined by Ghosh and Vishveshwara [46]

was especially high, if compared to GC-s of the rest of the amino

NetworGame: Node Influence to Break Cooperation
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acids (Table 3). Substrate binding induced a decrease of GC of

most domains, which is in agreement with the development of a

more compact structure, where amino acids may indeed have a

lower individual influence on domain-level processes. GC differ-

ences between the open and closed conformations reflected that

substrate binding affected most the tRNA anticodon domain and

the core of the catalytic domain (the first Rossmann-fold domain;

Table 3, Figure 2), which is again in agreement with the high

increase of compactness around the tRNA and substrate binding

pockets upon substrate binding. These findings are also in

agreement with the prominent influence of binding sites on the

cooperating network of amino acids revealed by molecular

dynamics simulations [47].

In conclusion, game centrality values observed in prisoner’s

dilemma games of individual amino acids of protein structure

networks highlighted the importance of core protein domains,

especially the tRNA anticodon binding domain, the active centre

and intra-protein signaling amino acids in the maintenance of

cooperation of this complex system.

Discussion

In this paper a novel program package, called NetworGame was

introduced to simulate various social dilemma type games with a

high flexibility for payoff conditions, initial parameters, strategies,

strategy update rules and update conditions. We defined a novel

dynamic centrality measure called game centrality (GC), and

showed that it correlates with previous centrality measures, such as

degree, or betwenness centralities. Moreover, GC also predicts

novel influential nodes and network segments, which have a

functional relevance in several social and biological real world

networks.

Although several game simulation tools have been described in

the literature, such as GamePlan [22], Gambit [23], Dynamo [24]

and VirtualLabs/EvoLudo [25], the NetworGame program

package is unique in the sense, that it is able to accept any real-

world networks as an input with the complexity of their weighted

edges. Moreover, the program can handle individual initial

strategies of all networked agents, as well as individual strategy

update rules. The current NetworGame 2.0 version has automat-

ed, statistics-based simulation length and simulation count options,

which were not present in its preliminary NetworGame 1.0 version

mentioned in our former conference report [26]. We note that

NetworGame 2.0 can also be used for simulations having a user-

defined, pre-set number of game rounds.

While game centrality correlated with previous centrality

measures, such as degree and betweenness centrality, it also

predicted novel nodes and centers of large influence, which had

functional relevance both in social and biological real-world

networks. Identification of functionally and dynamically important

network nodes and segments is not an easy field. i.) The

identification of nodes with large and dynamic influence has been

notoriously difficult [29–33,48–50]. ii.) The precise discrimination

between hubs with different dynamic parameters became a subject

of recent discussions [36–43]. iii.) The contribution of individual

proteins to the overall robustness of the cell against evolutionary

changes is a largely unresolved question [44,51,52]. iv.) Though

enzyme active sites and protein binding hot-spots have been

identified using network metrics, such as betweenness centrality,

amino acids of intra-protein signaling are not readily distinguish-

able [53–55]. Game centrality provides a novel and promising

aspect to compare the influence of network nodes and segments

using the cooperation-related, complex dynamic background of

social dilemma games.

Table 1. Game centrality of party hubs, date hubs and randomly selected nodes of a high-fidelity yeast protein-protein interaction
network.

Consensus party hubsb Consensus date hubsb Randomly selected nodesb

Average Game Centrality (GC) of node setsa 0.78960.001c 0.72060.003 0.65860.005

aPrisoner’s dilemma game was simulated using the high-fidelity yeast interactome of Ekman et al. [36], and game centrality measures were calculated as described in
Methods.
bInitially all 2,444 nodes were cooperating except for 30 defecting nodes, which were randomly sampled 2000 times from 63 consensus party hubs (compiled as in [43],
see Table S1 of Text S1), from 145 consensus date hubs (compiled as in [43], see Table S2 of Text S1), as well as from all the 2,444 nodes in the network.
cData represent sample means 6 standard error. The distributions of the game centrality values were significantly different according to the chi-square test (x2.400).
doi:10.1371/journal.pone.0067159.t001

Table 2. Correlations of game centrality (GC) with degree, betweenness centrality and phenotypic potential of proteins in a high
fidelity yeast interactome.

Correlation valuesa Degree Betweenness Centrality Game Centrality (GC)

Degree – 0.8160.02b (p,0.001) 0.6160.04 (p,0.001)

Betweenness Centrality – – 0.6260.04 (p,0.001)

Phenotypic potential 0.0960.04 (p,0.022) 0.0760.04 (p,0.083) 0.1360.05c (p,0.007)

aSimulations of the prisoner’s dilemma game were performed as described in Methods using the parameter set of (R = 3, T = 6, S = 0, P = 1). Correlation values between
degree, betweenness centrality, GC in prisoner’s dilemma game, as well as phenotypic potential [44] were calculated for the 2,444 proteins of the high fidelity yeast
interactome of Ekman et al. [36].
bData represent Goodman-Kruskal’s gamma values 6 standard errors. Significance levels in parentheses were also calculated using Goodman-Kruskal’s gamma test (the
null hypothesis being that the correlation is different from zero).
cUsing the R-package correlation test (http://personality-project.org/r/html/r.test.html, [62]) the correlation between phenotypic potential and game centrality was
significantly larger than the correlation between phenotypic potential and degree, or the correlation between phenotypic potential and betweenness centrality.
doi:10.1371/journal.pone.0067159.t002
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Game centrality values depend on the game model and its

payoff conditions, on the applied strategy update rule, on the

synchronicity of the update, on the network structure as well as on

the number of time steps and total number of simulations. This

makes game centrality a relative measure, and requires an

especially large level of cautiousness in its use, when the level of

final cooperation fluctuates (e.g. in games on square lattice [11],

rock-scissors-paper games [56], etc.). However, the case studies we

made suggest that game centrality values of both individual nodes

and edges (pairs of neighboring nodes) can be useful for the

comparison of influence in the same network when using the

canonical prisoner’s dilemma game on various networks. More-

over, game centrality may be used for the comparison of different

states of the same network, which differ e.g. only in their weight

structure, like that of the yeast protein-protein interaction network

before and after stress [57].

In this paper we calculated game centrality for initially defecting

single nodes or edges (pairs of neighboring nodes) of the network.

However, it is important to note that a similar centrality measure

may also be calculated for the inverse situation, where a pair of

linked nodes is the only initial cooperator in an otherwise defecting

network. Moreover, similar centrality measures may also be

defined for larger segments of nodes, such as for triangles, motifs,

k-cliques, k-clans, k-clubs, k-components, k-plexes, lambda-sets,

network skeletons, rich clubs, network cores, or network commu-

nities [43] using the NetworGame program.

From a different point of view, game centrality indirectly

measures the capability of a node to alter network reciprocity. A

Figure 1. Functional analysis of yeast proteins having the largest game centralities. Prisoner’s dilemma game was simulated on a high-
fidelity yeast interactome [36], and game centrality measures were calculated as described in Methods. 171 proteins out of the 2,444 nodes of the
high-fidelity yeast interactome were selected by selecting nodes, which diminished the cooperation level from ,1 to 0.9 or below. Functional
analysis of the 171 proteins was performed using the Cytoscape plug-in, BiNGO [63] to assess the over-representation of associated Gene Ontology
molecular function terms. Gene Ontology Slim definitions for Saccharomyces cerevisiae [64] were used discarding the evidence codes IEA (inferred
from electronic annotation), ISS (inferred from sequence structural similarity) and NAS (non-traceable author statement). A hypergeometric test with
false discovery rate correction [65] was used to select and visualize the significantly enriched GO functions at a level p,0.001, using the GO-s of the
entire network as reference set. Colors represent functional categories: red, nucleus-related; blue, transport-related; green, signaling-related; yellow
denotes other functions. The size of the circles represents the number of proteins found in the category.
doi:10.1371/journal.pone.0067159.g001
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Figure 2. Game centralities of E. coli methionyl-tRNA synthetase amino acids. The protein structure network of E. coli methionyl-tRNA-
synthetase was constructed, prisoner’s dilemma game was simulated, and game centrality measures were calculated as described in Methods. Game
centralities were overlaid to the 3D image of the protein and tRNA made by the PyMOL program package [66]. tRNAMet is shown in green, the most
influential amino acids spreading defection are marked red (these amino acids have the largest game centrality, GC values) and the least influential
amino acids are blue (having the smallest GC values).
doi:10.1371/journal.pone.0067159.g002

Table 3. Average game centrality (GC) values for E. coli methionyl-tRNA synthetase amino acids.

Average Game Centrality
(GC) of substrate-free
proteina

Average Game Centrality
(GC) of substrate-bound
protein

Game Centrality (GC)
decrease

Catalytic domainb 0.69 0.60 0.09

N Rossmann-fold-1(active centre) 0.73 0.56 0.17

N Rossmann-fold-2 0.68 0.62 0.06

N Stem contact fold (KSMKS) 0.65 0.61 0.04

Connecting peptide (CP) domain 0.50 0.36 0.14

tRNA anticodon-binding domain 0.63 0.41 0.22

Signaling amino acids [39] 0.79 0.73 0.06

Complete Met-tRNA-synthetase 0.62 0.47 0.15

aProtein structure network of E coli methionyl-tRNA-synthetase was constructed, Prisoner’s dilemma game was simulated, and game centrality measures were
calculated as described in Methods.
bDomains from top to bottom: the catalytic domain including the Rossmann-fold-1 (catalytic function), Rossmann-fold-2 and stem contact fold (KMSKS) sub-domains;
the connecting peptide (CP) domain; the anticodon binding, carboxy-terminal domain, 43 signaling amino acids involved in the transmission of conformational change
as shown by Ghosh and Vishveshwara [46], whole methionyl-tRNA synthetase.
doi:10.1371/journal.pone.0067159.t003
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highly influential node with large game centrality tends to break

the cooperative islands, the sources of network reciprocity in the

network. In this paper we do not discuss network reciprocity in

detail, but we refer the interested reader to references [58] and

[59].

Currently NetworGame only supports pairwise interactions

between the players. It is an interesting future work to include

group interactions in NetworGame, since it is known [60] that

group interaction can lead to behaviors that cannot be attributed

to the sum of pairwise interactions.

In conclusion, our NetworGame program package proved to be

a useful tool for the analysis of repeated spatial games on real-

world networks, and enabled the definition of a novel game-

related centrality measure called game centrality (GC). Game

centrality correlated with previous centrality measures, such as

degree and betweenness centrality. Moreover, GC also identified

novel, functionally important nodes and network segments in both

social and biological networks. Our work opens the ground for a

number of further studies on the dependence of game centrality of

various parameters of social dilemma games as well as a wide

variety of real world networks including neuronal networks [61].

Game centrality may become a useful measure to identify key

network nodes of various processes of network dynamics, such as

conformational changes, allosteric and cellular signaling, cell

differentiation, cell reprogramming and malignant transformation.

Game centrality may help to design more efficient interventions to

cellular networks (in forms of drugs), to ecosystems or to social

networks.

Methods

Description of the Real World Networks
Zachary’s karate club network. The weighted and undirected social

network of the karate club at a US university contained 34 nodes

and 78 edges described by Wayne Zachary in 1977 [34]. Michael’s

strike network. The social network of a forest product manufacturing

factory contained 24 nodes and 38 edges as described by Judd H.

Michael in 1997 [35]. Yeast protein-protein interaction network. The

giant component of the un-weighted and undirected high-fidelity

yeast protein-protein interaction network [36] contained 2,444

nodes and 6,271 edges, covering approximately half of the yeast

genome and containing the most reliable ,3% of the expected

number of total edges. E. coli methionyl-tRNA synthase protein structure

network. We have constructed the structural network from the 3D

image of the starting (substrate-free) and the equilibrated

(substrate-bound) state of the molecular simulation of the E. coli

methionyl-tRNA synthetase/tRNA/MetAMP complex [46] by

converting the Cartesian coordinates of the 3D image to distances

of amino acid pairs, and keeping all non-covalently bonded

contacts within a distance of 0.4 nm. The final weighted network

was created by removing self-loops, and calculating the inverse of

the average distance between amino acid residues as edge weights.

The protein structure network contained 547 nodes, since the first

3 N-terminal amino acids were not participating in the network.

The protein structure contained 2,164 edges in the substrate-free

network, and 2,153 edges in the substrate-bound network.

Brief Description of the NetworGame Program Package
The NetworGame software is a program that takes a

configuration specification describing the social dilemma game

rules, the model or real world network and other settings, executes

the simulations accordingly, and stores the simulation results. The

simulation engine of the NetworGame program is a highly

optimized software component for running the actual simulation.

The 2.0 version of the NetworGame program is an updated

version of the NetworGame 1.0 version published in a preliminary

conference report [26]. A more detailed description of the

NetworGame program version 2.0 containing the pseudo codes

of its algorithms is found in the (Text S1). Both versions of the

NetworGame program, as well as their User Guides are freely

downloadable from our website: www.linkgroup.hu/

NetworGame.php.

Parameters of Simulations and Calculation of Game
Centrality (GC)

For the analysis of real-world networks we chose the canonical

prisoner’s dilemma game with the payoff parameters R = 3, T = 6,

S = 0, P = 1 (except for Michael’s strike network, where we used

T = 3), since this selection with a maximal temptation (T) value

ensured the largest sensitivity of the initially almost fully

cooperating network to the defection of a single node. In our

simulations edge weights were not used. All simulations used the

widely applied best takes over strategy update rule with a

synchronous update. Simulations of repeated games were halted,

when the mean value of cooperation changed less than 0.01 in the

last 50 rounds. The number of parallel simulations was chosen to

ensure that the mean error for the cooperation level was below

0.01 in the final step. These conditions allowed enough simulations

to get a statistically meaningful mean estimate, and made the

number of simulation steps large enough to surpass the initial

transitional phase often observed in simulations of repeated social

dilemma games. Game centrality (GC) of node i was calculated as

the proportion of defectors averaged over the last 50 simulation

steps, when initially node i was set to defect, while all other nodes

were set to cooperate.

Supporting Information

Text S1 This supporting information (Text S1) contains
a supplementary figure, 2 supplementary tables, a
detailed description of the NetworGame algorithm for
the simulation of spatial social dilemma games with
pseudocodes, as well as 11 supplementary references.

(PDF)
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