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Abstract

Approximately 20% of individuals with Parkinson’s disease (PD) report a positive family history. Yet, a large portion of causal
and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with
late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage
analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4
proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls,
revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot
conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing
role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties
encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or
complex patterns of inheritance.
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Introduction

Characterized by resting-tremor, bradykinesia, rigidity, and

postural instability, Parkinson’s disease (PD) is one of the most

prominent neurodegenerative disorders. Genetic factors contribute

significantly to the risk of developing PD–both sporadic and

familial. Although up to 20% of PD cases are believed to be

familial [1,2], thus far, variants in only a few genes have been

unequivocally shown to underlie familial PD. These include

PARK2, PINK1, PARK7, SNCA, and LRRK2 [3–8]. While all of

these genes were identified by classical linkage analysis in large,

multi-generation families, recently, next-generation sequencing

has enabled the identification of disease-causing variants in smaller

families and with an onset later in life without the need of

genotypic information from more than one generation of affected

individuals. By exome sequencing, VPS35 was identified as a gene

involved in late-onset familial PD [9,10]. Still, to date, the

identified genes only explain a small portion of the genetic

‘‘burden’’ in PD. However, a thorough understanding of the

genetic alterations implicated in disease development is necessary

to better comprehend disease pathogenesis and to provide more

specific and, thus, more effective treatment options in the future.
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Here, we describe exome sequencing of a German family with

autosomal dominant late-onset PD in an attempt to pinpoint the

disease-causing genetic variant.

Methods

Ethics Statement
Ethics review board approval was obtained from the ethics

review board at Klinikum rechts der Isar, Technische Universität

München, and Bayerische Landesärztekammer, both Munich,

Germany, Hessische Landesärztekammer, Frankfurt, Germany,

the ethics review board at Medical University Vienna, Vienna,

Austria, and the ethics review board at Semmelweis University,

Budapest, Hungary. Participants’ written informed consent was

obtained.

Participants
All living family members received a detailed neurologic exam

by neurologists specializing in movement disorders. Cases and

controls used in genotyping and variant screening have been

reported previously [10,11] and are described in more detail in the

supplement.

Exome Sequencing
Exome sequencing was performed with DNA isolated from

lymphozytes of IV:11 and IV:18 on a Genome Analyzer IIx

system (Illumina) after in-solution enrichment of exonic sequences

(SureSelect Human All Exon 38 Mb kit for IV:11 and 50 Mb kit

for IV:18, Agilent) as 76 bp paired-end runs. Read alignment was

carried out with BWA (version 0.5.8). Single-nucleotide variants

and small insertions and deletions (indels) were detected with

SAMtools (version 0.1.7). Raw sequencing data are available upon

request.

Genotyping
All ten candidate variants tested for segregation by Sanger

sequencing were genotyped in 975 cases and 1014 population-

based controls pertaining to the KORA-AGE cohort using

MALDI-TOF masspectrometry on the SequenomH platform.

Demographic data are given in the supplement. Association was

tested by allelic statistics as implemented in PLINK.

Linkage Analysis
We genotyped six family members (IV:11, IV:14, IV:16, IV:18,

IV:20 and IV:21) with oligonucleotide SNP arrays (500 K,

Illumina). Parametric linkage analysis was performed using a

subset of 12,875 SNPs using MERLIN and an autosomal

dominant model with incomplete penetrance of 70%.

Variant Screening
We used IdahoH’s LightScanner high-resolution melting curve

analysis to screen the coding regions and exon/intron boundaries

of PLXNA4 for variants. 862 cases and 940 population-based

controls pertaining to the KORA-AGE cohort were included in

the screening. Demographic data are given in the supplement. In

the case of an altered melting pattern, Sanger sequencing ensued

to identify the underlying variant. Group comparisons between

cases and controls were performed for each gene and each variant

separately using Fisher’s Exact and x2 tests as appropriate.

Cell Viability and Immunocytochemistry
Cultured primary fibroblasts from IV:11 and an offspring were

stained using a live/dead staining (Invitrogen) and analyzed by

FACS and stained with anti-PLXNA4 (1:100, Sigma) and

analyzed by fluorescence microscopy. Details are given in the

supplement.

Construction of a Qualitative Systems Biological Model
To investigate the role of PLXNA4 in the PD biological system,

we applied an integrative modeling approach to construct a

qualitative multifactorial interaction network linking PLXNA4 and

genetic factors associated with PD. An interactome with known

and predicted interactions of PLXNA4 and its direct neighbors was

prepared based on four commonly used databases and integrated

to known PD pathways from KEGG and CIDeR as well as a

manual literature search. For a detailed description see supple-

ment.

Results

Pedigree and Clinical Phenotype
We describe a five-generation family from Central Germany in

which four members were affected by PD and the pattern of

inheritance seems to be autosomal dominant with reduced

penetrance (Figure 1). Clinical assessment revealed tremor-

dominant, levodopa-responsive parkinsonism with an age of onset

at 60 and 67 years of age in the two affected individuals examined

(Table S1 in File S1). Both individuals also reported subjective

cognitive impairment. Restless legs syndrome was present in IV:11

as well as one of her children. Transcranial ultrasound showed

bilateral hyperechogenicity of the substantia nigra in IV:18 but

was not performed in IV:11. MRI was in line with a diagnosis of

PD in both. The affected parent (III:7) and aunt (III:5) of IV:11

were deceased before initiation of the study, so that no detailed

phenotype information is available. Moreover, another aunt (III:2)

on the same side of the family was reported to have suffered from

an unclassified form of dementia.

Identification of Candidate Variants by Exome
Sequencing and Frequency Assessment of Candidate
Variants in a Case/Control Cohort
Exome sequencing was performed using DNA from two second

cousins (IV:11 and IV:18, Figure 1A). This generated 11.68

gigabases (Gb) of alignable sequence for IV:11 (average cover-

age = 108.46, base pairs with .8 reads = 93.67%) and 15.02 Gb

for patient IV:18 (average coverage = 154.13, base pairs with .8

reads = 94.74%). All 28,803 detected variants shared by the two

affected individuals were filtered against in-house exomes

(n = 1739) of individuals with unrelated diseases. Here, variants

were allowed to be present in #1% of exomes. Moreover,

synonymous and non-coding variants as well as all variants

annotated in dbSNP135 with a minor allele frequency (MAF)

$0.01 were excluded from the follow-up (Figure S1). No known

variants believed to play a causative role in PD were found in

either IV:11 or IV:18.

All ten remaining missense, nonsense, stoploss, splice site or

frameshift variants and indels were genotyped in 975 cases and

1014 population-based controls (Table 1). The variants were,

overall, very rare. Two (PLXNA4 p.Ser657Asn and OGN

p.Leu124fs) were validated in the individual in whom they were

first identified but were otherwise not found again in the 1989

individuals tested. CPNE1 p.Ser1831Thr was present in the index

case as well as one additional control individual and GOLGA4

p.Gln425Arg was identified in one additional PD patient. The

other six variants (RBM28 p.Asp300Gly, IMPDH1 p.His296Arg,

ARPP21 p.Ala576Thr, PHF2 p.Ser840Asn, SLC22A13 p.Arg16His

and SPANXE p.Leu42Ile) were not as rare (MAF$0.03%) and

PLXNA4 and Parkinson’s Disease
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Figure 1. Pedigree and Linkage Analysis. (A) Pedigree of family used for exome sequencing. Open symbols indicate unaffected family members,
affected individuals are denoted by closed symbols. An arrow denotes the individuals whose exomes were sequenced. Sex was obscured and birth
order was altered to protect privacy. A diagonal line indicates a deceased individual. (B) 25 genomic regions on 12 chromosomes with logarithm of
the odds (LOD) score$0.5 were identified by linkage analysis. Green boxes represent genomic regions with LOD$0.5, yellow stars represent the
location of the four candidate genes remaining after frequency assessment (GOLGA4-chr3, PLXNA4-chr7, OGN-chr9, CPNE1-chr20). PLXNA4 on
chromosome 7 represents the only of the four genes overlapping a genomic region with LOD$0.5.
doi:10.1371/journal.pone.0079145.g001
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found at similar frequencies in both cases and controls and were,

therefore, regarded to be unlikely candidates (Table 1).

Segregation Analysis and Genotyping of Additional
PLXNA4 Variants
The remaining four variants shared by the two affected

individuals (Table 1) were pursued further by Sanger-sequenc-

ing-based testing for segregation in 6 family members belonging to

generation IV. Under the assumption that a given variant would

be causal for PD, penetrance ranged between 40.0 and 66.6% in 6

individuals belonging to generation IV. Moreover, on careful

scrutiny of the exome data, both index patients were found to

harbor one additional, variant of PLXNA4 (p.Phe40Leu

(rs145024048, 111/8489 in NHLBI-ESP exomes) for IV:11 and

p.Arg302His (rs143813209, 3/8597 in NHLBI-ESP exomes) for

IV:18). These two variants were also genotyped in 15 additional

members of the family. PLXNA4 p.Phe40Leu was found in 5

additional individuals and p.Arg302His was found in 7 additional

family members. Importantly and contrary to the exome

sequencing data, by Sanger sequencing, IV:11 was also found to

harbor the PLXNA4 p.Arg302His variant. The combination of the

PLXNA4 index variant and p.Phe40Leu was present only in IV:11,

while the index variant and PLXNA4 p.Arg302His were found in a

total of 7 individuals belonging to the pedigree. None of the three

additional candidate genes harbored additional non-synonymous

coding variants in either IV:11 or IV:18.

Linkage Analysis
In order to further prioritize genes for follow-up, we performed

parametric linkage analysis. In doing so, we identified 25 genomic

regions with a suggestive linkage signal (LOD$0.5) (Figure 1B).

Only one of these regions, located on chromosome 7

(chr7:106,254,234 to 134,663,671; maximum two-point LOD

score = 0.76), contained one of the four candidate genes identified

during exome sequencing, lending further support to the potential

causality of variants in PLXNA4.

Mutational Screening of PLXNA4 in Case/Control Cohort
Linkage analysis highlighted the variant in PLXNA4 as a

potentially causal or modifying variant for the PD phenotype in

our family. Also, the affected amino acid in PLXNA4 is highly

conserved in all vertebrates and two of three commonly used

prediction algorithms [12–14] predicted it to be ‘‘damaging’’.

Accordingly, we screened the 32 coding exons as well as the exon/

intron boundaries of PLXNA4 in 862 Austrian and German cases

and 940 controls in order to assess a fuller spectrum of rare genetic

variation found. For the most part, this cohort comprised the same

individuals used for the above frequency assessment. In PLXNA4, a

total of 38 novel (37 non-synonymous, 1 deletion) and 6 known

variants (rs143813209, rs113830939, rs112682233, rs62622406,

rs117458710 and rs73155258, all non-synonymous) resulting in a

change in the amino acid sequence were identified (Table S2 in

File S1). The large majority (86.21%) of variants were very rare,

with MAF#0.2% in controls. Overall, a similar number of cases

(n = 107) and controls (n = 117) harbored at least one variant

predicted to result in a changed amino acid sequence (p.0.05, x2

test). The same held true when only variants with MAF#1.0% (46

cases vs. 52 controls, p.0.05, x2 test) were evaluated. Very rare

variants with MAF#0.2%, however, were more common in cases

(n = 33) than controls (n = 18) (p,0.02, x2 test). Three cases but no
controls were compound heterozygous for a non-synonymous

variant in PLXNA4. Variants were located throughout the entire

gene (Figure 2A).

Of the individuals harboring a rare non-synonymous variant in

PLXNA4, information regarding family history was available for 17

individuals: 3 reported a first or second degree relative with PD

and a positive history of essential tremor was present in the mother

and a maternal uncle in one additional individual. The only

brother of the individual harboring the PLXNA4 p.Arg302Cys

amino acid change was also found to have PD and to harbor this

variant. However, the family was too small for formal segregation

analysis.

When analyzed by means of three commonly used prediction

algorithms (PolyPhen2, MutationTaster, SIFT) [12–14], the

number of non-synonymous single nucleoide variants (SNVs)

classified as functionally ‘‘damaging’’ (SNVs classified as ‘‘prob-

ably damaging’’ by PolyPhen2, ‘‘disease causing’’ by Mutation-

Taster and ‘‘damaging’’ by SIFT) was greater in cases than in

controls. This was especially prominent and statistically significant

for PolyPhen2 when only very rare variants with MAF#0.2% in

controls were analyzed (PolyPhen2:19 variants in cases vs. 9

variants in controls, p = 0.033, x2 test; MutationTaster: 26 in cases

vs. 14 in controls, p = 0.028, x2 test; SIFT/PROVEAN: 10 in

cases vs. 2 in controls, p = 0.018, Fisher’s Exact test) (Figure 2B).

Deletions, which were only found in cases, cannot be assessed by

PolyPhen2 and were, therefore, omitted from the analysis using

this algorithm.

Functional Assessment of PLXNA4 p.Ser657Asn in
Fibroblasts
In fibroblast cell lines generated from both the index patient and

an offspring who does not harbor the PLXNA4 p.Ser657Asn

variant (other variants not given to protect privacy) cell viability

was similar (Figure 3A). Based on the results from the above

mutation screening as well as the fact that PLXNA4 is known to be

expressed in the brain [15] and a role for axonal guidance factors

similar to PLXNA4 already postulated in PD [16], we further

analyzed subcellular localization of the protein in the two cell lines

but could not detect a difference (Figure 3B).

Modeling a Potential Role of PLXNA4 in the PD Network
Beyond a proposed general role of axonal guidance pathways in

the development of neurodegeneration [16,17], it is interesting to

note that PLXNA4 can be place into a network containing several

firmly established PD genes (SNCA, PARK2, DJ-1, LRRK2),

although both known and less reliable projected interactions have

to be utilized (Figure 4).

Discussion

In an unbiased, whole-exome approach, we identified a variant

in PLXNA4 (p.Ser657Asn) as a candidate for a potentially causal

variant in familial PD. Although this finding is intriguing and

functionally plausible, we cannot conclude that this variant in

PLXNA4 is indeed the cause of PD in our family. Also, it is

interesting that both affected individuals were found to harbor two

or three non-synonymous variants in PLXNA4, thus, highlighting

the possibility that a ‘‘multi-hit’’ model within the same gene or

pathway could play a role with regard to phenotype expressivity.

Three of the final four variants (PLXNA4 p.Ser657Asn, OGN

p.L124fs and CPNE1 p.Ser183Thr) are extremely rare and were

only found in other family members but not in approximately

8,978 other individuals of European descent (genotyping sample

(n = 1989), in-house exomes (n = 1739), 1000genomes (n = 1000)

and NHLBI-ESP exomes (n = 4250)). This is interesting in light of

the fact that–with regard to drug target genes–it was recently

shown that the rarer a given variant the more likely it is
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functionally relevant [18]. Yet, on the other hand, this rarity also

means that from a genetic standpoint, at the moment, one can

neither confirm nor exclude the possibility of a causal or modifying

role in the PD phenotype. Further, even taken together additional

evidence highlighting PLXNA4 p.Ser657Asn (suggestive linkage

signal, high conservation and predicted pathogenicity, excess of

Figure 2. Mutation Screening of PLXNA4 in PD case/control cohort. (A) Location of PLXNA4 variants identified in variant screening in relation
to known functional domains. An asterisk denotes the variant identified by exome sequencing. blue= variants found in both cases and controls,
green= variants found only in cases, purple = variants found only in controls. (B) Analysis of PLXNA4 variants using SIFT/PROVEAN, PolyPhen2 and
MutationTaster reveals an excess of rare non-synonymous variants predicted to be damaging. Insertions and deletions cannot be assessed by
PolyPhen2 all and were, therefore, omitted from the analysis using this algorithm.
doi:10.1371/journal.pone.0079145.g002
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very rare coding variants in cases and functional considerations)

can be viewed as suggestive at best and by no means exclude the

possibility of other causative or modifying genetic factors that play

a role in the PD phenotype in our family.

In general, these findings highlight the fact that in many cases

very large populations will be needed to conclusively judge the

disease-related nature of a rare variant. Recent studies show that

while the power to detect associations for genes harboring rare

variants varies widely across genes, only ,5% of genes achieved

80% power even assuming high odds ratios (OR) of 5 and when

tested in 400 cases and 400 controls. In the same scenario, no gene

out of 12,000 genes tested achieved 80% power when assuming an

OR of 1.5 [19]. Statistical evaluation is further complicated by the

fact that it is not unreasonable to assume that many genes will

habor both variants that are protective and predisposing with

regard to a given phenotype, as was recently shown for the APP

locus in Alzheimer’s disease [20], which with the statistical analysis

tools available today will always lead to an underestimation of the

genetic contribution of rare variants at a given locus to a

phenotype’s heritability [21].

Ultimately, it is also possible that the truly causal variant was

not picked up in this study because it lies outside the targeted

regions of the exome. Here, the use of two enrichment kits of

different sizes and different exome target definitions represents a

specific weakness of the study. Also, we cannot exclude that IV:18

represents a phenocopy and that the underlying cause of PD in his

case is different from that of the other affected individuals in the

family. If this were the case, a much larger number of candidate

variants than those assessed here could contribute to bringing

about the PD phenotype in the examined family.

Moreover, copy number variants, another important player in

the full spectrum of genetic variation, could, at the time of study,

not yet confidently be assessed in exome sequencing data and

were, therefore, not evaluated in our study. Lastly, while suggestive

non-significant LOD scores have been used to prioritize variants

identified in exome [22] or whole genome [23] sequencing they

Figure 3. Assessment of cell viability and subcellular protein localization in fibroblasts. (A) The presence of PLXNA4 p.Ser657Asn do not
affect cell viability as assay by live-dead staining and FACS. (B) Immunohistochemistry shows similar subcellular localization of PLXNA4 (anti-PLXNA4,
Sigma, 1:500) in fibroblasts with and without the p.Ser657Asn amino acid substitution (scale bar = 50 mm).
doi:10.1371/journal.pone.0079145.g003
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Figure 4. Qualitative multifactorial interaction network of PLXNA4 and genetic factors with known and hypothetical relevance to
PD. Edges obtained from CIDeR are highlighted in blue, PD-specific pathways from KEGG are given in green, red edges denote annotations from
OMIM and edges extracted from literature, protein-protein interaction databases or high-confidence predictions are colored black. Undirected
protein-protein interactions hold circular ends, directed molecular relations are marked by arcs, whereas general regulations have arrows with no
filling, activations have filled arrows and inhibitions have blunted end. Dashed lines indicate indirect effects.
doi:10.1371/journal.pone.0079145.g004
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also harbor the potential for the erroneous exclusion of true

positives.

The fact that all four candidate variants were also found in

unaffected family members, per se does not contradict potential

causality as it is known from other autosomal dominant forms of

PD that even among members of a single family, penetrance of

known PD mutations can vary widely. Of individuals who harbor

the LRRK2 p.Gly2019Ser mutation, for example, only 28% will

develop PD by the age of 59 [24]. Thus, predicted penetrance of

the variants identified in our family are in line with what is

reported in the literature for other forms of autosomal dominant

PD.

Plexin A4, PLXNA4, which functions as a receptor for class 3

semaphorins, holds a firmly established role in axon guidance in

the development of the central and peripheral nervous systems.

For example, PlxnA4 has been shown to restrict inappropriate

spreading of mossy fibers within the CA3 region of the murine

hippocampus [25], to direct basal dendritic arborization in layer V

cortical neurons [26] and sympathetic axons [15,27] as well as

lamination and synapse formation in the outer retina [28] in the

mouse.

PLXNA4 has also been implicated in neurodegenerative

conditions. In the discovery stage of a large family-based GWAS

assessing low-frequency (MAF#5%) variants in late-onset Alzhei-

mer’s disease an intronic SNP in PLXNA4 (rs277484, MAF=2.0%

in 1000genomes) yielded the most significant association signal

(p = 9.0610210). Replication, however, is still ongoing [17].

Similarly, preliminary results have suggested decreased PLXNA4

expression in the motor cortex of individuals with amyotrophic

lateral sclerosis when compared to controls, although the sample

size of the study was very limited (n = 5) [29].

PLXNA4 itself has not previously been implicated in PD. Yet, a

number of studies have suggested an involvement of axonal

guidance pathways in PD. An early GWAS identified a SNP in

semaphorin 5A (SEMA5A) as the best association signal [16] and

systems biology-based follow-up studies reported an overrepresen-

tation of axonal guidance factors in subthreshold association

signals [30] which were shown to predict susceptibility to PD [31].

However, both the association signal and the pathway analysis

proved difficult to replicate in other cohorts [32–34] which may be

due to the fact that as one of the very first GWAS it was not

conducted to the current quality standards. Expression studies of

different brain regions, on the other hand, have repeatedly found

an overrepresentation of differentially expressed axonal guidance

pathways in individuals with PD when compared to controls

[30,35–37]. Axonal guidance pathways have also been implicated

in the proper targeting of dopaminergic neurons from the murine

mesencephalon to the ipsilateral striatum [38].

At the moment, both functional and genetic data addressing a

role of PLXNA4 as a PD gene are inconclusive. The identification

of additional larger families with PD in which PLXNA4 p.Ser657-

Asn or p.Arg302His segregate with the phenotype or the

replication of the finding of an excess of very rare variants

(MAF#0.02%) in an independent case/control sample would lend

further support to a possible role of modifying or causal variants in

PLXNA4 in PD and to the interesting hypothesis of axonal

guidance dysfunction in neurodegenerative conditions.
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