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Caffeine has attracted abundant attention due to its extensive existence in beverages and medicines.
However, to detect it sensitively and conveniently remains a challenge, especially in resource-limited
regions. Here we report a novel aqueous phase fluorescent caffeine sensor named Caffeine Orange which
exhibits 250-fold fluorescence enhancement upon caffeine activation and high selectivity. Nuclear magnetic
resonance spectroscopy and Fourier transform infrared spectroscopy indicate that n-stacking and
hydrogen-bonding contribute to their interactions while dynamic light scattering and transmission electron
microscopy experiments demonstrate the change of Caffeine Orange ambient environment induces its
fluorescence emission. To utilize this probe in real life, we developed a non-toxic caffeine detection kit and
tested it for caffeine quantification in various beverages. Naked-eye sensing of various caffeine
concentrations was possible based on color changes upon irradiation with a laser pointer. Lastly, we
performed the whole system on a microfluidic device to make caffeine detection quick, sensitive and
automated.

affeine, although only first isolated in 1819, has been extensively consumed as caffeinated nutrients

throughout eastern and western cultures for over a thousand years'* Its widespread consumption is

attributed to its stimulating effects in the nerve cells’. Caffeine from beverages such as Cola could enhance
the performance of athletes?, as well as reduce the possibility of type 2 diabetes®. However, caffeine is yielding
either positive® or negative effects’” in various types of cancer. It may also cause headache, abnormal heart
rhythms, especially in children and pregnant women with caffeine allergy®*'*. In addition, due to its abundant
existence in domestic wastage, caffeine was found to be an important indicator of natural water system pollution
by domestic drain'>'®. Therefore, it is urgent to develop a convenient sensor tool to detect caffeine.

Traditional caffeine detection methods include thin-layer chromatography (TLC)", high-performance liquid
chromatography-mass spectrometry (HPLC-MS)'®, quartz balance' and immunoassay*. However, these meth-
ods require expensive instruments and sophisticated handling that are not convenient for public usage®.
Chemosensors provide great prospects for caffeine identification. Recently, Waldvogel group reported the first
artificial caffeine receptor, which is based on hydrogen bonding®. Subsequent research modified this receptor to
achieve better binding affinity and selectivity®>". Nevertheless, these interactions only occur in organic solvent
which is not eligible in real life usage. The Reinhoudt group then reported an aqueous phase caffeine sensor based
on the chelation between its metal centre and the 5-nitrogen of caffeine®®. But its absorbance shift is not visible
through naked eyes, thus requiring an absorbance detector. On the other hand, the Severin group reported an
aqueous phase fluorescence turn-off caffeine sensor, HPTS, which binds caffeine based on n-stacking®. The
authors tested this sensor in different samples by extraction method, yet the incorporation of toxic organic solvent
(chloroform) and the fluorescence turn-off feature renders difficulties in real-life application. Although they
further developed a similar-structure ratiometric caffeine fluorescence sensor and incorporated it into a caffeine
detection strip®, it would still require more than 20 minutes for caffeine detection in beverages. Moreover, the
relatively low fluorescence response adds difficulties to direct caffeine observation.

To achieve fast, sensitive and convenient caffeine detection, we developed an aqueous phase fluorescence turn-
on caffeine sensor based on the screening of diversity-oriented fluorescence libraries (DOFL) and rational
modification of the selected hit compound. This sensor exhibits tremendous fluorescence enhancement towards
caffeine, which can be clearly seen even with naked eyes. To make caffeine visible for common people, we further
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develop a caffeine detection kit which is able to purify and concen-
trate caffeine from different samples. The sensor could respond to
caffeine and show bright orange-red colour like a warning sign.
Combining both fluorescent sensor and the detection kit, customers
can easily tell the caffeine content in their beverages, in less than one
minute.

Results

Design of a BODIPY-based caffeine sensor. Figure 1 exhibits the
structure of our caffeine sensor. It was achieved from screening of
diversity-oriented fluorescence libraries (DOFL) and rational
modifications®. One compound (BD-185) which exhibits fluore-
scence increase to caffeine has been discovered by an unbiased
DOFL screening system. BD-185 contains a bromo-substituted
indole motif conjugating to the BODIPY core and exhibits
remarkably bright emission upon treatment with caffeine. To
figure out the role of bromine-containing indole, we synthesized 4
derivatives of BD-185, which only modify the indole moiety. Among
them, the BODIPY compound bearing a fluorine atom yielded
highest fluorescent intensity towards caffeine (Fig. S1 to S5).
Therefore, it was selected as the final caffeine sensor and named as
Caffeine Orange (CO). CO exhibits dissociation constant (Kp) of
16.81 mM and detection limit of 50 uM (Fig. S6). The
concentration-dependent colour changes could be observed under
the irradiation of a green laser pointer at 532 nm by naked eyes
(Fig. 1b). We then tested this interaction under different condi-
tions. In organic solvents there was no caffeine dose-dependent
fluorescence responses since (Fig. S7). However, when we dried the
organic solutions, the fluorescence responses recovered and the
fluorescence intensity was even stronger than the aqueous solution
(Fig. S8). To our knowledge, this is the first report on BODIPY-based
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fluorescence turn-on caffeine sensor that works both in aqueous
solution and in dry state.

Determination of the binding event. To elucidate how CO and
caffeine interact, we first injected a mixture of CO and caffeine
into the HPLC-MS. Two separate peaks were observed (Fig. S9),
which indicates that there is no covalent interaction between CO
and caffeine. Next, we performed Fourier transform infrared
spectroscopy (FT-IR) (Fig. S10a) in an attempt to identify the
likely non-covalent interaction between CO and caffeine. Figure
S10b shows the peak at 3,379 cm™' shifts to 3,289 cm™ and
broadens. It refers to hydrogen bond between N-H group of CO
and caffeine®. The shifted peaks of 790 cm™', 1,165 cm™' and
1,504 cm™' are due to m-stacking, which causes bending vibration
and ring torsions (Fig. $10c)**.

To further confirm this hydrogen bond and m-stacking interac-
tions, we performed NMR titration experiments. Figure 2a shows
that the indole N-H proton shifts from 8.60 ppm to 9.58 ppm, which
indicates the formation of hydrogen bond between CO and caf-
feine**. Majority of the aromatic protons of CO exhibit upfield shift
ofaround 0.1 ppm as caffeine amount increases (Fig. 2b). In fluorine
NMR spectra, the upfield chemical shift of indole F from
—121.5 ppm to —121.6 ppm demonstrates the involvement of F
atom in the interaction (Fig. S11a). Figure 2b & Figure S11b exhibit
that caffeine aromatic proton and three methyl protons all show
upfield shift of around 0.05 ppm. The NMR titration results confirm
the mutual shielding effect of caffeine rings on CO molecule. Hence,
we can infer that these two molecules interact by m-stacking and
hydrogen bond interactions.

BODIPY dyes are known to self-assemble and self-quench in aque-
ous solutions**””. To understand how CO fluoresces upon addition of
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Figure 1| Fluorescence responses of CO against caffeine. (a) Fluorescence spectra of CO (10 pM) with different concentration of caffeine in water under
excitation of 532 nm green light. Inset is the structure of CO. (b) photographs of CO (10 uM) aqueous solutions containing caffeine concentrations
from 0 mM to 50 mM under the irradiation of a 532 nm green laser beam.
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Figure 2 | NMR titration experiments of CO against caffeine. (a)'H NMR titration of CO with caffeine (amine). From bottom spectrum to top
spectrum, they represent different molar ratios of CO against caffeine, from pure CO (n = 0) to much caffeine excess (n = 32). n is the equivalent of
caffeine to CO. (b)'H NMR titration of CO with caffeine (7.70—6.30 ppm range). Inset refers to the proton labelling scheme. The detailed NMR condition

has been depicted in Methods.

caffeine, we first conducted dynamic light scattering (DLS) analysis.
Figure S12 indicates that CO aggregates in aqueous phase with an
approximate radius of 20 nm, which corresponds with previously
published results®. Next, to confirm the existence of CO aggregates
and to analyse the condition of CO in the presence of caffeine, we
performed imaging by transmission electron microscopy (TEM). As
shown in Fig.S13, the size of CO-caffeine complex increases with the
addition of caffeine. This indicates that the ambient environment of
CO is changed with the addition of caffeine. CO-caffeine interaction
disassembles the aggregates of CO molecules and leads to the forma-
tion of larger complexes. Thus, the self-quench of CO in aqueous
solution is reverted and its intrinsic fluorescence shows up.

Selectivity test and development of caffeine detection kit. To test
the possibility of developing CO into a feasible caffeine detection kit,
we tested its selectivity against other bio-related molecules and
caffeine analogs, which may interfere with its fluorescence re-
sponse. Through in-house screening, we found that CO exhibits
superior selectivity towards caffeine, which rules out the likelihood
of interference during detection (Fig. S14 & Fig. S15, Table S1).
Moreover, CO demonstrates good selectivity for various caffeine
analogs, such as theophylline and theobromine, which have been
difficult to differentiate by previously reported caffeine receptors
(Fig. 3a, Fig. S$16). Caffeine yielded a 2-fold and 5-fold fluorescence
enhancement as compared to theophylline and theobromine,
respectively, while none of the other caffeine analogs exhibit
substantial fluorescence response towards CO. Thus, we can safely
differentiate caffeine from theophylline and theobromine, based on
their remarkably different fluorescence responses. Furthermore, the
caffeine amount in beverages significantly outnumbers theophylline
and theobromine, which means that CO can be reliably developed
into a selective and sensitive caffeine detection kit*.

To make caffeine visible, we developed a caffeine detection kit to
extract caffeine from beverages with complicated impurities and
tested its eligibility to differentiate normal coffee and decaffeinated
coffee. A syringe inserted with reverse phase materials was used for
the elimination of auto-fluorescent impurities. A short C4 column
rinsed with 75% ethanol (EtOH)/H,O was first loaded with coffee
samples, and then washed with K,CO; (1 mM) and deionized water,
followed by eluting with 15% EtOH/H,O. The eluent was collected
and mixed with CO and small amount of EtOH (final CO concen-
tration is 13.5 uM, EtOH amount 15%). Under the irradiation of a
green laser pointer (532 nm), coffee and decaf samples showed
remarkable colour differences. Coffee gave a reddish orange colour,
while a yellowish green hue is observed for the decaf sample (Fig. 3c,
Fig. S17 & S18). The amount of caffeine in both coffee and decaf

samples can also be accurately measured with the help of fluor-
escence standard curve (Fig. 3b, Fig. S19 & S20). Furthermore,
the whole extraction and detection process can be completed within
a minute, making it highly practical in real-life caffeine detection.
This further demonstrates the feasibility of developing CO into a
portable caffeine detection kit and quantifying the caffeine amount
in various beverages (Details in Methods and movie supporting
information 1).

To test the applicability of our caffeine detection kit, we estimated
the caffeine amounts of various beverages and compared them with
the actual caffeine amounts acquired from HPLC measurements
(Fig. 4 upper, Table S2). As shown in the Fig. 4, results from the
HPLC and the fluorescence data correlate very well, thus we confirm
that this caffeine detection kit could achieve rapid, as well as sensitive
measurement of caffeine. For the convenience of general users, we
constructed a caffeine concentration-dependent colour bar with high
amount of caffeine exhibiting red colour and low amount of caffeine
showing green colour (Fig. 4 lower). Since different amounts of caf-
feine show different colours in our detection kit, by comparing the
observed colour with the reference bar, we can easily estimate the
amount of caffeine present in the sample. This is referred to as a
“traffic-light caffeine amount designator”, with the reddish orange
colour indicating a stop sign for people who cannot uptake caffeine,
Yellow colour as a warning and green colour indicating a safe zone.
Thus, users could rapidly make a decision as to enjoy the beverage or
not.

Development of automated caffeine detection system. To fully
utilize our traffic-light caffeine sensor, we setup an automated
system by incorporating microfluidics technique. The whole
extraction process can be fully automated using a centrifugal
device. As shown in Fig. 5a, the disc (dia. = 12 cm) has chambers
for coffee sample (1.2 mL), 75% EtOH (400 pL), K,CO3 (200 pL),
deionized water (DI) water (200 pL), 15% EtOH (200 pL), and CO
(0.1 mM, 22 pL). The detail of the disc fabrication and the valve
actuation mechanism is reported elsewhere®®*. In brief, the
microfluidic channels and chambers are fabricated by CNC-
micromachining and the device is composed of three pieces of
polycarbonate disc. The 5 mm thick middle disc has a through-
hole for C4 column, which is prepared by packing the C4 particles
between the frits. The top disc has sample injection holes and the
ferrowax microvalves are actuated on demand by laser irradiation.
As the disc spins (3,000 rpm, 1 min), 75% EtOH solution is trans-
ferred to C4 column, while big particles in the coffee sample sediment
in the sample chamber. After opening valve #1 by laser irradiation,
1 mL of supernatant particle-free coffee sample is transferred into
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Figure 3 | CO selectivity and its application to detect caffeine amount.
(a) Selectivity of CO (10 pM) against different caffeine analogs (1 mM).
(b) Fluorescence spectra of CO (10 pM) incubated with normal coffee and
decaf after extraction processing. (c) Photographs of CO (10 pM)
solutions containing eluents from different coffees (left: normal coffee;
right: decaf) under irradiation of a green laser pointer (532 nm). Values are
represented as means and error bars as standard deviations (n = 3).

the C4 column chamber and the input channel is blocked by closing
valve #2. Then, the C4 column is washed by K,CO; and DI water by
actuation of valves #3 and #4, respectively. Then, the channel to the
waste chamber is closed by laser irradiation on valve #5 and the
caffeine is eluted and transferred to the detection chamber by actu-
ation of the valves #5 and #6. The eluted caffeine is mixed with pre-
stored CO and the final concentration is measured under excitation
at 532 nm with an optical fiber-coupled spectrophotometer. The
total spin process takes about 5 minutes and can be further reduced
by modifying the spinning velocity (Table S3). Figure 5b shows CCD
images at each step (movie supplementary information 2). The cal-
ibration curve obtained using samples with known caffeine concen-
tration showed good dynamic range and reproducibility (Fig. 5c¢).
Figure 5d shows data measured with real beverage samples using the
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Coffee 3 10 LemonTea
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Red Bull (Energy) 13 Decaf 2
Red Bull (Classic) 14 Decaf 3
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Figure 4 | The comparison of caffeine concentration acquired from
HPLC and fluorescence methods. Y-axis indicates the caffeine
concentration and X-axis indicates different types of drinks. Grey bars
indicate caffeine concentration derived from HPLC and colourful bars
indicate caffeine concentration derived fluorescence, both after extraction
processing. The bar below is correlating with the colour that different
concentrations of caffeine in the drinks could expose. Values are
represented as means and error bars as standard deviations (n = 3).

lab-on-a-disc. Hence, using this lab-on-a-disc device, caffeine extrac-
tion and detection can be fully automated and users can easily mea-
sure caffeine amount.

Discussion

DOFL has shed light on sensor development in the past decade
Through the high-content screening of more than 8,000 fluorescent
compounds that cover the whole UV-Vis spectrum, we found the
prototype caffeine sensor (BD-185). The structural diversity of our
fluorescent compounds renders us confidence that the interaction
between BD-185 and caffeine is specific and selective, yet we would
like to investigate more deeply into the binding event. First we ruled
out the possibility of single BODIPY interaction, since this fluor-
escent core has been widely explored at most of the positions in
our DOFL and only the indole-bound dye shows response towards
caffeine. Thus we next selected out all of our indole-bound BODIPY
dyes and test their responses. Figure S4 clearly exhibits that any
modification to the effective structure, such as when the Br atom
of indole is replaced with methoxy, methyl or simply removed, will
result in disappearance of fluorescence responses. Though limited by
the indole diversity, we have already learned that Br atom plays an
important role in the interaction. As is already known, heavy atoms
lead to low fluorescence quantum yield*. Furthermore, if Br parti-
cipates into the interaction through intermolecular binding, it is
reasonable to infer that lighter atoms could achieve stronger inter-
actions. Thus we tried to replace Br with Cl and F and successfully
observed stronger fluorescence responses and binding affinity
(Kp(Br) > Kp(Cl) > Kp(F), Fig. S6).

Two aqueous sensors were reported by Severin group, both of
which utilize n-stacking as the driving force for binding caffeine**°.
CO, on the other hand, interacts with caffeine not only through n-
stacking, but also through hydrogen bonding and electrostatic inter-
actions, as exhibited by FT-IR and NMR. However, n-stacking and
other non-covalent forces are well-known to cause fluorescence
quenching due to the formation of low-lying dark excited states*.
Thus it is extremely difficult to induce substantial fluorescence turn-
on phenomenon based on nt-stacking. BODIPY dyes are well-known
to exhibit self-assembling/self-quenching phenomenon in the aque-
ous phase. Combining these two properties, we designed this turn-
on sensor. The interaction of CO and caffeine is strong enough to
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Figure 5 | Microfluidics device that can be utilized for automated caffeine amount determination in beverages. (a) The photograph of a disc for fully
automated caffeine detection. The disc design shows detailed microfluidic layout. The number indicates the order of the valve operation and arrows
indicate the flow of reagents. The red circles with numbers are normally closed-laser irradiated ferrowax microvalves and the blue circles with numbers are
normally open-laser irradiated ferrowax microvalve. (b) The CCD images of the spinning disc at each reaction steps. (c) The calibration curve obtained
using the lab-on-a-disc and caffeine solution with known concentration. Each data points are an average of 4 samples tested with 4 different discs.
(d) Caffeine concentration measured by fully automated lab-on-a-disc with real beverage samples; Decaf (Caffe Vergnano 1882), Coca-Cola, Red Bull
(energy), Coffee (Angelinus Americano), and Espresso (Nespresso Roma). Values are represented as means and error bars as standard deviations (n = 3).

disassemble CO aggregate and force large excess of caffeine to circle
around the CO molecules as shown by TEM. Inside caffeine protect-
ive layer which is highly hydrophobic, CO molecules could fully
stretch and maximally reduce inter-/intramolecular energy loss
and thus its fluorescence emission could be observed.

The centrifugal microfluidic discs has emerged as a promising tool
for point-of-care diagnostics devices to miniaturize and automate
biochemical assays*®. For example, “Sample-in and answer-out” type
of fully automated immunoassays and blood chemistry analysis have
been demonstrated on a centrifugal microfluidic disc starting from
whole blood*****’. It has been also applied to environmental applica-
tions to test water and soil quality. Lafleur et al. measured organic
pollutants directly on the sorbent materials after pre-concentration
in a solid phase extraction (SPE) microcolumn on a disc**. However,
to the best of our knowledge, a fully automated integration of SPE
protocols including sample injection, binding, washing, elution, and
detection has never been demonstrated before. In the lab-on-a-disc
used in this study, the sorbent materials are packed not in the radially
located microcolumn, but between supporting frits located between
the top and the bottom discs, which provide reduced flow velocity for
the efficient SPE extraction. In addition, the outlet from the SPE
chamber has the serpentine channel to control the flow resistance.
With the lab-on-a-disc developed in this study, users can have on-site
information about the caffeine amount simply by spinning the disc
with just one manual step of injecting the beverage sample on a disc.

Prior to this caffeine “traffic-light” designator, no practically
applicable and customer-friendly caffeine detection methods have
been reported. The detection kit developed in our group has several
advantages: (I) it is easy to construct and simple to handle. The whole
kit requires just one syringe equipped with reverse-phase materials
and several washing solutions. Its incorporation into automated
system has enhanced the handling even greater. (II) The detection

process is safe and customer-friendly. No organic solvent is involved
in the extraction process. (IIT) The caffeine extraction procedure is
very fast, taking less than one minute. The customers can apply the
kit as soon as they wish to enjoy the beverages or measure any
sample. (IV) The detection kit shows great adaptability. It has been
proven that the detection could extract caffeine from different bev-
erages that are both chemically and physically complicated. Partial
purification could not only remove most of the auto-fluorescent
impurities, but also is very timesaving. The remarkable selectivity
of CO could greatly reduce the efforts to purify the samples. (V)
The dose-dependent colour bar renders direct visualization of caf-
feine amount in the sample. Thus the detection could function like a
pH paper and clearly guide the customers to make decision. (VI) The
automated microfluidics system serves as an upgraded version of
portable caffeine detector and produces an even safer and convenient
approach for caffeine monitoring.

In summary, we report the first BODIPY-based fluorescence turn-
on caffeine sensor that works in aqueous solution. The fluorescence
colour changes with caffeine concentrations and shows a traffic-light
distinction. The interaction properties of CO with caffeine has been
systematically explored with LC-MS, FT-IR spectroscopy, NMR, DLS
and TEM approaches. The results demonstrate that the change of CO
ambient environment driven by hydrogen-bond and m-stacking
between CO and caffeine molecules renders CO a remarkable fluor-
escence turn-on feature and good selectivity. A caffeine detection kit
was developed in order to purify beverage samples and achieve the
quantitative measurement of caffeine. To facilitate the usage of our
caffeine detection kit in real life, we tested its eligibility for numerous
beverages and constructed a “traffic-light caffeine amount designa-
tor”, which could help estimate caffeine amount even faster.
Furthermore, the whole process can be automated using microflui-
dics devices. The caffeine sensor and detection kit not only can help
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enhance product safety during the extensive consumption of caffeine,
but also serve as a practical path of uniting science with real life.

Methods

Synthesis of (E)-5,5-difluoro-3-(2-(5-fluoro-1H-indol-3-yl)vinyl)-1-methyl-5H-
514,614-dipyrrolo[1,2-c:2’,1-f][1,3,2]diazaborinine (Caffeine Orange). 2, 4-
dimethyl pyrrole 1’ (15 mg, 68 pmol) and 5-fluoro-1H-indole-3-carbaldehyde 2’
(136 pmol, 2 equiv.) were dissolved in 2 mL acetonitrile, with 6 equiv. of pyrrolidine
(48 pL) and 6 equiv. of acetic acid (32 pL). The mixture was shaken at 85°C for 5
minutes, followed by immediate cooling down to zero degree. The resulting crude
mixture was concentrated under vacuum and purified by flash column
chromatography on silica gel (dichloromethane-methnol: 9: 1) to afford 3’ as a dark
purple solid (10 mg, 27 pumol, 40% yield, 99.9% purity, Figure S1). 1H NMR

(500 MHz, CDCI3): 6 8.64 (s, 1H), 7.65 (s, 1H), 7.60 (dd, ] = 9.5, 2.1 Hz, 1H), 7.55 (d,
] = 2.6 Hz, a), 7.53 (s, 2H), 7.30 (dd, ] = 8.8, 4.3 Hz, 1H), 7.09 (s, 1H), 7.01 (td,] =
8.9,2.3 Hz, 1H), 6.87 (d,] = 3.5 Hz, 1H), 6.75 (s, 1H), 6.44 (dd, ] = 3.4, 2.2 Hz, 1H),
2.31 (s, 3H); 13C NMR (125 MHz, CDCI3): 160.59, 159.91, 158.02, 144.59, 138.29,
136.85, 133.86, 133.41, 132.72, 129.24, 125.87, 124.07, 121.04, 117.05, 115.70, 115.60,
114.77,112.61, 112.53,111.98, 111.77, 105.74, 105.55; 19F NMR (282 MHz, CDCI3):
19F NMR (282 MHz, CDCI3) & -121.50 (td, ] = 9.3, 4.4 Hz), -143.21 (dd, ] = 63.5,
31.9 Hz); HRMS (C20H15BE3N3Na): calc. [M + Na]+: 388.1207, found [M +
Na]+: 388.1208.

'H &'’F NMR titration test. 6.7 mg CO compound was dissolved in CDCl; solvent;
the concentration was determined to be 18.4 mM and its'"H &'°F NMR were first
measured on a Bruker DRX 500 NMR spectrometer and Bruker DRX 300 NMR
spectrometer. Then the solution was added to a tube pre-filled with 3.6 mg caffeine,
mixed well and then transferred back to the original NMR tube. Caffeine
concentration was estimated to be 18.4 mM and CO-caffeine molar ratio was 1-1.
After measuring its'H &'°F NMR, the solution was transferred to a tube pre-filled
with 3.6 mg caffeine, which made the molar ratio of CO-caffeine be 1-2. After
measuring its'"H &°F NMR, the solution was transferred sequentially to tubes
containing 7.2 mg, 14.4 mg, 28.8 mg and 57.6 mg caffeine, which made the molar
ratios be 1-4, 1-8, 1-16 and 1-32.

FT-IR measurement of CO-caffeine mixture. CO & caffeine were first dissolved in
dichloromethane and then dried, hence well-dispersed mixture was formed. The
mixture was added into potassium bromide (KBr) crystals and mashed to fine
powder. The fine powder was made into small transparent tablets and its FT-IR
spectrum was measured using SHIMADZU IRPrestige-21 Fourier transform infrared
spectrophotometer.

Transmission electron microscopy observation. In TEM imaging test, different
solutions were first prepared in deionized water and deposited on a thin copper-
support film, followed by drying in vacuo. Images of the samples were obtained with
JEOL JEM 3010 HRTEM microscope and operated at 100 kV without any contrast
agent.

Measurement of dynamic light scattering. The dynamic light scattering was
measured at 25°C in deionized water using quartz cell. DMSO solution of caffeine was
slowly added to water (1% (v/v)) and gives 10 pM concentration. All measurements
were performed in triplicate in Zetasizer Nano ZS.

Reverse-phase syringe-based caffeine extraction procedure. Reverse phase solid
phase extraction (SPE) syringe was prepared by breaking two OROCHEM 3 mL C4
SPE cartridges (200 mg, 3 mL size) and inserting the reverse phase gel into a BRAUN
Injekt 5 mL/Luer Solo syringe. The syringe was first blocked with one frit and input
with gel; after then another frit was inserted to cover the top and packed tightly. The
SPE syringe was first rinsed with 75% EtOH in H,O (2 mL) to fully swell the gel.
Caffeine was adsorbed onto gel surface by pushing 5 mL of beverage samples through
the SPE cartridge. The SPE cartridge was washed sequentially with 1 mL of 1 mM
K,CO; and 1 mL of H,O, followed by elution with 1 mL of 15% EtOH in water. The
eluent was collected in a glass tube containing 15 pL 1 mM dye solution and 100 pL
EtOH. The mixture was visualized with a green laser pointer (5 mW, 532 nm,
Aurora).

Caffeine extraction procedure on a disc. Reverse phase SPE was prepared by packing
40 mg C4 gel on a disc. The reverse phase SPE was rinsed with 0.4 mL of 75% EtOH in
H,O and caffeine was adsorbed on SPE by transferring 1 mL beverage through the
cartridge. The SPE was washed in sequence with 1 mM K,COj; (0.2 mL) and H,O
(0.2 mL), followed by elution with 15% EtOH in H,0 (0.2 mL) and mixed with 22 uL
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