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This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas consid-
ering electron impact ionization and three-body recombination. To simulate with physical properties of plas-
mas, the authors’ previous work on the rescaling of variables is employed and the electromagnetic fields are
calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate tem-
perature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt
to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave
CO2 laser interaction with helium is simulated successfully.
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I. INTRODUCTION

Laser plasma interaction �LPI� is becoming more and
more important as it finds novel and critical applications,
such as initiation of nuclear fusion, laser plasma accelerator
�1�, laser induced breakdown spectroscopy �LIBS� �2�, and
medical imaging based on laser-plasma generated x-rays
�3,4�. In addition, laser plasma interaction can be found in
some laser based manufacturing processes, such as laser
welding �5�.

LPI exhibits very complicated physical phenomena, and
computational studies have been a primary mode of research.
A wide variety of computational methods have been devel-
oped to study LPI, and currently two classes of methods
seem to be most popular: macroscopic methods based on
hydrodynamic models and microscopic methods based on
the dynamics of charged particles. Hydrodynamic models of-
fer a well-established set of governing equations and numeri-
cal methods, but they treat plasmas as continuum fluids using
the continuum hypothesis. Therefore, a lot of physics can be
lost during derivation procedures and hydrodynamic models
are in some cases oversimplified. On the other hand, micro-
scopic methods are direct implementations of microscopic
behaviors of particle species. Among others, the particle-in-
cell �PIC� method �6� is arguably the most popular method
for plasma modeling. Theoretically, PIC can retain physics to
the maximum extent, but it is computationally expensive and
limited to relatively small physical domains.

In between the two classes of methods are mesoscopic
methods based on the Boltzmann transport equation. The ad-
vantages of the Boltzmann equation lie in the fact that, it
contains deeper information on the plasma system than mac-
roscopic equation approaches while it is computationally
more efficient than the microscopic approaches, such as PIC.
In fact, theoretically, the Boltzmann equation, when solved
with Maxwell’s equations, gives exact solutions to plasma
problems.

In this paper, we present a numerical method for LPI
based on the lattice Boltzmann method �LBM�. Although the
LBM is developed independently of the Boltzmann equation,
it has been shown that the lattice Boltzmann equation can be
derived from the Boltzmann equation by discretization in
both time and phase space �7�. Theoretically, the higher the
order of the phase-space discretization is, the closer the so-
lution of the LBM approaches to the actual solution of the
Boltzmann transport equation; that is, more information can
be recovered from the LBM. In this study, however, because
the objective is to explore the possibility of the LBM for LPI
simulation, a simple D2Q9 scheme is adopted. Therefore, as
reported in �8�, the present LBM is not expected to recover
physics beyond the continuum limit. This study assumes that
the plasma is weakly ionized, so only collisions with neutrals
are modeled using the Bhatnagar-Gross-Brook �BGK� ap-
proximation �9�, which is the inherent collision algorithm in
the LBM. For the sake of simplicity, only electron impact
ionization and three-body recombination are considered for
inelastic collision processes. Electromagnetic fields are cal-
culated from the Maxwell equations using the finite-
difference time-domain �FDTD� method �10�. The Maxwell
equations and the lattice Boltzmann equations are coupled by
the external force and current density. By using the standard
D2Q9 algorithm in this study, only number densities and
velocities can be calculated from the LBM. Thus, in order to
calculate temperature fields, a separate set of energy equa-
tions is derived and included in this model. This method is
applied to continuous-wave CO2 laser interaction with he-
lium plasmas, and some interesting results are presented.

II. MATHEMATICAL MODEL

A. Lattice Boltzmann equations

In this study, the following assumptions are used to sim-
plify the model:

�1� The helium plasma is weakly ionized, so only the
collisions with neutral particles are considered.

�2� Only first ionization is considered. Therefore, the
plasma is composed of electrons, neutrals, and singly ionized
helium atoms.*Corresponding author. hski@unist.ac.kr
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�3� Only electron impact ionization and three-body re-
combination are considered. Other inelastic collisions, such
as excitation, de-excitation, and charge attachment are ne-
glected.

Based upon the assumptions above, the Boltzmann equa-
tions with BGK collision terms for electrons, ions, and neu-
trals can be written as �11,12�

� fe

�t
+ ve · �fe + ae · �ve

fe = −
fe − fen

eq

�en
+ Refe

eq, �1�

� f i

�t
+ vi · �f i + ai · �vi

f i = −
f i − f in

eq

�in
+ Rifi

eq, �2�

� fn

�t
+ vn · �fn = −

fn − fnn
eq

�nn
− Rnfn

eq, �3�

where the subscript s �s=e , i ,n� denotes the type of particles
and can take e, i, and n for electrons, ions and neutrals,
respectively; fs�x ,vs , t� is the single particle distribution
function of particle species s; vs is its microscopic velocity;
�en, �in, �nn are the relaxation times for electron-neutral, ion-
neutral, and neutral-neutral collisions, respectively; fen

eq, f in
eq,

fnn
eq are the equilibrium distribution functions of electrons,

ions, neutrals, respectively, due to the collisions with neu-
trals; Rs is the coefficient for ionization and recombination;
as is the acceleration due to the Lorentz force and it is as
=qs�E+vs�B� /ms, where qs and ms are the charge and mo-
lecular mass of particle species s, respectively, E is the elec-
tric field, and B is the magnetic flux density.

If He et al.’s method �13� is used to approximate the
external force terms, the following equations are obtained:

� fe

�t
+ ve · �fe = −

fe − fen
eq

�en
+

ae · �ve − ue�
�e

2 fe
eq + Refe

eq, �4�

� f i

�t
+ vi · �f i = −

f i − f in
eq

�in
+

ai · �vi − ui�
�i

2 f i
eq + Rifi

eq, �5�

� fn

�t
+ vn · �fn = −

fn − fn
eq

�nn
− Rnfn

eq. �6�

The equilibrium distribution of species s due to self-
collisions takes the following Maxwell-Boltzmann distribu-
tion,

fs
eq =

ns

2��s
2exp�−

�vs − us�2

2�s
2 � , �7�

where ns and us are the number density and macroscopic
velocity of species s, respectively; �s=�kBTs /ms is the sound
speed, where kB is the Boltzmann constant and Ts is the
temperature of species s. From the kinetic theory �14�, the
relaxation time �ss� is

�ss� =
1

�ss�ns��vs	
�8�

where �ss� is the cross section of the elastic collision be-
tween particle species s and s� and can be calculated as

�ss�=��rs+rs��
2, where rs and rs� are the radii of particle

species s and s�, respectively; ns� is the number density of
particle species s� and �vs	 is the average value of the ther-
mal speed of particle species s �14�,

�vs	 = � 8

�

kBTs

ms
�1/2

. �9�

Note that the sound speed of particles, the equilibrium dis-
tribution functions and the relaxation times are not only de-
pendent on the particle number densities, but also on the
particle temperatures in the present model.

In this study, unlike the author’s previous work �11� the
cross-collision equilibrium distribution function fen

eq is de-
fined as

fen
eq =

ne

2��en
2 exp�−

�ve − uen�2

2�en
2 � , �10�

where uen is the barycentric velocity of the binary collision
between electrons and neutrals,

uen =
�eue + �nun

�e + �n
�11�

and sound speed �en is defined as

�en =�kBTen

me
, �12�

where Ten is the electron temperature after elastic collisions
with neutrals in the time period of �en. From the kinetic
theory �14� and considering the ionization and recombination
process, Ten can be found as

Ten = Te +
2men�Tn − Te�

me + mn
+

mnmen�un − ue�2

3kB�me + mn�
−

2�enReUie

3kB
,

�13�

where men=
memn

me+mn
is the reduced mass of electron and neutral,

Ui is the first ionization potential �for helium, Ui
=24.59 eV� and e is the unit electronic charge �1e=1.6
�10−19c�. Ten is used here because, to correctly describe the
ionization and recombination dynamics, it is necessary to
describe the postcollision states of the particles. Mathemati-
cally, the adoption of Ten in the equilibrium distribution func-
tion describes the energy transfer between electrons and neu-
trals due to the collisions. Similarly, the cross-collision
equilibrium distribution function f in

eq has the following defi-
nition,

f in
eq =

ni

2��in
2 exp�−

�vi − uin�2

2�in
2 � , �14�

where �in=� kBTin

mi
and Tin is calculated as

Tin = Ti +
2min�Tn − Ti�

mi + mn
+

mnmin�un − ui�2

3kB�mi + mn�
, �15�

where the reduced mass of ions and neutrals is min=
mimn

mi+mn
.

Note that there is no ionization term in the above equation.
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The last terms in Eqs. �4�–�6� represent the rates of
change of the particle distribution functions due to ionization
of neutral particles and recombination of charged particles.
In this model, only electron impact ionization and three-body
recombination are considered. Then the ionization and re-
combination �IR� coefficient for electrons can be decom-
posed into the ionization part and recombination part:

Re = Re
i − Re

r �16�

where Re
i and Re

r represent the electron impact ionization rate
and the recombination rate, respectively. The electron impact
ionization rate can be expressed as

Re
i = �inn�ve	 , �17�

where �ve	 is the average value of the thermal speed of elec-
trons and can be evaluated from Eq. �9�; �i is the cross
section of electron impact ionization which is dependent on
the electron energy meve

2 /2. The data of �i for helium as a
function of electron energy can be found in literature
�15–17�. For the three-body recombination, the formula in
�18� is adopted in this study,

Re
r =

0.822 � 10−33

Te
4.5 neni, �18�

where the electron temperature Te is in the units of eV. Once
Re is calculated by Eqs. �17� and �18�, the IR coefficients of
ions and neutrals can be calculated as Ri=

ne

ni
Re and Rn

=
ne

nn
Re, respectively.

B. Energy equations and Maxwell equations

In this study, the standard D2Q9 lattice is employed.
Hence, a separate set of energy equations for three species
must be introduced. Starting with the Boltzmann equation,
the corresponding energy equation can be obtained by taking
velocity moments of the distribution functions with respect
to the microscopic velocity. Multiplying ��ve�= 1

2meve
2 on ev-

ery term in Eq. �4� and integrating each term with respect to
ve from the negative infinity to positive infinity, we can ob-
tain



v

��ve�
� fe

�t
dve + 


v
��ve�ve · �fedve

= −
1

�en



v
��ve��fe − fen

eq�dve + Re

v

��ve�fe
eqdve

+
ae

�e
2 · 


v
��ve��ve − ue�fe

eqdve. �19�

Following the similar derivation procedure in �19�, we can
obtain the energy equation for electrons as

�	e

�t
+ � · �	eue� = − � · �Pe · ue� + � · �
e � Te� + Je · E

−
3kBnemen�Te − Tn�

�en�me + mn�
+

mene

�en
uen · �uen − ue�

− ReneUie + Re	e �20�

where 	e= 3
2nekBTe+ 1

2meneue
2 is the total energy of electrons;

−
e�Te=qe is the electron heat flux where 
e

= 1
2nekB�ve	�en is the electron thermal conductivity; Je

=−eneue is the electron current density and Je ·E is the Joule
heating term for electrons which can be interpreted as the
energy absorbed from the incident laser beam. The fourth
term on the right hand side of Eq. �20�, which is obtained by
substituting Ten �Eq. �13�� into the energy equation, repre-
sents the energy transfer between electrons and neutrals due
to the cross collisions. The fifth term describes the kinetic
energy change of electron due to collisions while the sixth
term is the energy loss of electrons because of the ionization
and the last term represents the total energy change of elec-
trons due to the ionization. Similarly, the energy equations
for ions and neutrals are

�	i

�t
+ � · �	iui� = − � · �Pi · ui� + � · �
i � Ti� + Ji · E

−
3kBnimin�Ti − Tn�

�in�mi + mn�
+

minn

�in
uin · �uin − ui�

+ Ri	i �21�

and

�	n

�t
+ � · �	nun� = − � · �Pn · un� + � · �
n � Te�

+
3kBnemen�Te − Tn�

�en�me + mn�

+
mnne

�en
uen · �uen − un� +

3kBnimin�Ti − Tn�
�in�mi + mn�

+
mnni

�in
uin · �uin − un� + Rn	n �22�

Equations �20�–�22� constitute a full set of the energy equa-
tions for the three species in a weakly ionized plasma. When
solved with the lattice Boltzmann equations, temperature
fields can be obtained. In this study, Eqs. �20�–�22� are
solved by a finite volume method.

To obtain electromagnetic fields, the Maxwell equations
are solved in this study. In this way, the Lorentz force terms
in the Boltzmann equations and the Joule heating terms in
the energy equations can be calculated. In this study, the
finite-difference time-domain �FDTD� method �10� is
adopted to solve the two curl equations,

� � H = 	
�E

�t
+ J , �23�

� � E = − �
�H

�t
, �24�

where E and H are the electric and magnetic field, respec-
tively; 	 and � are the permittivity and magnetic permeabil-
ity, and J is the current density which can be calculated as
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J = e�niui − neue� �25�

Here, the number densities and velocities of electrons and
ions are obtained from the lattice Boltzmann calculation.
Note that the two divergence equations are automatically sat-
isfied by the Yee lattice grid �10� used by the FDTD. The
UPML �uniaxial perfectly matched layer� boundary condi-
tion �10� is used to terminate the computational domain.

C. Rescaling scheme

In this study, to correctly simulate with physical proper-
ties of plasmas, the author’s method presented in �20� is
employed. Considering the fact that the lattice Boltzmann
equation is a convection-diffusion equation, the rescaling
method is based on the following two rules: �1� the physical
viscosity is equal to the lattice viscosity �the viscosity recov-
ered from the LBM� and �2� the characteristic flow velocity
due to the external force should not be altered by the scheme.
�In the following discussion, the variables with a tilde repre-
sent the lattice variables, i.e., the quantities derived from the
LBM. Also, we will consider electrons for derivation for the
sake of simplicity.�

From the first rule, equating the lattice viscosity

�̃ = � − 0.5��̃2�t =
� − 0.5��̃�x

�3
�26�

with the physical viscosity

� =
8�2�

3�
�27�

yields

�̃ =� 8�

3��t� − 0.5�
� . �28�

Here, �x=�3�̃�t and �̃ is the lattice sound speed. The above
equation can be rewritten as

�̃ =
�

�
�29�

if the rescaling parameter � is defined as follows:

� =�3��t� − 0.5�
8�

. �30�

Here, � and  are the physical relaxation time and the dimen-
sionless relaxation time for collisions, respectively.

As for the rescaling of the acceleration term, we define
the characteristic velocity in this model as the drift velocity
of the charged particles caused by the Lorentz force; that is,
U0=a�. According to the second rescaling rule, the lattice
acceleration term can be found as �20�

ã =
�

�̃
a , �31�

where �̃ is the lattice relaxation time which can be found

directly from the relationship of �̃=�t. In the above equa-

tions, the dimensionless relaxation time  is a selected con-
stant between 0.5 and 3.0 and is identical for all the three
species of particles in the simulation.

Note that because the time step in this study is constrained
by the stability requirement of the FDTD method, a slightly
different procedure of selecting parameters is used. In �20�,
two parameters,  and �x, are chosen freely before the se-
lection of other lattice parameters, and all three dimension-
less relaxation times are set to 0.9. Once the lattice sound
speed is determined from the rescaling rules, time step is

calculated as �t=�x /�3�̃. However, in the current simula-
tion, the time step �t must meet the stability requirement of
the FDTD method, which means that �t will be much
smaller. �The procedure of selecting the time step will be
explained in the next section.� In this study, therefore, the
lattice size �x is determined first by the resolution require-
ments of the problem. Here, �x is chosen as 1/20 of the laser
wavelength to capture the accurate wave like behaviors of
the laser beam. Next, the time step is determined by the
stability requirement of the FDTD method �Eq. �44��. After
selecting a dimensionless relaxation time in the value range
between 0.5 and 3.0, the rescaling factor � can be calculated

from Eq. �30�. Then the lattice sound speed �̃ can be found

from Eq. �29�, the lattice relaxation time �̃ is obtained from

the relationship of �̃=�t, and the lattice acceleration term
can be obtained from Eq. �31�.

D. Lattice Boltzmann method

Once parameters are rescaled, the traditional D2Q9 �21�
scheme can be used to solve the lattice Boltzmann equations.
In this scheme, the velocity is discretized into nine discrete
velocity components,

es
� = ��0,0� � = 0

�3�cos ��,sin ����̃s � = 1,2,3,4

�6�cos ��,sin ����̃s � = 5,6,7,8,
� �32�

where the superscript � denotes the �th component in the
phase space; es

� is the �th component of the discretized mi-
croscopic velocity of particle species s and �� takes the fol-
lowing form:

�� = �� − 1��/2 � = 1,2,3,4

�� = �� − 5��/2 + �/4 � = 5,6,7,8.
� �33�

Then the self-collision equilibrium distribution function can
be expressed as

fs
�,eq = ��ns1 +

�es
� · us�

�̃s
2

+
�es

� · us�2

2�̃s
4

−
us

2

2�̃s
2� . �34�

And the cross-collision equilibrium distribution functions are

fen
�,eq = ��ne1 +

�ee
� · uen�

�̃en
2

+
�ee

� · uen�2

2�̃en
4

−
uen

2

2�̃en
2 � �35�

and
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f in
�,eq = ��ni1 +

�ei
� · uin�

�̃in
2

+
�ei

� · uin�2

2�̃in
4

−
uin

2

2�̃in
2 � �36�

where the coefficient �� is

�� = �4/9 � = 0

1/9 � = 1,2,3,4

1/36 � = 5,6,7,8.
� �37�

Finally, the lattice Boltzmann equations derived from the
Boltzmann equations �Eqs. �4�–�6�� can be written as

fe
��x + ee

��t,t + �t� = fe
��x,t� −

fe
��x,t� − fen

�,eq�x,t�
en

+ �tJe
��x,t� + �tFe

��x,t� , �38�

x∆

o p qo′ p′ q′

( )e q xβ ∆( )e o xβ ∆ ( )e p xβ ∆

FIG. 1. Schematic of the interpolation scheme. The value of
distribution function at p can be found by using the postcollision
values at o�, p�, and q�.

(0, 0) (256, 0)

(0, 256) (256, 256)

Vacuum

Helium

Interface (j = 200)

PML Layer

FIG. 2. Schematic of the computational domain with the grid
information and the UPML for the FDTD solver.

FIG. 3. �Color online� x-component electric field �domain size: 135.68�135.68 �m2�. �a� t=5 ps, �b� t=15 ps, �c� t=40 ps, and �d�
t=120 ps.
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f i
��x + ei

��t,t + �t� = f i
��x,t� −

f i
��x,t� − f in

�,eq�x,t�
in

+ �tJi
��x,t� + �tFi

��x,t� , �39�

fn
��x + en

��t,t + �t� = fn
��x,t� −

fn
��x,t� − fn

�,eq�x,t�
nn

− �tJn
��x,t� , �40�

where sn is the dimensionless relaxation time for collisions
between particles s and n; Js

�=Rsfs
�,eq�x , t� is the gain/loss

term of species s due to ionization and recombination; and

Fe�i�
� �x , t�=

ãe�i�·�ee�i�
� −ue�i��

�̃e�i�
2

fe�i�
�,eq�x , t� is the external force term for

charged particles. The above equations can be solved by the
collision and streaming scheme on the D2Q9 lattice. Then
the macroscopic variables can be calculated as

ns�x,t� = �
�

fe
��x,t� , �41�

ns�x,t�us�x,t� = �
�

es
�fe

��x,t� . �42�

Since the present model is composed of three submodels,
the time step should be selected as

�t = min��tLBM,�tFDTD,�tENG� , �43�

where �tLBM is the time step for the LBM, �tFDTD is the time
step for the FDTD, �tFDTD�

�x
�c �where c is the speed of light

and � is a constant greater than 1�, and �tENG is the time step
for the energy equations. In this study, �tFDTD is the smallest,
so we choose the time step as

�t = �tFDTD =
�x

�c
. �44�

Since �tLBM is much larger than �tFDTD, particle species
cannot stream to the adjacent node points during �tFDTD.
Thus, an interpolation scheme needs to be introduced to find
the on-node values of the distribution functions after the
streaming step in LBM. Referring to Fig. 1, the following
interpolation formula is obtained for electrons,

FIG. 4. �Color online� Joule heating patterns �domain size: 135.68�135.68 �m2�. �a� t=5 ps, �b� t=15 ps, �c� t=40 ps, and �d� t
=120 ps
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fe�p� =
nkfe�p��

�n − m��k − m�
−

mnfe�o��
�k − m��n − k�

+
kmfe�q��

�n − m��n − k�
.

�45�

Here, m=�e�p�, n=�e�q�+1 and k=�e�o�−1, and �e�x , t�
=�3�̃e�x , t��t /�x. The interpolation scheme applied in this
study is similar to the one used in �11�. However, since the

lattice sound speed �̃e is dependent on temperature �and con-
sequently, dependent on both time and space�, the present
interpolation formula is different from the one used in �11�.
Interpolation formulas for neutrals and ions can be obtained
similarly.

III. RESULTS AND DISCUSSION

In this study, the continuous-wave CO2 laser interaction
with helium is simulated with the presented model. The com-
putational domain is a 135.68 �m�135.68 �m square,
which is discretized by a uniform 256�256 grid. The no-
gradient boundary condition is applied on all the boundaries
enclosing the helium. As shown in Fig. 2, a uniaxial perfectly
matched layer �UPML� boundary condition is used for the
FDTD solver. The PML thickness is 30 grid points. A CO2
laser beam whose wavelength is 10.6 �m is incident from
the top of the computational domain and propagates along
the negative y direction. Initially, the helium is assumed to
have a 0.01% ionization degree. The initial number densities
of neutrals, ions and electrons are 2.687�1019, 2.687
�1015, and 2.687�1015 cm−3, respectively. The initial tem-
peratures of all three species are Te0=Ti0=Tn0=1.058 eV ac-
cording to the Saha equation.

Figure 3 shows the x component of the electric field for
the laser intensity of 1.25�107 W /cm2, from which we can
visualize how the laser beam propagates and interacts with
the helium. Initially, intensity attenuation along the beam
propagation direction is small, but as the ionization process
is getting established, more and more laser energy is ab-
sorbed in the thin helium layer at the helium-vacuum inter-
face. As seen in the figure, at about 120 ps, almost entire
laser beam is blocked by the free electrons, and only a small

fraction of the laser beam penetrates inside. Figure 4 shows
the corresponding Joule heating patterns in helium. Initially,
heating is pretty uniform in the beam propagation direction,
but as time elapses, the heating is concentrated in the small
area at the helium-vacuum interface. This is another evi-
dence of the ionization process and free electron production.
Once the laser beam crosses the interface, it will heat up free
electrons. As a result, the electron energy, including both the
macroscopic kinetic energy and the thermal energy, will go
up. If the electron energy is higher than the ionization poten-
tial of helium, free electrons will be generated through the
electron impact ionization process.

Figure 5 presents the evolution of the maximum electron
number density in the whole domain for several laser inten-
sity values. Note that the values shown in the figure are
normalized electron number densities with respect to the ini-
tial neutral number density. Therefore, they are the maximum
ionization degree in the computational domain at the given
instant. As clearly seen, the maximum number density in-
creases with time and tends to saturate at some point. How-
ever, although relatively low laser intensity values are used
�1.25�107–2�107 W /cm2�, the maximum ionization de-

FIG. 5. Evolution of the maximum ionization degree in the
domain.

FIG. 6. Degree of ionization along the beam propagation
axis.

FIG. 7. Evolution of maximum electron temperature in the
domain.
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gree becomes too large, about 10%, for all cases. This seems
to be too large considering the small laser intensity values
and violates the assumption of weakly ionized plasma. In
reality, the maximum ionization degree occurs always at the
very first grid point where the laser hits the helium along the
centerline �let us call this point A�, and after that point, it
decreases very sharply. This is clearly shown in Fig. 6, which
is the ionization degree distribution along the central line of
the domain. The result is obtained for 1.25�107 W /cm2.
After 100 ps, the increase in the ionization degree in the
whole domain is small except at a very small region near the
interface: there is still a huge increase in the ionization de-
gree there. However, the authors believe that this point is like
a singularity due to the discontinuity in geometry �vacuum
and helium� and that the actual maximum ionization degree
is less than 3%. Also, in most part of the domain, the ioniza-
tion degree is less than 0.5%, which justifies the assumption
of weakly ionized plasma. Apparently, this high ionization
degree is partially due to the recursion effect: more electrons
induce higher energy absorption, which in turn increases the
free electron production rate. Note that a logarithmic scale is
used in Fig. 6.

In Fig. 5, we can also see that the electrons are generated
with a higher rate if the laser intensity is higher. That is
natural because higher laser intensity indicates that more la-

ser energy is put into the domain in a unit time and thus leads
to a quicker heating of the electrons. As long as the electron
energy is greater than the ionization potential, the ionization
will keep taking place and more and more free electrons will
be generated. However, ionization itself is a cooling mecha-
nism for electrons because in impact ionization the electron
energy is used for ionization. This is apparent in the energy

FIG. 8. �Color online� Ionization coefficient Re
i �left� and Recombination coefficient Re

r �right� �domain size: 135.68�135.68 �m2�.

FIG. 9. Time history of ionization and recombination coeffi-
cients at point A for laser intensity of 1.25�107 W /cm2.
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equation where the ionization process appears as a sink term.
Consequently, with more electrons generated, the electron
temperature begins to decrease as shown in Fig. 7, which is
the time history of maximum electron temperature in the
computational domain. In this figure, comparing with Fig. 5,
we can see that the electron temperature increases very
quickly in a very short amount of time when the ionization
has not taken place effectively. For example, at the laser
intensity of 2�107 W /cm2, the maximum electron number
density starts to increase at around 38 ps, which corresponds
to the point at which temperature starts to decrease.

As the electron temperature decreases, the ionization rate
is reduced accordingly. At the same time, since the recombi-
nation rate is proportional to the number densities of charged
particles and inversely proportional to the electron tempera-
ture, the recombination becomes more and more prominent.

Reduction of ionization and enhancement of recombination
lead to a lower generation rate of free electrons, and there-
fore, the electron number density saturates as shown in Fig.
5.

Figure 8 is the distributions of ionization coefficient Re
i

and recombination coefficient Re
r at t=40 ps and t=160 ps

for the laser intensity of 1.25�107 W /cm2. Initially, the
ionization coefficient is very high in the thin layer at the
helium-vacuum interface while the recombination coefficient
is small there. This leads to a strong ionization process. As
time elapses, the recombination coefficient increases and
eventually becomes in the same range as the ionization co-
efficient. This is shown well in Fig. 9, which presents the
time histories of the ionization and recombination coeffi-
cients at point A. In that figure, the ionization coefficient
increases steeply and then decreases and reaches a steady

FIG. 10. �Color online� Snapshots of electron �left�, ion �middle�, and neutral �right� number densities �number of particles per cm3�
�domain size: 135.68�135.68 �m2�.
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state due to the decrease of the electron energy. As stated
before, this energy loss is caused by the ionization itself
because ionization is a cooling mechanism. Meanwhile, the
recombination coefficient monotonically increases and
reaches a steady state due to the combined effects of electron
number density and temperature. Also, the recombination of
charged particles releases energy, which can contribute to the
increase in the electron temperature. Note that eventually the
ionization and recombination coefficients converge to the
same rate. One more thing to note in Fig. 9 is that the evo-

lution of the ionization coefficient has the similar pattern as
the evolution of electron temperature in Fig. 7. This is be-
cause the ionization coefficient is mainly dependent on the
electron energy �Eq. �17��.

Figure 10 shows electron, ion and neutral number density
distributions at 80, 160, and 240 ps for the laser intensity of
1.25�107 W /cm2. The patterns of free electron and ion
generation are very similar, which is reasonable because ac-
cording to the model one electron from a neutral means the
generation of one singly ionized ion at the same location. We

FIG. 11. Evolution of maximum ion temperature. FIG. 12. Evolution of maximum neutral temperature.

(a) (b)

(c) (d)

FIG. 13. �Color online� Electron temperature distributions �domain size: 135.68�135.68 �m2�. �a� t=5 ps, �b� t=15 ps, �c� t=40 ps,
and �d� t=120 ps.
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can also see that the generation of free electrons and the loss
of neutrals are matched well. Also, following the Gaussian
laser distribution, more electrons are generated along the
central line. It is also seen in Fig. 10 that most of the free
electrons are generated in a thin layer at the helium-vacuum
interface.

Figures 11 and 12 show the time histories of the maxi-
mum ion and neutral temperatures in the domain, respec-
tively. The ions are directly heated by the laser, but the heat-
ing is much slower than the electron heating because the ions
are much heavier than the electrons. The ion temperature
also decreases after some time as do the electrons. However,
the cause of this temperature decrease is primarily the attenu-

ation of the electric field. That is why the ion temperature
starts to decrease at a much later time than the electron tem-
perature. Unlike the charged particles, neutrals are heated by
the energy transferred from the charged particles. As long as
there is temperature difference between charged particles and
neutrals, the cross energy transfer will take place and the
neutrals will continue to get heated.

Figure 13 presents the electron temperature distribution in
the domain for 1.25�107 W /cm2 at four intermediate
times. Overall, the heated region expands spatially with time,
and a very thin layer of intense heating along the helium-
vacuum interface emerges with time. The heating in this
layer is becoming more and more uniform. Also, we can
observe that along the centerline temperature distribution be-
comes uniform too, which is clearly shown in Fig. 14. Figure
14 shows the electron temperature distributions at several
intermediate times along the beam propagation axis. The in-
cident laser intensity is 1.25�107 W /cm2. It is shown that
at about 150 ps, the temperature distribution becomes almost
uniform at 17 eV.

Figure 15 shows the electric field, electron velocity field
and ion velocity field at t=5 ps and t=120 ps. In the figure,
the solid closed contours represent the streamlines of the
vector fields. This plot shows the capabilities of the current
model for capturing the dynamics of the particles. In the
figures, the electrons move in a reverse direction relative to
the electric field while the ions, which bear the positive
charge, show a motion trace consistent with the electric field.
As expected, the relative magnitude of the ion velocity,
which is indicated in the figure by the length of the arrows, is
much smaller than that of electrons.

FIG. 14. Electron temperature distribution along the beam
propagation axis.

electric field
t = 5 ps

electron velocity
t = 5 ps

ion velocity
t = 5 ps

electric field
t = 120 ps

electron velocity
t = 120 ps

ion velocity
t = 120 ps

FIG. 15. �Color online� Electric field �left�, electron velocity field �middle�, and ion velocity field �right�. Domain size: 135.68
�135.68 �m2. .
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IV. CONCLUSION

In this paper, a lattice Boltzmann based numerical method
for simulating LPI has been presented. To the best of the
authors’ knowledge, it is the first attempt to simulate LPI
using the lattice Boltzmann method. In this method, the BGK
approximation for the collisions with neutrals has been em-
ployed to model weakly ionized plasmas, and impact ioniza-
tion and three-body recombination are considered for inelas-
tic collision processes. The presented method has been
applied to the continuous-wave CO2 laser interaction with

helium and the model was able to simulate complicated
physical phenomena of LPI.
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