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Numerical study of 1.1 GeV electron acceleration over a-few-millimeter-long

plasma with a tapered density
Min Sup Hur' and Hyyong Suk®?

ISchool of Electrical and Computer Engineering, UNIST, BanYeon-Ri 100, Ulju-gun,

Ulsan 689-798, South Korea

2APRI, GIST, 261 Cheomdan-gwangiro, Buk-gu, Gwangju 500-712, South Korea
(Received 22 November 2010; accepted 11 February 2011; published online 8 March 2011)

We present two-dimensional particle-in-cell simulations of laser wakefield electron acceleration up
to 1.1 GeV over a-few-millimeter-long plasma with the help of density tapering. We observed that,
in a uniform plasma, the electron beam reaches the dephasing state not only by the slow phase
velocity of the wakefield but also by the relativistic prolonging of the plasma wavelength. Such a
dephasing between the wakefield and beam can be mitigated by an upward density taper. By
employing a parabolically increasing plasma density, we obtained a significant enhancement of the
beam energy from 850 MeV (uniform) to 1.1 GeV (tapered). However, the similar relativistically
promoted dephasing was observed again in the environment of tapered density. Over a few
millimeters the driving laser pulse was well self-guided without any externally prepared channel.
Thus, this parameter regime is suitable for the gas-jet laser wakefield electron acceleration
experiments. © 2011 American Institute of Physics. [doi:10.1063/1.3561781]

I. INTRODUCTION

Since the first idea of using a strong laser pulse and a
plasma to make a compact linear accelerator was proposed
by Tajima and Dawson,' there have been significant accom-
plishments in theories, simulations, and experiments of the
laser wakefield electron acceleration (LWFA). Several years
ago electron accelerations up to 100 MeV were published in
series,> which shed light on the possibility of using the
LWEFA for a future electron accelerator. Two years after those
experiments, the remarkable experiment of the electron ac-
celeration up to 1 GeV was published.3 The 1 GeV electron
acceleration has a special meaning since most of the syn-
chrotron radiation sources in the world are employing elec-
tron beams of a few GeV. In other words, the GeV electron
beams from the LWFA can be used practically for next-
generation x-ray sources.

Other than the Ref. 3, there have been several simulation
works which showed the breaking of GeV barrier® or even
tens of GeV beam generation.5 In all those works they con-
sidered the acceleration over centimeter-long plasmas. To
make such a long plasma as uniform as possible, and to
implement the plasma channel on it, the capillary discharge
is commonly used. However, in a very recent experiment it
was shown that the near-GeV-class electron beams can be
obtained even from a millimeter-long plasma made from a
gas jet.6 The gas-jet plasma in LWFA has several advantages
over the capillary plasmas: easy to build, indefinitely reus-
able, and having a greater margin in laser pulse injection.
Therefore, it is valuable to investigate fully the parameter
regimes for GeV beam generation for the millimeter-long
gas-jet plasmas.

In this paper, we present another example of GeV break-
ing in a millimeter plasma by two-dimensional particle-in-
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cell (PIC) simulations. First we report near-GeV electron
beam generation from the propagation of the driving pulse
by 2.8 mm in a uniform plasma. Then, in the next simulation,
the beam energy was significantly enhanced with the help of
tapered plasma density, where the plasma density has a posi-
tive gradient in the direction of pulse propagation, keeping
all the other parameters the same. The virtue of using the
tapered density is mitigating the dephasing effect. In a
plasma the laser pulse and the following wakefield propagate
slower than light in vacuum, while the accelerated electron
beam flies with almost the vacuum speed of light. Thus, in a
plasma of a flat density, unless it is manipulated otherwise,
the accelerating field (wakefield) is outrun by the electron
beam. Then the electron beam eventually gets out of phase
from the wakefield and goes into the decelerating phase. One
way of reducing such a dephasing effect is tapering the
plasma to have an upward density gradient. In the environ-
ment of the upward density taper, the driving pulse encoun-
ters higher plasma density as it propagates. Therefore, the
wavelength of the following wakefield shrinks forward, by
which the node of the wakefield can move faster than in the
uniform plasma. If the speed of the wakefield node increases
up to the electron beam speed, the in-phase between the
wakefield and beam can be kept for a long distance. This
idea was proposed and simulated before’™ in a somewhat
low energy regime. Recently the optimum condition for
complete phase lock between the electron beam and wake-
field was theoretically addressed."”

Here, we present the effect of density tapering in the
near-GeV regime of LWFA. In most of our simulations the
laser pulse power was about 75-115 TW, and the propaga-
tion distance was about 3—4 mm with a plasma density of
3.8 X 10" cm™. The best simulation result obtained from a
uniform plasma density with those parameters was 850 MeV.
By adding the forward-increasing density, this beam energy

© 2011 American Institute of Physics
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FIG. 1. Conceptual figure of the density tapering and phase lock between
the electron beam and the wakefield.

was enhanced up to 1.1 GeV. Along with these simulation
results, we discuss the dephasing by relativistic expansion of
the wakefield wavelength. This effect is almost equally ap-
plicable to the case of the tapered density, so the tapering
was not so efficient as in the predictions from the linear
theory.

This paper is organized as follows. In Sec. II, we de-
scribe the overall feature of the system and particle-in-cell
simulations we used. In Sec. III, a simple linear theory is
presented which is used as a guideline of the nonlinear PIC
simulations. In Sec. IV, the PIC simulation result of GeV
acceleration is presented along with various dephasing phe-
nomena.

Il. SIMULATION SETUP

To investigate the effects of the tapered density, the
plasma density in the simulation is set up as in Fig. 1(a); the
plasma density is composed of the flat and tapered regions.
We expect that such a density profile can be made from a
tapered gas-jet nozzle or a tapered capillary tube. The advan-
tage of the two-segmented plasma is that the beam injection
(electron trapping) can be decoupled from the effects of the
density tapering on trapping. The electron trapping in the
wakefield is a stochastic process.11 Thus, the number of
trapped electrons, i.e., the beam charge, is sensitively depen-
dent on many laser-plasma parameters, where the plasma
density profile is one of them. From a series of simulations
we observed that the number of trapped electrons varies in a
complicated and unpredictable way as the gradient of the
plasma density changes. But, in the two-segmented plasma,
the particle trapping occurs always in the flat region. Once
some electrons are trapped into the wakefield, the space
charge of the trapped electrons stops further beam loading.
Thus, the beam charge is ensured to be consistent, whatever

Phys. Plasmas 18, 033102 (2011)

is the gradient. The starting point of the density tapering can
be selected as the position where the beam reaches the maxi-
mum accelerating field.

Figure 1(b) shows schematically the in-phasing process
of the beam and the wakefield. The accelerated electron
beam flies with almost the speed of light in vacuum, while
the driving laser pulse, and accordingly the “node” of the
wakefield (i.e., the zero-field point in the longitudinal direc-
tion where the field changes from accelerating to decelerat-
ing), propagates slower (v,<c). So the electron beam out-
runs the node of the wakefield after some propagation
distance (dephasing) entering the decelerating phase. How-
ever, by using the upward density taper, the wakefield node
can be sped up owing to the plasma wavelength shrinkage.
At least in the linear regime the speed of the node can be
controlled by tapering the density profile. In the highly non-
linear regime, as will be seen later, the wavelength shrinkage
and the driving laser’s group velocity do not obey the linear
theory since the relativistic mass increment intervenes.

In the tapered segment of the plasma density, the plasma
density varies as a square of the propagation distance as

n=no1+alz-z)1%, (1)

where z is the starting position of the density tapering. This
density variation corresponds to linear increasing of the
plasma frequency. Over the distance of a couple of millime-
ters and the values of « used for the simulations, the para-
bolic density looks almost linear, so our simulations are ef-
fectively the same as linearly increasing plasma density. In
our simulations we monitored the beam energy enhancement
as the parameter « varies. Note that, in terms of the linear
theory, the parabolic density tapering is not an ideal solution
for the complete phase lock between the electron beam and
the wakefield. Since the driving laser pulse (and accordingly
the wakefield) is lagged behind more severely by the
increasing density, the gradient should be even more steeper
to compensate for that. This point is well described in
Ref. 10. However, at least for the plasma density of order
3X 10" cm™, the relativistic expansion of the plasma wave-
length occurs much before the theoretical prediction as is
shown later. Finding more ideal density profile in the highly
relativistic regime is under progress by simulations.

For the PIC simulations, we developed a new PIC code.
In this code, almost all the standard algorithms of the con-
ventional PIC are employed: We used the Yee-mesh
scheme'? for the electromagnetic field solver. To calculate
the electric current from the simulation particle, we em-
ployed the Villasenor—-Buneman method." The fields on par-
ticles are area (volume)-weighted in the rectangular meshes.
The new feature of the code is that the simulation particles
adhere to the cell, so that a pair of particles close to each
other can be found readily without any separate sorting al-
gorithm, which endows a significant convenience in Monte
Carlo calculation of the Coulomb collisions. This feature will
be published separately. The code was tested and compared
with the well-known PIC code such as XOOPIC (Ref. 14) for
several typical laser-plasma parameters, which showed ex-
cellent agreement.
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lll. PROPAGATION OF THE WAKEFIELD
IN THE LINEAR REGIME

In this section, we study the propagation of a weak laser
pulse and the wakefield in a longitudinally varying plasma
density. An interesting parameter to estimate the dephasing
in the tapered density may be the slippage L, of a laser pulse
from its vacuum position,

Li=Z-z,. (2)

Here, Z is the position of a pulse propagating in vacuum, i.e.,
Z=ct, and z,, is the actual position of the pulse propagating in
the nonuniform plasma. The group velocity of a three-
dimensional pulse in the linear regime is ,Bgzl—wi/ 20?
-1/ kzr(z), where r, is the spot size of the pulse.15 From
dr=dz/v,, the time taken by the pulse to reach z, in the
plasma is

e f v__dz 3)

2,5, 27
0 4~ w20

where 7z, is the starting position of the tapering and
a=1-1/k*r}. For the parabolic density increasing like Eq.
(1), the integration of Eq. (3) yields

w
ct= -
V2aaw,,
W0 W0
1 +T—p—[1 + alz, - 20)] 1—?L
\V2aw \N2aw
X| In +1In
w w
==L [1+a(z,-z)] 1+
V2aw V2aw

(4)

From Egs. (2) and (4), the slippage as a function of vacuum-
propagation distance (Z=ct) becomes

1 \r%w
LA—Z—Z0+_—
a  awy
2
X[ 1=

!,_
1+ w,/ \'Zawe

. 5
< ax’%wpoz> (5)

1 - w, V/Zw

Figure 2 shows the comparison of Eq. (5) and PIC simu-
lations in the linear regime for different a’s. The peak value
of the normalized vector potential of the laser pulse was 0.12
in the PIC simulations. The pulse duration and spot size of
the laser pulse were 32 fs and 16 um, respectively. The laser
wavelength was 1 wm, and the plasma density n, before the
beginning of tapering was 3.8 10'%cm™, which corre-
sponds to w,/ w=0.058. The two-dimensional simulation do-
main was 70 X 140 um? in longitudinal and transverse di-
rections, which were divided by 1400X280 meshes,
respectively. The simulation time step was 1.65X 10716 s,
which satisfies the Courant condition marginally, so that the
numerical dispersion is as small as possible. The dispersion
relation of a two-dimensional wave in finite-sized meshes'®
is
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FIG. 2. The slippage of the laser pulse from vacuum-propagation distance in
a linear regime. The linear theory (solid lines) and simulation (plus marks)
for @=200 (lower curve) and 600 (upper one).

(sin(wAt/2) )2 ~ (sin(kxAx) )2 (sin(kyAy/Z) )2 .
cAt B Ax " Ay . (6

where Ax, Ay, At, k,, and k, are the mesh size in the x- and
y-directions, the simulation time step, and the wave numbers
in each direction, respectively. From the expansion up to the
third order and assuming k,=0 at the propagation axis,

e _wseaise )

w 24 \ A2
W AP [ Ax?
T \2ar ) M

which yields the desired nondispersive wave (w=ck,) in
vacuum when Ax/Ar=c. However, the Courant condition
should also be satisfied:'®

o L L)
1> (cAr) (Ax2 + NI (8)
Because of the second term in inequality (8), Ax=cA¢ cannot
be exactly met. From the simulation parameters we had cho-
sen, the right-hand side of Eq. (8) is 0.989, and the right-
hand side of Eq. (7), i.e., the error, is 0.87 X 1075. By this
error the group velocity in vacuum becomes 0.999 92¢. This
number implies a numerical slippage of the wave in vacuum
by 0.4 pum over 5 mm propagation, which is small enough
for the distance considered in this paper. In Fig. 2, as the
propagation distance increases, the simulation results slightly
deviates from the theoretical values because of the slightly
remaining numerical dispersion.

The dephasing is more directly related to the slippage of
the wakefield node rather than that of the driving laser pulse.
Since the first peak of the plasma wave coincides with the
driving laser pulse’s peak position, the first wakefield node is
measured to be behind the pulse peak by a quarter of the
local plasma wavelength. Once the slippage of the laser
pulse is given as a function of vacuum-propagation distance
Z, then the slippage of the wakefield node can be simply
placed at
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FIG. 3. The slippage of the wakefield node from vacuum-propagation dis-
tance in a linear regime. The linear theory (solid line) and simulation (plus
marks) for =200 (lower curve) and 600 (upper one).

L,=L,+0.25\,(z). )

Here, the plasma wavelength N, is also a function of posi-
tion, given by \,=27c\mey/ e*n(z).

Figure 3 presents typical L, as a function of Z. Before
the density tapering, the slippage linearly increases as the
pulse propagates. For the parabolic density, the slippage de-
creases temporarily and increases again with a steeper slope
than in the flat density region. This is because the group
velocity lagging becomes more dominant than the plasma
wavelength shrinkage in the higher density region. For a
complete phase lock, where L, should be constant, the
plasma density should increase more rapidly. However, that
seems not to be quite a proper solution for phase lock in a
highly nonlinear regime since the expansion of the wake
wavelength by the relativistic effect becomes more dominant
in the higher density region, where the wake amplitude and
the average longitudinal velocity of the electrons are larger.
This point will be addressed again in the following sections.

IV. NONLINEAR REGIME

In this section we report the simulation results conducted
in the highly nonlinear “bubble” regime. Two different val-
ues for the laser wavelength were used: 1 and 0.8 um. The
plasma density was 3.8 X 10'"® cm™, for which the ratio
o,/ w is 0.054 and 0.042, respectively. The power of the
laser pulses was 75 TW for A=1 um and 115 TW for
A=0.8 wm, for all of which the normalized vector potential
was 3.28. The spot radius was 16 wm and the longitudinal
pulse duration was 34 fs in full width at half-maximum.
Other simulation parameters were the same as in the linear
cases.

A. Uniform density

Figure 4 presents the electron phase space and beam
energy spectrum for A=1 um and A\=0.8 um, respectively.
For the A=1 um case the electron beam energy reached the
maximum after the propagation by 2.3 mm (the plasma-
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FIG. 4. The phase spaces of electron velocity (u.) and position (z) and the
beam energy spectra when the maximum acceleration is reached for (a)
A=1 um and (b) A=0.8 um. The plasma density is 3.8 X 10'® cm™.

vacuum boundary starts at z=0.07 mm, so the laser pulse
propagation through the plasma is 2.3 mm from Fig. 4). Be-
yond this point the electron beam entered the decelerating
stage. The beam energy spectrum at the maximum was
560+ 10 MeV. In the other case, where A=0.8 um, the
maximum beam energy was reached after the pulse propaga-
tion by 2.8 mm. In this case the peak beam energy was
located at 850 MeV.

In both cases, the dephasing occurred much before the
linear dephasing limits, which are 5 and 8 mm, respectively.
This can be explained by the enhancement of the plasma
wavelengths by the relativistic electron mass increment. As
the laser pulse propagates, it is depleted yielding the sharply
rising pulse front as in Fig. 5(a). Then the strong pondero-
motive force of the sharp pulse front of the longitudinal mo-
tion of the electrons is amplified, inducing a high relativistic
gamma factor. Figure 5(b) shows well the correlation be-
tween the plasma wavelength and the amplitude of the wake-
field (note that the enhancement of the wake amplitude di-
rectly reflects the increased longitudinal motion). The
dephasing by this wavelength increment is an opposite pro-
cess to the in-phasing by the upward density tapering.

B. Tapered density

The electron beam energy could be significantly in-
creased by adding the density gradient over the previous uni-
form cases. The tapered density profile is given by Eq. (1).
For the case of A=1 um, we simulated three cases with
a=200, 400, and 600, for all of which the starting position of
the gradient z, was 1 mm. The case of A=0.8 wum was also
simulated with @=100 and 200. For these cases, the opti-
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is the case of A=0.8 um in a uniform plasma density by 3.8 X 10** cm™. 1 2 3 4
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mum starting points of the tapering were zp=1 and 2 mm,
respectively. The beam injection (trapping) occurred at the
flat density region for both cases.

Figure 6 presents the evolution of the electron beam en-
ergy as a function of laser pulse propagation. The beam en-
ergy was obtained by averaging the energies of all the
trapped particles. The average beam energy enhancement
was from 550 to 850 MeV for A=1 um, and from 850 MeV
to 1.1 GeV for A=0.8 wm. Figure 7 shows the energy spec-
trum when it reached the maximum (at around 3.6 mm
propagation). The optimum result of the beam energy was
obtained for A=0.8 wum, «=200, and zpb=2 mm. The beam
energy spectrum (Fig. 7) after 3.6 mm propagation shows
three monoenergetic bunches, where the second peak is lo-
cated at 1.12+0.03 GeV. The energy spread over the whole
subpeaks is 0.13 GeV, which is about 11% spread. We also
measured several other useful parameters about the electron
beam presented in Fig. 7(a). The longitudinal beam duration
was 8 fs, which was typical for other cases. It is not possible
to directly calculate the beam charge from the two-
dimensional simulations, but assuming a similar transverse
size of the beam in the z-direction in Fig. 7(a), the beam
charge can be roughly estimated. The number of injected
particles was about 600, with the ratio of superparticles to
real particles of 6 X 10°. From these, the beam charge is ex-
pected to be a few picocoulombs. We also measured the
transverse rms emittance of the beam by e=\y?y"2-yy’2,
which resulted in 0.026. Note that this value will increase
after the beam gets out of the focusing field of the wake.

The saturation of the beam energy in the tapered density

FIG. 6. Electron beam energies as functions of pulse propagation distance
for various tapering parameters.

was led dominantly by the relativistic wavelength expansion
of the plasma wave as mentioned in the previous section.
This point can be assured from Fig. 8, which represents the
slippage of the driving laser pulse and the wake node in the
tapered density. For the slippage of the laser pulse, we mea-
sured the position of peak, which was subtracted from the
vacuum-propagation distance. As in Fig. 8(a), the slippage of
the driving laser pulse is smaller in its absolute value, al-

90 T 25
2 -
80 1. 0
= €
c N 515 |+
[ 5 .
st B g
N < =10
60 - 5
(@) J (b)
50 | 0 | |
4.310 4.314 4318 06 08 1.0 12 14
z (mm) E (GeV)

FIG. 7. (a) The electron beam and (b) its energy spectrum after the propa-
gation by 3.6 mm in Fig. 6(b). This is the case where N\=0.8 um and
a=200.
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FIG. 8. The slippage of (a) the driving laser pulse and (b) the wakefield
node in the linear and nonlinear regimes. The plus and cross marks represent
the measurements from PIC simulations for tapered and uniform cases, re-
spectively. The solid lines are the linear theory, i.e., Eq. (5). The dashed
lines are the linear fitting for the simulation data to see the slope of the
slippage in nonlinear tapered regime. The tapering parameter was a=200
and the laser wavelength was 0.8 um.

though there exist some fluctuations which are believed to
originate from measurement error. This strongly implies that
the relativistic mass increment reduces the group velocity
lag. This is an advantageous point of the relativistic effect.
However, as in Fig. 8(b), it also shows that the mass incre-
ment enforces the wavelength expansion of the wakefield,
quickly restoring the gradient-aided in-phase stage to the
out-of-phase one. As can be seen from the fitting lines, the
slippage of the wake node begins to increase very rapidly
beyond z=2.7 mm, which is due to the relativistic wave-
length expansion. However, in Fig. 8(b), it is clearly seen
that the slippage is smaller in tapered case than in the
uniform case, which is responsible for the beam energy
enhancement.

V. CONCLUSIONS

The breaking of the 1 GeV barrier was the watershed in
the research of LWFA. Such events appeared both in experi-
ments and simulations several times, most of which were

Phys. Plasmas 18, 033102 (2011)

performed for centimeter-long plasmas. The centimeter-scale
plasma is usually generated from capillary discharge (or ab-
lation of the inner wall of the capillary tube), which may
have potential problems for practical use: alignment of the
laser beam injection and reusability, among others. In that
point of view, the gas-jet plasma has advantages except that
it is hard to keep the uniformity of the centimeter-long
plasma. Thus, the breaking of the 1 GeV energy for a
millimeter-order plasma, which can be readily prepared by
the gas jet, has a significant meaning. In this paper, from
two-dimensional particle-in-cell simulations, we obtained
GeV electron beam from plasmas of just a few millimeters
with the help of longitudinal plasma density taper. The incre-
ment of the beam energy by the gradient-aided in-phasing
quickly stops by the relativistic effect. However, still a sig-
nificant beam energy increase can be obtained by a properly
tuned density profile. This result strongly suggests that the
gas-jet plasma, which is much easier in building experimen-
tally and is more reusable than the capillary plasmas, can
also be used for generating GeV electron beams.
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