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Effects of the energy spread of secondary electrons
in a dc-biased single-surface multipactor

Min Sup Hur," Jung-Il Kim,?> Geun-Ju Kim,? and Seok-Gy Jeon®?
1UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan 689-798, South Korea
2Centerf()r Pioneering Medical-Physics Research, KERI, 1271-19 Sa-dong, Ansan-si 426-170, South Korea

(Received 7 January 2011; accepted 11 February 2011; published online 8 March 2011)

The effects of the energy spread of secondary electrons are theoretically investigated for a dc-biased
single-surface multipactor. In our previous publication [S. G. Jeon ef al., Phys. Plasmas 16, 073101
(2009)], we obtained the conditions for the phase lock of an electron bunch, assuming zero velocity
spread of the secondary electrons. In this work, we extended our previous theory to derive a
quadratic map, by which the stability and bifurcation of the electron bunch can be systematically
investigated. For the study of the energy spread of the secondary electrons, a randomized term was
added to this map. The modified map then showed significant smearing-out of the bifurcated
branches. The theoretical results were verified by particle-in-cell simulations, which showed good
agreement in wide parameter ranges for both cases of monoenergetic and energy-spread secondary
electrons. © 2011 American Institute of Physics. [doi:10.1063/1.3561786]

I. INTRODUCTION

The multipactor discharge is a commonly observed phe-
nomenon in the high power microwave systems.1 This is an
electron avalanche resonantly driven by the coupling of the
secondary electron emission and rf field: Some initial free
electrons merely existing in the vacuum are accelerated by
the rf field to hit a dielectric or conducting surface energeti-
cally to yield secondary electrons. Then the emitted electrons
return to the surface after a few rf cycles and hit it again
yielding another secondary electrons. The reason why such a
process leads to the electron avalanche is that the secondary
yield, i.e., number of emitted electrons for a given incident
electron, is usually larger than unity in most of the rf device
regimes.

In most rf devices, the multipactor discharge is usually
considered as something to be suppressed since the rapidly
proliferating electrons can seriously damage the surface, dis-
sipate microwave energy, change the cutoff conditions of the
microwave transmission, and sometimes even lead to the
vacuum breakdown.'™ In that context, there have been de-
cades of intensive research to suppress the multipactor dis-
charge: for example, the treatment of the surface to reduce
the secondary emission yield,‘l’5 changing the design of the rf
tube, or fabricating the surface structure®”’ to lead the emitted
electrons in the other way.

While most of the research has been devoted to mitigat-
ing the multipactor, there has been another stream of re-
search to utilize it actively for the generation of well-sliced
electron bunches.*” Because the multipactor is an avalanche
procedure, it is possible to make highly intense cold electron
beams if certain resonance conditions are satisfied. One of
the most suitable designs for this purpose may be the dc-
biased single-surface multipactor, where both dc and ac
fields are perpendicular to the emission surface. In this ge-
ometry, since the electrons are emitted in one side only, the
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other open side can be used easily for the installation of the
beam extraction plate without disturbing the bunch genera-
tion process. The normal dc field helps push back the elec-
trons onto the emission surface. When certain conditions are
satisfied, the returning electrons lead to larger-than-unity
yield of the secondary electrons. As is to be seen later, the dc
field is quite important to the generation of stable (actually
proliferating) single bunches of the electrons.

Because of such an unusual configuration, which is very
rare in generic rf systems, there have been just a few studies
on the dc-biased single-surface multipactors.'o‘” In those
works, they found the equation of the fixed point, which
represents the initial phase of such an electron that when it
returns to the target (emission surface), the rf phase becomes
the same as that at the moment of its emission. That is, when
an electron with the initial phase 6, returns and hits the tar-
get, the next secondary electron is also emitted with 6,. The
primary interest in those previous contexts, especially Ref.
11, was to find the resonance zones for the single-bunched
multipacting as functions of the secondary emission velocity.
Furthermore, Semenov er al.'' reported the observation of
the multiphase regimes from the numerical calculation of the
single-electron equation. In the multiphase regime, the phase
of the emitted electrons oscillates between multiple values
instead of converging to a single fixed point. Typically, they
show two, four, and stochastic oscillations as the dc bias
changes. The multiphase feature was addressed again in our
recent work,'” where we found a parameter map showing the
transition (bifurcation) from the single fixed point to double
fixed points.

In a practical point of view, it is difficult to dc-bias the rf
resonator in a high frequency regime like tens of gigahertz
since the usage of the insulating gap to sustain the dc field
usually deteriorates significantly the quality factor of the
resonator. In our previous work, 2 we suggested using a pho-
tonic crystal structure to solve this problem. Motivated by
the experimental plan of such a suggestion, in the same pa-

© 2011 American Institute of Physics
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per, we addressed theoretically the dc-biased multipactor on
a single surface. The starting point was the surprisingly
simple single-electron equation of motion, with the space
charge effect neglected. First we derived the equation of the
fixed point 6, and the stability condition of that point, simi-
larly as in Refs. 10 and 11. Since all other electrons which do
not satisfy the fixed point condition disappear by being ab-
sorbed on the target, a single bunch of electrons can be gen-
erated. Second we established the stability condition of the
fixed point in terms of the dc and ac fields. By numerically
solving the single-electron equation, we observed up to the
first bifurcation (i.e., the transition into the multiphase) of the
fixed point. The bifurcation of the fixed point results in the
double bunches of the electrons in the real space, which was
verified by a particle-in-cell (PIC) simulation. Similar analy-
sis about the fixed point and its bifurcation for double-
surface dc-biased multipactor can be found in Ref. 13.

In our previous analysis of the stability and bifurcation,'*
it was assumed that the emission velocity of the secondary
electron was negligible. However, in the real surface, the
electrons are usually emitted with non-negligible energies.
Furthermore, there is significant energy spread in the emis-
sion energy spectrum. The primary goal of the present work
is investigating the effects of the energy spread on the sta-
bility and property of the single or multiple electron bunches.
We started from the same single particle equation as before,
neglecting the energy spread (but keeping the general non-
zero emission velocity). But this time we addressed the sta-
bility and bifurcation issues by finding a quadratic mapping
function of the phase perturbation. From the analysis of the
mapping function the theoretical conditions of the first and
second bifurcations were obtained. Then the mapping func-
tion was modified to include the emission energy spread. It
was found that the original bifurcation diagram was qualita-
tively preserved, but high-order branches were merged to
each other by the energy spread. The bifurcation diagram
was verified by PIC simulations for both monoenergetic and
energy-spread cases, which showed good agreement for wide
ranges of parameters.

The mapping function approach is advantageous in ad-
dressing the multiphase issues. In Ref. 11, the transition (bi-
furcation) to the multiphase was observed from direct nu-
merical integration of the single-electron equation. However,
by using the mapping function as in this present work, the
parameter regimes for single, double, quadruplet, and sto-
chastic oscillations of the fixed point can be investigated
more systematically without integrating the equation of mo-
tion. Furthermore, we explored the bifurcation as a function
of control parameters, such as dc or ac amplitude, instead of
the intrinsic parameter such as the emission Velocity.11
Implementation of the secondary energy spread into the map-
ping model is also a unique point of the present work.

This paper is organized as follows. In Sec. II, the map-
ping theory of stability and bifurcation of the fixed point is
presented along with the PIC simulation results. In Sec. III,
the modified mapping function is presented for the energy
spread and compared with the PIC simulations. We summa-
rize our major conclusions in Sec. I'V.

Phys. Plasmas 18, 033103 (2011)
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FIG. 1. The schematics of the multipactor system. Two parallel plates are
driven by the combined dc and ac fields. In a real system the ac field is
provided by the radio-frequency wave in a photonic crystal structure (Ref.
12). Only the lower plate yields the secondary electrons. The upper plate
absorbs the electrons in the simulation.

Il. FIXED POINT THEORY WITH ZERO VELOCITY
SPREAD OF THE SECONDARY ELECTRONS

A. Fixed point equation

When the space charge effect and the radiation by elec-
tron motion are neglected, the electrons interact only with
the applied dc and ac electric fields. Thus, the single-electron
equation of motion is just enough to understand the system:

2

% =- iEd - iE sin(wr + 6), (1)
where E, is the amplitude of the ac electric field and E is the
dc electric field. In the system arranged as in Fig. 1, E,; is
aligned in the positive z-direction, so that the electrons can
impact on the emission plate strong enough to yield numer-
ous secondary electrons. However, E, should be sufficiently
larger than E, to prevent premature impact.12 The integration
of Eq. (1) by time yields the velocity and the position of a
single electron:

eE eE,
v(t) =vy— —dyy —[cos(wt + 6,) — cos 6], (2)
m mo
E E E
z(r) = (vo - ucos Go)t - uﬂ + e—az
mw 2m mo
X[sin(wt + 6y) — sin 6;]. (3)

Note that the electron starts from z=0 at t=0 with the initial
velocity v, in Eq. (3).

The resonance condition can be defined such that the
emitted electron returns to its original position after the nth
period of the ac field, so that the next electrons (i.e., by the
secondary emission with v,) start from exactly the identical
condition as their parent electrons. Then for the resonance,
Z(t=2nm/ w)=0, which yields the fixed point equation

Downloaded 01 Aug 2013 to 114.70.7.203. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



033103-3 Effects of the energy spread of secondary electrons...
mawu E

cos 6= L = (4)
eE, E,

In other words, if an electron starts with the initial phase 6,
then it returns to the original position with the phase 6, after
n-oscillations of the ac field. For the convenience in calcula-
tion further on, the variables are normalized as follows.

S (5)
where € and v represent the ratio of the dc electric field to the
ac amplitude and the normalized emission velocity of the
secondary electron, respectively.

The possible range of cos 6, and sin 6 is restricted by a
couple of conditions: First, the electron velocity at the mo-
ment of impact should be in the —z-direction and, second, the
direction of the force just after the impact should be positive
to prevent the premature impact. The first condition gives
v(wt=2n1) <0 in Eq. (2), which yields, along with Eqs. (4)
and (3),

cos Oy < ;—} (6)

From the second condition and Eq. (1),
sin 6, < — €. (7)

Inequality (7) indicates that sin 6, is always negative. From
inequality (6), the maximum possible value of 6, is deter-
mined by 37/2+arcsin(v/2). This is consistent with Eq. (6)
in Ref. 11, except the shift by 7, which originates from the
different sign of the ac field in single-electron equation. In-
equality (7) is valid only for zero emission velocity. For fi-
nite emission velocity, according to Ref. 11 (and considering
the different sign of the ac field), the minimum possible
phase is determined by w+arctan(l/nm— V8/3).

B. Stability of the fixed point

Here, we investigate the stability of the fixed point 6. If
an electron starts with 6, satisfying Eq. (4), it always returns
to the emission plate with exactly the same phase. Thus, the
next emitted electron takes the identical path to its previous
one, resulting in the periodic repetition of the emission and
returning. However, in the real multipactor, the electrons can
easily deviate from such a resonant trajectory by space
charge effects, delay in the secondary emission, energy and
angle spread of the secondary emission, etc. If the fixed point
is stable, the deviated electrons can be attracted again to the
fixed point. Such an attraction is possible because the multi-
pactor system is not an energy-conserved one. Instead, some
electron energies are always lost through the emission plate
since the emission energy of the secondary electron does not
have much correlation with the incident energy. Such a
“damping” can lead to the stable attractor, i.e., the fixed
point.

For the analysis we find the mapping from a small de-
viation A, at the kth cycle to the deviation at the next cycle
A1 The deviation Ay is defined by A;=6,— 6,, where 6, is
the initial phase relative to the ac field at the kth cycle. The

Phys. Plasmas 18, 033103 (2011)

time taken for the electron to return in the next cycle is
denoted by 7=wt, which is a function of the previous starting
phase 6. The deviation at the next cycle, after the n oscilla-
tions of the ac field, is Ay, =6, — 0y= 0+ 7— 6y—2n . Note
that 7(6,)=2n7r. Up to the second order of A’s,

Ak+1:1+7'(0k)_7(00):1+ at A P
A, 0, — 6o 90

+ .
o 2 9Flg

(8)

The derivatives d,7 and 6%7' can be obtained from Eq. (3).
After 7 the electron returns to the emission plate, so
z(7)=0. Thus,

(v—cos 6,)7— %ETZ +sin(7+ ;) —sin 6,=0. 9)

The differentiation of Eq. (9) by 6, and substituting 6,= 6,
yields

2nrsin 6y 2nm1 = (v - ne)?

T=— , (10)

v—2nme v—2nme

where the prime means the derivative in terms of # and the
subscript zero means that the derivative is evaluated at
0= 6,. By differentiating once more Eq. (9), the second de-
rivative of 7 can be obtained:

2nm —_—

= 6)3{2;177[6— V1= (v=nme)®®] - (v—-nme)

(v-2nm
X (1 = 2nmev + 2n*m )}, (11)

If the mapping from A, to A, is written as A, =/(Ay),
then from Eq. (8),

f(x) =x(b + ax), (12)

where b=1+7), a=1,/2, and 7, and 7 are determined by
Egs. (10) and (11). The coefficients @ and b are plotted as
functions of € in Fig. 2 for some typical v’s.

Using the mapping found above, the stability of the fixed
point can be investigated. Just the n=1 case is considered.
The stability condition can be revealed by examining the
equilibrium point (attractor) of the mapping f(x), i.e.,
fxg)=xo. When |df(x,)/dx| <1, x, is a stable equilibrium
since any small perturbation from x, will be attracted to x
after several iterations. As seen from Fig. 2, the coefficients a
and b are mostly negative for € from 0.29 to 0.37, which is
an interesting range since a stable single-electron bunch is
generated there as will be shown later. Therefore, the
mapping looks like that in Fig. 3 in this range. There are
two equilibrium points: one is at xy=0 and the other is
at xo=(1-b)/a=27y/7;. For the latter it is obviously
If(xo)|>1 (unstable). At x,=0, f'(0)=b. Thus, the stability
condition for the fixed point 6, is

N () —e)2
b= |14 2= (13)
v—2me
Note that the function f(x) maps A; to A, ;. When the sta-
bility condition (13) is satisfied, any small A will converge to
zero as the iteration goes on, which means that the electron
phase relative to the ac field will converge to 6.
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€

FIG. 2. The coefficients a and b in Eq. (12) for a typical range of e.

C. Bifurcation of the fixed point

As seen in Fig. 2(b), |b|=|f"(0)| can be increased beyond
unity as € is decreased. Beyond the stability breaking, cas-
cading of bifurcations is expected as in the logistic map,
because the mapping f(x) is quadratic. Here, the meaning of
the bifurcation is the splitting of a given fixed point branch in
a parameter map into two or more multiple branches. Typi-
cally, as dc field decreases, the original single fixed point
splits into two stable phases, and then each two phases split
again into another two phases (so a total of four stable
phases). Such a cascading process repeats to reach stochastic
oscillations. For example, the first bifurcation can be ex-
plored by examining f(f(x,))=x,. Near the bifurcation, the
coefficient b can be written by b=—1-7, where 0<d<1.
And also the new equilibrium x,, is not much different from
X, i.e., |x,/|<1. Then from double iterations of Eq. (12),
keeping up to the second order of & and assuming x,,~ 6,
we obtain

o —l-b-4Vy-1-D

= . 14
%, ™ (14)

The leading order in Eq. (14) is V&, so the initial assumption
x,~ 3 is verified. The slope of F(x)=£(f(x)) at x,, is, up to
the order of &V,

Phys. Plasmas 18, 033103 (2011)

‘ i

0.0
X

FIG. 3. Map from A; to A, ;. The filled circles represent the equilibrium
points. At around the equilibrium x=0, the initial perturbation converges to
zero. At around the other equilibrium, any arbitrary perturbation grows. The
stability of x=0 depends on the slope of f(x) there.

F,(xn) :fl(f('xn))f,(xn) = 5 +4b+3(b+ 1)\’_ 1 _b-
(15)

Equation (15) is roughly F’(x,) ~5+4b. Consequently, the
stability condition of the two-period bifurcated state is

—15<b<-1. (16)

In this bifurcated state, the phase of the electron (at the mo-
ment of impact on the emission plate) alternates between
X,+ 6, and f(x,)+ 6,, where

-3(1+b)+4\-1-b

fle) = » . (17)

Figure 4 shows the bifurcation diagrams of the fixed
point 6, which were obtained from direct iterations of map-
ping (12). We plotted 6,=6,+A, instead of A itself. The
dashed lines represent theoretical branches from Egs. (14)
and (17) (added by 6,), which agree well with the direct
iterations up to the second bifurcation points. Because the
mapping is valid only for a small A, it is not exactly coinci-
dent with the PIC simulation results for a small €, where A is
large. Note that the discrepancy of the PIC from the map-
ping, especially near the first bifurcation points, originated
partially from the space charge effect, which was not consid-
ered in the theory. When the space charge effect was toggled
off, the PIC exactly overlapped on the theoretical curves near
the first bifurcation points. Even though there is some dis-
crepancy, the mapping still preserves well the qualitative be-
havior of the fixed points even in the small-e region: for
example, the four-branch bunching was observed in the
PIC simulations as predicted by the mapping at €=0.274 for
v=0.1 and €=0.3 for v=0.2. Figure 5 shows the PIC simu-
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4
D

2
0.2 0.31

FIG. 4. Bifurcation diagrams for (a) »=0, (b) »=0.1, and (c) v=0.2. The
solid lines were obtained from direct iterations of the mapping equation
(12), and the theoretical curves (dashed lines) were from Egs. (14) and (17).
The triangles represent the PIC simulation results.

lations of the electric currents measured at the emission tar-
get and x-y phase space of the bunched electrons for single,
double, and quadruplet bunching.

The accuracy of the stability condition (16) for the
double bunching was found to be reasonably good. In Fig. 4,
the values of € at which the system transits from double
bunch to the quadruplet bunch, i.e., the second bifurcation

Phys. Plasmas 18, 033103 (2011)
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FIG. 5. The electric current measured at the target (left column) and the
electron distribution in a real x-z space (right column) for v=0.2. The elec-
tric current is the total charge flowing out of the system per unit time, so its
sign is determined by the difference in the number of incident and emitted
electrons. The electron distributions in the right column exhibit significant
grouping into (b) single, (d) double, and (f) quadruplet bunches. The rem-
nant electrons existing between the major bunches are possibly the nonsat-
urated ones or the resonant electrons with higher modes (n>1).

point, are 0.251, 0.277, and 0.302, respectively. The coeffi-
cient b for those €’s is —1.45 for all those three cases, which
coincides well with Eq. (16).

It may be useful to describe the actual parameters used
in the PIC simulations. The frequency and amplitude of the
driving ac field were fixed at 35 GHz and 5.941 V/um,
respectively. For these parameters, the values of v used here
(0, 0.1, and 0.2) correspond to 0, 0.65, and 2.6 eV, respec-
tively. These numbers for the emission energy of the second-
ary electrons are in the typical range of emission energy from
copper, stainless steel, and other materials.'* The dc field was
varied to change e. The simulations were two dimensional.
The length of the target was 100 wm, which was divided by
20 meshes. The span in the z-direction in Fig. 1 was set large
enough (70-300um depending on the cases), and initially
the electrons were loaded uniformly in the whole space to
accommodate all possible initial phases of the initial elec-
trons. Since the motion of the electrons is dominant in the
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FIG. 6. The electric current in the whole time domain of the simulation for
v=0.10 and €=0.29, which is the case of Figs. 5(c) and 5(d).

z-direction, it was resolved more finely by a 2 um mesh.
The simulation time step was 5 fs, which was small enough
to satisfy the Courant condition. Initially the electrons were
loaded uniformly in the whole domain, just some of which
survived to satisfy the fixed point condition and to proliferate
by the secondary emission. The fixed point could be
determined in the simulation as follows. The system is driven
by cos wt in the simulation, while the driving term in
Eq. (1) is sin(wt+6,). When the current peak appears at
I=lfeq> the ac field in the simulation can be written as
COS Wlpea=SiN(Wlyeq+7/2). Because we assume in the
theory that the electron returns to the target at wt=2n, if the
modulus of Wl + /2 by 27 is n, the fixed point can be
determined by )= wlyeq+ 7/2—2nr. For the measurement
of the fixed point in this way, the current peak was picked up
usually after 10-20 oscillations, which were enough to satu-
rate the phase 6, (not the current itself). Note that the
saturation of the current itself takes much longer than that.
For the yield (&) of the secondary electrons, we used'*'>!

8= 8%/ (s—1+x2), where x=E,/E. Here, E; is the energy

of an incident electron, and s and E are empirically adjust-
able parameters. In our simulations, we set s=1.35 and

E=318 eV. For these choices, the number of electrons pro-
liferated by the multipactor for most of the cases. Figure 6 is
one example of such an electron avalanche.

lll. EFFECTS OF THE ENERGY SPREAD
OF THE SECONDARY ELECTRONS

In the previous section, we studied the behavior of the
fixed point when the emission energy of the secondary elec-
tron is constant. However, in the real target, the secondary
electrons always have an energy spectrum with a finite
width. The energy spread is a material property. For ex-
ample, the empirical formulas of the secondary energy spec-
tra for copper and stainless steel are well summarized in
Ref. 14. In this section we investigate how the fixed point
diagram changes when a small amount of energy spread
is added to a given emission energy.17 We assumed a block
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FIG. 7. The velocity spectrum of the secondary electrons assumed in the
theory and simulations.

spectrum of the initial velocity v as in Fig. 7. For this energy
spread, 6, [the phase at the (k+1)th step] can be modified
as follows:

Ope1 = O+ (1, 6) — (1, 60p), (18)

where v;,=vy+ oy The phase 6., in Eq. (18) differs slightly
from that used in the previous section in the middle term,
where the flight time of the electron is now a function of v as
well as 6. From the fixed point (4), it can be verified that the
order of v is ~A. Thus, it is reasonable to expand Eq. (18)
up to the second order of v as well as A. Then the approxi-
mated equation looks like

0k+l = ﬂk + AkT(,) + 5Vk(9VT0

+ 5 AL T + A S1d, T + 5 SV T, (19)

where the prime means the derivative in terms of 6 as before.
From Eq. (19), the mapping from A, to A;,; becomes

Ak+] ZAk(E'i' ClAk) + S, (20)
where b=b+ 8vd, ) and s= v, 1+ Svi -7/ 2. Here,

> 2nr sin 6y(1 — €d, 7 — 7))

=— . 21
ava o (vy - 2n7re)? @1

Vs 00

Equation (20) takes almost the same form as Eq. (12). The
stability of the single bunch state is determined by the coef-
ficient b, so its modification by the energy spread gives a
small uncertainty to the first bifurcation point. The s-term
changes slightly the equilibrium value of A, but it does not
influence significantly the stability. Instead, it gives the phase
spread to the fixed point 6.

Figure 8 shows the modified bifurcation diagram for
v=0.2*+0.01 and »=0.2 = 0.03 obtained from direct iteration
of Eq. (20). The PIC simulation results are overlapped for
several € values, which show good agreement up to € of
0.32. Beyond that the mapping equation (20) fails since it
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FIG. 8. (Color online) The bifurcation diagram for nonzero velocity spread
of the secondary electrons for (a) Av=0.01 and (b) Av=0.03. The error bars
represent not actually any error, but the duration of each current pulse mea-
sured from the PIC simulations. Note that, for zero-energy spread, the cur-
rent pulses are narrow peaks as in Fig. 5. However, in the energy-spread
case, the current pulses have finite duration as in Fig. 9.

was derived for a small A only. The solid curves represent
the bifurcation diagram when there is no emission energy
spread. As can be expected, the two-period branch tends to
smear out and higher-period branches are totally merged. For
the second case in Fig. 8, where the velocity spread is about
15%, the parameter region for two-period branches is signifi-
cantly reduced. The current throughout the emission target
(Fig. 9) for €=0.32, where a clear double bunching was ob-
served for zero spread, now shows just a mere vestige of the
bifurcation. For a clear observation of the double bunch in
the energy-spread case, the dc field should be decreased
more as in Fig. 8(b).

IV. CONCLUSION

Motivated by using the multipactor discharge as a gen-
erator of highly intense cold electron bunches, the dc-biased
single-surface system has been theoretically studied. The dc-
biased single-surface multipactor has received relatively
little attention since the dc biasing is not a common configu-
ration in generic rf systems. When the rf system is to be
operated in the regime of tens of gigahertz frequency, dc
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FIG. 9. The electric current and the particle distribution in the space for
[(a) and (b)] €=0.32 and [(c) and (d)] €=0.31. The emission velocity is
v=0.2+0.03.

biasing becomes even more difficult. That is, to keep the
high quality factor of the rf resonator, the insulation gap to
sustain the dc bias cannot be large enough. To solve this kind
of problem, we suggested the photonic crystal structure in
our previous work.

For the practical use of the dc-biased system, the behav-
ior of the multipactor should be parametrized under diverse
environments of the dc and ac fields and the secondary emis-
sion. In this paper we investigated the conditions for the
phase lock of the electron bunch, the bifurcation, and the
effects of the velocity spread of the secondary electrons. To
summarize those works, first we found a quadratic function,
which maps a perturbation to the fixed point at a given cycle
to that in the next cycle. Here, the fixed point means an
initial phase of secondary electrons relative to the ac field
such that the next secondary electrons are also emitted with
the same phase, repeatedly adding up to the monophased
bunch. From the analysis of the mapping, the condition for
the stable single bunch generation was revealed as a function
of the ratio of dc and ac fields and the secondary emission
velocity. Second the condition for the stable double bunch
generation was also theoretically estimated in terms of the
field strength and the secondary emission velocity. Third we
added to the mapping the randomized term, from which the
effects of the emission velocity spread could be explored.
The bifurcated branches of the fixed point were merged to
each other significantly by the velocity spread, while up to
the double bunching those could be still observed for small
velocity spreads. The velocity spread is a material property,
so finding materials for small emission energy spread may be
important in getting sharp electron bunches. Monte Carlo
study for more realistic energy spread for copper and stain-
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less steel is under progress. The theoretical results were veri-
fied by PIC simulations in wide ranges of the parameters, all
of which showed good agreements. The parametrization of
the single-surface dc-biased multipactor in this paper can be
utilized for the experiments of the same system in the future.
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